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Abstract
Growth of critical fluctuations prior to catastrophic state transition is generally regarded as a

universal phenomenon, providing a valuable early warning signal in dynamical systems.

Using an ecological fisheries model of three populations (juvenile prey J, adult prey A and

predator P), a recent study has reported silent early warning signals obtained from P and A
populations prior to saddle-node (SN) bifurcation, and thus concluded that early warning sig-

nals are not universal. By performing a full eigenvalue analysis of the same system we dem-

onstrate that while J and P populations undergo SN bifurcation, A does not jump to a new

state, so it is not expected to carry early warning signs. In contrast with the previous study,

we capture a significant increase in the noise-induced fluctuations in the P population, but

only on close approach to the bifurcation point; it is not clear why the P variance initially

shows a decaying trend. Here we resolve this puzzle using observability measures from con-

trol theory. By computing the observability coefficient for the system from the recordings of

each population considered one at a time, we are able to quantify their ability to describe

changing internal dynamics. We demonstrate that precursor fluctuations are best observed

using only the J variable, and also P variable if close to transition. Using observability analy-

sis we are able to describe why a poorly observable variable (P) has poor forecasting capa-

bilities although a full eigenvalue analysis shows that this variable undergoes a bifurcation.

We conclude that observability analysis provides complementary information to identify the

variables carrying early-warning signs about impending state transition.

Introduction
Near a bifurcation point, a dynamical system may suddenly switch states without a significant
change in the external drive forces. Such transitions are possible when the system has access to
two (or more) stable states for the same control parameters. Bifurcation analysis describes alter-
ing fluctuation characteristics as a system moves towards a bifurcation point in response to a
slowly varying control parameter, and how it switches state at or beyond the bifurcation point.
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Forecasting upcoming regime shifts is a vigorious research topic. Increased variance of noise-
induced fluctuations is a well known universal early warning indicator of upcoming phase tran-
sitions, demonstrated in many model-based and experimentally obtained time series.

A 2013 article by Boerlijst et al [1] stated that catastrophic collapse in a structured three-var-
iable predator-prey model can occur silently without occurrence of early warning signals in
some model variables. They showed that warning signals only occur in the direction of the
dominant eigenvector which is most strongly aligned with one of the variables. Since the other
two variables were quiet prior to phase transition, they concluded that claims of the universal-
ity of early warning signals are not correct.

This paper elucidates the limitations of the method used in [1] to track the early warning
signs. We demonstrate that it is required to perform a full eigenvalue analysis of the multidi-
mensional model that undergoes regime shift. The analysis shows that not every system vari-
able is expected to carry signs of critical slowing, yet this does not contradict the notion of the
universality of critical fluctuations. We describe how the delayed rise of fluctuation variance of
the second variable was overlooked, and will explain the requisite conditions for detection of
critical fluctuations.

We extend the repertoire of analytic tools for detecting early warning signals by applying
observability concepts adopted from control theory. This analysis allows us to identify which
system variables are most representative of internal dynamics, and as a result carry information
about bifurcation proximity.

The paper is structured as follows. We first recapitulate the fisheries model, determine its
steady state behavior, and perform a linear stability analysis to extract the Jacobian matrix and
corresponding eigenvalues, and identify possible bifurcations. We run a numerical simulation
of the stochastic model and extract the fluctuation variances to confirm the results presented in
[1], then cross-check against Ornstein-Uhlenbeck theoretical predictions. We compute the
observability coefficients related to the three system variables and demonstrate how these coef-
ficient describe the changes in fluctuation variance on approach to impending saddle-node
induced regime shift.

Methods and Results

Model
The ecological model describes interaction dynamics between a predator and an age-structured
prey composed of juvenile and adult developmental stages. The original model equations
where the prey population is regulated through maturation and the predator feeds only on
adult prey are as follows [2]:

dJ
dt

¼ f1ðJ;A; PÞ ¼ bA� �J
1þ dJ2

� mJ J

dA
dt

¼ f2ðJ;A; PÞ ¼
�J

1þ dJ2
� nAP � mAA

dP
dt

¼ f3ðJ;A; PÞ ¼ cnAP � mPP

ð1Þ

where J, A, and P are state variables describing the size of juvenile, adult and prey populations
respectively. Here bA is the linear fecundity function with b as reproduction rate of adults. The
nonlinear function ϕJ/(1 + dJ2) describes maturation of juvenile population with maturation
rate of ϕ/(1 + dJ2) that goes to zero as juvenile population approaches infinity. ϕ is the maxi-
mummaturation rate of juvenile at low density, and d is the strength of exploitation competi-
tion among juvenile population. Parameter n is the attack rate of predator on adult and
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parameter c is the predator conversion efficiency. Death rates are μJ, μA, μP for juvenile, adult
and predator populations respectively.

As suggested in [2] a scaled form of this model is used here to reduce the number of parame-
ters:

dJ
dt

¼ f1ðJ;A; PÞ ¼ bA� J
1þ J2

� mJ J

dA
dt

¼ f2ðJ;A; PÞ ¼
J

1þ J2
� AP � mAA

dP
dt

¼ f3ðJ;A; PÞ ¼ cAP � mPP

ð2Þ

where all rate parameters should now be interpreted as fractions of ϕ.

Steady states of the model
The steady states of the model are determined by setting all time evolutions to zero and simul-
taneously solving the resulting steady state equations. Deriving the nontrivial solutions of
steady state equations is not always possible in higher dimensional dynamical systems. New
methods have been introduced recently to approximate fixed points of higher order stochastic
systems based on corresponding deterministic mean-field approximation [3]. Due to mathe-
matical simplicity of P equation in our model, we are able to directly solve the corresponding
steady state equations. From the third equation in Eq (2) we have P(Ac − μP) = 0 with P = 0
and A = μP/c both satisfying the equation. Here we ignore the P = 0 trivial solution since this
corresponds to complete elimination of predator population. Instead we select the nontrivial
solution A = μP/c which describes the equilibrium size of adult population. Using this equilib-
rium value in the second and third equations in Eq (2) we obtain:

0 ¼ bmP

c
� J
1þ J2

� mJ J

0 ¼ J
1þ J2

� P
mP

c
� mAmP

c

ð3Þ

These equations can be rewritten as

cmJ J
3 � bmPJ

2 þ ðcmJ þ cÞJ � bmP ¼ 0 ð4Þ

P ¼ c
mP

J
1þ J2

� mAmP

c

� �
ð5Þ

A ¼ mP

c
ð6Þ

Eq (4) is a cubic polynomial in J, so its equilibrium values J° can be determined using the
roots function in MATLAB. Substitution in Eq (5) gives the corresponding value for P° and Eq
(6) gives A°, the equilibrium values for predator and adult populations as a function of μP
(death rate of predator population). Fig (1a)–(1c) shows the resulting steady state diagrams for
each population. The juvenile and predator populations display multi-root regions while the
adult density follows a linear trend over the full range of μP values. Two critical values of μP =
B1, B2 on the border of multi-root region are indicated in Fig (1a) and (1b). Bifurcation points
mark the locations where system dynamics undergoes a qualitative change. Eigenvalue analysis
determines the stability properties and the types of bifurcation.
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Linear stability analysis
We perform a full eigenvalue analysis of linearized system following standard methods
described in [4]. We linearize the model by writing:

ZðtÞ ¼ Zo þ ẐðtÞ ð7Þ

where ẐðtÞ is a small temporal perturbation, and Z 2 {J, A, P}; Z° is the equilibrium point. It is

informative to identify if Ĵ ; Â, and P̂ perturbations grow or decay to locate unstable and stable
points. Replacing model variables with their perturbed forms, and using Taylor series

Fig 1. Steady-state diagram and corresponding eigenvalues of the fisheries model as a function of predator death rate μP. (a-c) steady states
showing a S-bend shape for J and P variables with color-coded lower (blue), middle (green) and upper (red) branches. Population A shows a linear
trend with μp. (d, e) Real and imaginary parts of linearized model. Saddle-node bifurcation points are marked B1 and B2 and indicated by vertical
dashed grey lines. Model parameters are c = 1, b = 1, μJ = 0.05, μA = 0.1. Eigenvalues are not relevant for mP ≳ 0:74 since predator population goes
negative.

doi:10.1371/journal.pone.0163003.g001
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expansions, Eq (2) can be written

dĴ
dt

¼ f1ðĴ þ Jo; Â þ Ao; P̂ þ PoÞ ¼ f1ðJo;Ao; PoÞ þ @f1
@J

joĴ þ
@f1
@A

joÂ þ @f1
@P

joP̂ þ � � �

dÂ
dt

¼ f2ðĴ þ Jo; Â þ Ao; P̂ þ PoÞ ¼ f2ðJo;Ao; PoÞ þ @f2
@J

jo Ĵ þ
@f2
@A

joÂ þ @f2
@P

joP̂ þ � � �

dP̂
dt

¼ f3ðĴ þ Jo; Â þ Ao; P̂ þ PoÞ ¼ f3ðJo;Ao; PoÞ þ @f3
@J

joĴ þ
@f3
@A

joÂ þ @f3
@P

joP̂ þ � � �

ð8Þ

where the higher order terms are neglected since Ẑ is small. Noting that f1,2,3(J°, A°, P°) = 0, we
obtain,

dĴ
dt

¼ @f1
@J

jo Ĵ þ
@f1
@A

joÂ þ @f1
@P

joP̂

dÂ
dt

¼ @f2
@J

jo Ĵ þ
@f2
@A

joÂ þ @f2
@P

joP̂

dP̂
dt

¼ @f3
@J

jo Ĵ þ
@f3
@A

joÂ þ @f3
@P

joP̂

ð9Þ

to describe the time evolution of the perturbations Ĵ ; Â; P̂ . Expressing in matrix form,

d
dt

JðtÞ

AðtÞ

PðtÞ

2
6664

3
7775 ¼ ~J

JðtÞ

AðtÞ

PðtÞ

2
6664

3
7775 ð10Þ

where

~J ¼

@f1
@J

@f1
@A

@f1
@P

@f2
@J

@f2
@A

@f2
@P

@f3
@J

@f3
@A

@f3
@P

2
66666666664

3
77777777775
¼

� 1� J2

ð1þ J2Þ2 � mJ b 0

1� J2

ð1þ J2Þ2 �ðP þ mAÞ �A

0 cP cA� mP

2
6666666664

3
7777777775

ð11Þ

is the Jacobian matrix evaluated at the equilibrium point (J°, A°, P°) and fi, i 2 {1, 2, 3} are sys-
tem functions defined in Eq 2. The exponential time-course for small perturbations away from

steady state can be predicted from the eigenvalues of ~J [5]. The equilibrium is stable when all
eigenvalues have negative real parts, otherwise the equilibrium is unstable. Close to equilibrium
the system dynamics is determined by the dominant eigenvalue, i.e., the eigenvalue whose real
part is least negative. See Fig 1(d).

The lower branch of J steady-state diagram (top branch of P) is a stable focus-node since the
system has one real negative eigenvalue and a pair of complex conjugate eigenvalues with nega-
tive real part. Note that the focus is dominant for μP � B3 but the node takes over for μP� B3.
The top branch of J (bottom branch of P) forms stable focus-nodes for mP≲0:74 where the
node aspect is dominant. In contrast, all points on the midbranch are unstable saddle-focus
equilibria forming a separatrix between upper and lower branches.

We identify three critical μP values:
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1. μB1
= 0.43525: a stable focus-node collides with an unstable saddle-focus. This is simply a

saddle-node bifurcation at the left-hand turning point.

2. μB2
= 0.55281: saddle-node bifurcation at right-hand turning point.

3. μB3
= 0.53017: dominance is swapped between focus and node components. Stability is not

modified, so a bifurcation does not happen here.

Having identified bifurcation points (B1 and B2) and special point (B3), we run a series of
stochastic numerical simulations, then validate against theoretical predictions.

Noise-induced fluctuations prior to bifurcation
We repeat the numerical experiments described in [1] but, rather than displaying coefficient of
variation (standard deviation divided by mean), in Fig 2 we plot the unscaled fluctuation vari-
ance as a function of μp. The coefficient of variation is not ideal for tracking fluctuations since
changes in the mean can confound changes in fluctuation amplitude; the latter is where the
dynamic information resides. We first analyze the case when the noise is added to J population
only as shown in Fig 2(a). From eigenvalue analysis we estimate the mortality rate at the right-
hand saddle-node point as μP = μB2

� 0.55280625013933332. We use geometrically spaced μP
values to closely approach this catastrophic collapse point while noise is added to the death
rate of J population in the same way as described by Boerlijst et al:

dJ
dt

¼ bA� J
1þ J2

� ðmJ þ a1x1ðtÞÞJ ð12Þ

where a1 is a coefficient to ensure that the noise amplitude is small, and ξ1(t) represents a zero-
mean, Gaussian-distributed white-noise process. We first calculate the steady state, and then
use this as the initial value in an Euler-based numerical update of the differential equations
using time steps of Δt = 0.01. The variance is extracted for each μP value and trends are plotted
for 0.4� μp � μB2

.
Results are shown in Fig 2(a). Despite the general similarity with those reported in [1], there

are subtle but important differences. We see that the fluctuation variance increases prior to
catastrophe in all three populations, Fig 2(a). This increase is significant for juvenile and preda-
tor populations and very weak for adult population. We found that capturing the growth of
fluctuation variance for adult and predator populations is numerically challenging, and
requires:

1. Precise identification of control parameter value (μP) at phase transition.

2. Performing numerical experiments in close vicinity to catastrophe. We chose geometrically
spaced μp values to closely approach the B2 saddle-node,

mp ¼ mB2
ð1þ �Þ; � ¼ 1=4j with j ¼ 1; 2; . . . 25 ð13Þ

3. Application of considerably smaller amplitude white noise when performing the experi-
ments close to phase transition. We used very small amplitude noise with standard devia-
tion σ = 6.317 × 10−7 compared to σ = 0.005 used in [1], otherwise the noise-induced
fluctuations are strong enough to cause a jump transition in the system, preventing us from
dwelling close to bifurcation.

Fig 2 shows that fluctuation variance grows significantly prior to SN point for J and P popu-
lation, and has a tiny or zero growth for A population regardless of the way noise is added to
the system. The exception is when noise is added to the A population only (Fig 2(b)): for this
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case, none of the populations exhibit fluctuation growth. The results of an extra experiment
where the noise is added to P only population is displayed in Fig 2(e).

To verify the accuracy of our simulations, we transform the stochastic model equations into
Ornstein-Uhlenbeck (OU) form. Then we compare the theoretically-predicted OU statistics
against the corresponding values extracted from numerical simulations.

Ornstein-Uhlenbeck (OU) analysis
We include additive white noise in all three equations to transform model (2) to a stochastic
form suitable for OU analysis,

Fig 2. Numerically obtained fluctuation variance of model variables prior to saddle-node bifurcation. (a–d) For each value of μP, starting with
μP = 0.4, the model is simulated for 60,000 time units with resolution of 0.01 time units, from which the population variances are computed. μP is
incremented geometrically towards the catastrophic collapse at μP = μB2

. Death rates are perturbed every time unit using white noise with standard
deviation of σnoise = 2 × 10−6. (a) Noise added to the juvenile population (b) Noise added to the adult population (c). Independent noise added to all
three populations. (d) Identical, fully correlated, noise added to all three populations. (e) An extra experiment where noise is added to P only
population.

doi:10.1371/journal.pone.0163003.g002
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dJ
dT

¼ bA� J
1þ J2

� mJ J þ a1x1ðtÞ
dA
dt

¼ J
1þ J2

� AP � mAAþ a2x2ðtÞ
dP
dt

¼ APc� mPP þ a3x3ðtÞ

ð14Þ

where a1,2,3 are scaling constants that ensure that the fluctuations are small, and ξ1,2,3 are inde-
pendent zero-mean, Gaussian-distributed white-noise sources [6],

hxðtÞi ¼ 0 ; hxmðtÞxnðt0Þi ¼ dmndðt � t0Þ ð15Þ

where δmn is the dimensionless Kronecker delta, δ(�) is the dirac delta with a dimensionless
total area under its curve equal to one, and the h���i represents the ensemble average over time.
Noise samples (implemented by MATLAB’s randn function) are scaled as

xðtÞ ¼ Rnð0; 1Þffiffiffiffiffi
Dt

p ð16Þ

whereRnð0; 1Þ describes a zero-mean, unit-variance Gaussian random number generator; the

scaling by
ffiffiffiffiffi
Dt

p
ensures that ξ(t) tends to an infinite-variance white noise in the limit Δt! 0 [6,

7, 8]. (Notice that the noise is not added to the mortality rates of populations as implemented
by in Boerlijst et al [1] and shown in Eq (12)). We arrange the model equations in matrix form:

d
dt

J

A

P

2
6664

3
7775 ¼ ~J

J

A

P

2
6664

3
7775þ

a1xJ

a2xA

a3xP

2
6664

3
7775 ð17Þ

with ~J as the Jacobian matrix defined in Eq (11). We recast into standard OU form, [9, 10]:

d
dt

J

A

P

2
64

3
75 ¼ �~A

J

A

P

2
64

3
75þ

ffiffiffiffi
D

p xJ
xA
xP

2
64

3
75 ð18Þ

where ~A ¼ �~J is the drift matrix andD is a diagonal 3 × 3 diffusion matrix

D ¼

a21 0 0

0 a22 0

0 0 a23

2
6664

3
7775 ð19Þ

Based on well documented OU statistics [9, 10], we can immediately write down theoretical
expressions for covariance matrix of the model. The stationary covariance matrix S of an OU
process is defined by

AΣþ ΣAT ¼ D ð20Þ
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where S is the 3 × 3 stationary covariance matrix

Σ ¼

varðJÞ covðJ;AÞ covðJ; PÞ

covðA; JÞ varðAÞ covðA; PÞ

varðP; JÞ covðP;AÞ varðPÞ

2
6664

3
7775 ð21Þ

from which one can extract the theoretical variance predictions. Noting that Eq (20) is the con-
tinuous Lyapunov equation, one can derive S as:

vecðΣÞ ¼ ðI� Aþ A� IÞ�1 vecðDÞ ð22Þ

where vec() represents the vectorised form of a matrix and� is the Kronecker product [11].
The vectorization operation is defined as the stacking of the columns of a matrix into a vector.
This method is a generalization of the approach suggested by Gardiner which is limited to
2 × 2 matrices [10].

We use Eq (22) to compute the theoretical covariance matrix. Eq (21) shows that the diagonal
elements of this matrix represent the individual fluctuation variances of each of the three popula-
tions. We perform similar experiments as shown in Fig 2(c) where independent noises are added
to all three populations and plot the numerically obtained variances as solid lines in Fig 3(a)–
3(c); theoretical predictions are superimposed as dashed lines. Good agreement between theory
and experiment is evident in all three populations. Variance of J fluctuations increases towards
the SN point as shown in Fig 3(a). Variances of A and P populations show a decreasing behav-
iour, but P variance recovers and increases significantly close to catastrophe as shown in (b), (c).

One can perform similar analysis when the noise is added to only J or P population. The
qualitative form of the results is not strongly sensitive to the number of independent noise
sources, e.g., compare the three-noise case of Fig 3 with S1 and S2 Figs.

These results show that although a saddle-node bifurcation occurs in this three-dimensional
dynamical system, not all system variables display early warning indicators. Considering the
steady-state diagrams of Fig 1, one notices that J and P populations switch to a new state at
bifurcation points while A variable does not. The linear steady state diagram for A population
does not support bifurcation, so it is not expected to show critical fluctuations.

On the other hand one might expect to capture reliable early warning signs on both J and P
fluctuations due to their similar multi-root steady-state diagrams, but the results do not sup-
port this expectation. While the J population demonstrates consistent growth towards the SN
point, the P population does not. Instead, we only observe significant fluctuation growth very
close to SN.

Boerjlist et al. [1] used the concept of dominant eigenvector to explain the strong growth in
J fluctuations and apparent invisibility of P fluctuations. We tested this idea by extracting the
dominant eigenvalue and corresponding eigenvector components for a broad range of μP val-
ues while approaching the B2 saddle-node point. Fig 4 displays the dominant eigenvalue (previ-
ously displayed as part of Fig 1(d)) and the corresponding eigenvector decomposed into its J, P
and A components. Close to state transition, the dominant eigenvector has a significant J com-
ponent, a small P component, and an almost zero A component.

Although behaviour of the eigenvalue components matches the variance trends—and Boer-
lijst et al [1] reported similar findings—one may still ask the important question: Why do the P
fluctuations not increase all the way towards SN point? Since SN bifurcation can occur in one-
dimensional systems [12], perhaps it is the case that J is the only variable in control of SN bifur-
cation in this model. We will demonstrate that observability analysis can provide insights for
this argument.
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Observability analysis
Inferring whole system dynamics based on measuring a single time series of the system is a
challenging problem. Observability analysis reveals which variable (or combination of vari-
ables) best represents internal dynamics. See S1 Appendix for a general description of observ-
ability analysis. Here we compute the observability coefficients for the system when monitored
through J, P, and A populations to quantify the system observability from individual variables.

The observability coefficient is derived from the observability matrix ~Ox ðx 2 fJ; P;AgÞ con-
structed from either Lie derivatives or a coordinate transformation that maps from the system
to a nominated single variable [13]. Both procedures are mathematically the same, resulting in
the same observability matrix. Here we construct the observability matrices from Lie deriva-
tives. The same observability matrices can be obtained using coordinate transformation as
shown in S2 Appendix. The Lie derivatives of the system are

Lf1
¼ @f1

@J
f1 þ

@f1
@A

f2 þ
@f1
@P

f3

¼ � 1� J2

ð1þ J2Þ2 � mJ

" #
bA� J

1þ J2
� mJ J

� �
þ b

J
1þ J2

� AP � mAA

� �

Lf2
¼ @f2

@J
f1 þ

@f2
@A

f2 þ
@f2
@P

f3

¼ 1� J2

ð1þ J2Þ2 bA� J
1þ J2

� mJ J

� �
� ðP þ mAÞ

J
1þ J2

� AP � mAA

� �

� AðcAP � mPPÞ

Lf3
¼ @f3

@J
f1 þ

@f3
@A

f2 þ
@f3
@P

f3

¼ cP
J

1þ J2
� AP � mAA

� �
þ PðcA� mPÞ2

with fi, i 2 {1, 2, 3} previously defined in Eq 2. The next step is to construct matrix ~J2 by taking
derivatives of Lf1

;Lf2
and Lf3

with respect to J, A and P variables

~J2 ¼

@Lf1

@J

@Lf1

@A

@Lf1

@P

@Lf2

@J

@Lf2

@A

@Lf2

@P

@Lf3

@J

@Lf3

@A

@Lf3

@P

2
6666666664

3
7777777775

We are interested in observability analysis via each individual system variable, so define
measurement vectors,

C1 ¼ ½1 0 0�; C2 ¼ ½0 1 0�; C3 ¼ ½0 0 1�

corresponding to J, A and P variables respectively. Then the state-dependent observability
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matrix of each variable is

OJ ¼

C1

C1
~J

C1
~J2

2
666664

3
777775; OA ¼

C2

C2
~J

C2
~J2

2
666664

3
777775; OP ¼

C3

C3
~J

C3
~J2

2
666664

3
777775: ð23Þ

These matrices can be constructed for every point at space space, but we choose to compute
them only at stable steady states in order to confine our study to ecologically significant stable
states. A system is defined to be observable via variable x if the observability matrixOx is full

rank, otherwise not observable [14]. Equivalently ifOT
xOx; x 2 fJ; A; Pg is nonsingular

(does not have a zero eigenvalue), then the system is observable, otherwise not. In practice, an
observable system may gradually lose observability due to a varying system parameter. Aguirre
et al. [13] developed a method to quantify degree of observability using observability coefficient.
Following their method to compute the observability coefficient through individual system

Fig 3. Fluctuation variance prior to saddle-node bifurcation with independent noises added to all three populations. Experimental and theoretical
variances are plotted for all three populations while approaching catastrophe. A fixed step Euler method with Δt = 0.01 is used for numerical simulations
each for 6000 time units. Starting with μP = 0.4, it is incremented towards the saddle-node point at μB2

. The distance from bifurcation point is geometrically
reduced enabling more experiments close to bifurcation. Three independent white noise sources are added to each population as described in Eqs (14)–
(16) with standard deviation of σnoise = 2 × 10−6.

doi:10.1371/journal.pone.0163003.g003
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variables one should first extract the state dependent observability measure as

dxðJðtÞ;AðtÞ; PðtÞÞ ¼
jlmin½OT

xOx�j
jlmax½OT

xOx�j
; x 2 fJ; A; Pg ð24Þ

where lmax½OT
xOx� is the maximum eigenvalue of matrixOT

xOx estimated at point (J(t), A(t),
P(t)) (likewise for λmin). According to this definition 0� δx� 1 and the lower bound is reached
when the system is unobservable for variable x. The next step is to compute the observability

coefficient �dx (which is a constant) as the time average of δx(J(t), A(t), P(t)) along the trajectory

(J(t), A(t), P(t)), t 2 {tinitial, tfinal}. Confining our analysis to stable steady states, we extract �dx

locally without a need for time averaging, giving a local measure of stability:

�dxðJo;Ao; PoÞ ¼ jlmin½OT
xOx�j

jlmax½OT
xOx�j

; x 2 fJ; A; Pg ð25Þ

where observability matrices are computed at steady states. We use this coefficient to determine
the observability of the fisheries model while gradually approaching the B2 saddle-node point
by increasing the mortality rate of the prey population.

We extract the observability coefficients using observability matrices obtained by Lie deriva-

tives. The results are shown in Fig 5. �dJ and �dP cross at μP� 0.475 showing that for lower values
of the predator mortality rate it is best to measure P whereas for higher rates of μP it is best to
measure J if one is to monitor the internal dynamics. Focusing at the close vicinity of SN point,

while the system is significantly observable from J population (�dðJÞ � 0:08), the observability

Fig 4. Tracking of dominant eigenvalue and its decomposed eigenvector towards saddle-node bifurcation point. (a) The real part of
dominant eigenvalue and (b) the corresponding decomposed eigenvector as a function of predator mortality rate μP.

doi:10.1371/journal.pone.0163003.g004
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coefficients of P and A populations are �dðPÞ � 6	 10�4 and �dðAÞ � 0. These values indicate
that the system is mainly observable from J prior to SN point. The coefficient trends over the

μP range show a decrease in system observability via �dðPÞ and �dðAÞ but an increase for �dðJÞ.
Notice that �dðPÞ recovers slightly just prior to SN point as shown in the inset. These trends are
in agreement with variance of fluctuations as displayed in Figs (2a), (2c) and (2e) and 3. The
small observability coefficients of P and A variables explain the challenging task of capturing
signs of slowing down on these variables in numerical simulations. This implies that signs of
slowing down would be very hard to observe on predator or adult populations in field or even
in controlled laboratory setups.

Discussion
Boerjlist et al. have shown that not every variable of a structured prey-predator ecological model
presents precursors of upcoming saddle-node collapse [1]. They performed a series of numerical
simulations in which different noise types were added to model variables in a search for early
signs of upcoming state transition. They extracted the coefficient of variation of noise-induced
fluctuations of model variables while forwarding the system towards the SN point by gradually
increasing the predator mortality rate μP as a control parameter. Their results showed that only
J population showed growth in fluctuation amplitude. Since they did not observe any fluctuation
growth for P and A populations they concluded that a catastrophic collapse can occur quietly,
and that the claims for universality of early signs of upcoming state transitions are not correct.
In the current paper we have investigated the same model prior to SN bifurcation and have elu-
cidated what was missed in the previous analysis. Our results emphasis the importance of per-
forming a full eigenvalue analysis in capturing complete dynamics of the system.

We showed that steady state diagrams of J and P populations versus μP follow an S-bend
shape with multi-root regions, while the A steady state is a simple linear function of μP. Using

Fig 5. Observability coefficients of fisheries model.Observability coefficient of system variables �dðJÞ; �dðPÞ, and �dðAÞ as a function of μP
calculated using the definition in Eq (24). Lie derivatives are used to construct the observability matrix from which the observability coefficients are
calculated. See text for details. A geometrically spaced vector of predator mortality rate is used to cover the range 0.4� μP� μB2

.

doi:10.1371/journal.pone.0163003.g005
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both numerical and theoretical approaches we were able to demonstrate noise-induced early
warning signs on both J and P fluctuations. We identified some guiding principles for reliable
detection of critical fluctuations. These include:

• monitoring fluctuation variance instead of coefficient of variation (standard deviation over
mean)

• extending numerical experiments to close vicinity of SN point

• reducing noise amplitude when close to SN to reduce risk of state transition

We argued that the linear shape of the A steady state diagram cannot support a SN bifurca-
tion, so critical fluctuations in A are not expected. This demonstrates that the occurrence of a
bifurcation in a high-dimensional system does not necessarily mean that all system variables
also undergo the bifurcation. As the first step in tracking early warning signs, one should first
identify those model variables undergoing the bifurcation.

We observed that variance of P initially decreases, and only increases in close proximity to
the SN point. This prompted the question of why variances of P and J populations behave dif-
ferently although both have a similar distribution of multi-root steady states supporting SN
bifurcation. Boerjlist et al. attempted to answer this question by looking at the direction of
dominant eigenvector of the linearized model at SN point [1]. They demonstrated that near
the bifurcation, the dominant eigenvector almost exclusively points in the direction of juvenile
population axis. They concluded that slowing down only occurs in the direction of the domi-
nant eigenvector. We further analysed the model by looking at the contribution of each vari-
able in dominant eigenvector on wide range of predator mortality rate of 0.4� μP � μB2

. Our
results also confirmed that the dominant eigenvector is largely composed of J component near
bifurcation point. We also found that the contribution of J component increases regularly
towards bifurcation point, while the contribution of other two variables mainly has decreasing
behaviour.

We extended the work using observability analysis by computing the observability coeffi-
cient of the three system variables, revealing that the internal dynamics of the model is best
observed from the J variable only. System dynamics is only marginally observable using fluctu-
ations in P near bifurcation, and almost non-observable via A fluctuations. These findings are
concordant with the variances of noise-induced fluctuations as early warning signs of upcom-
ing SN bifurcation.

The observability coefficient identifies those system variables which are most representative
of whole systems dynamics. Using the observability coefficients to quantify degree of observ-
ability—on a 0 to 1 scale—gives a quantitative advantage over the simple eigenvector-based
analysis. Observability analysis provides a useful tool in looking for signs of critical fluctuations
in complex multivariable models by highlighting those system variables that are sensitive to
early signs of catastrophic regime shift. Having established the usefulness of observability anal-
ysis in looking for signs of critical fluctuations, there are techniques that would help infer
observability from (roughly stationary) experimental data without requiring knowledge of the
governing model equations of the underlying system [15].
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S2 Fig. Fluctuation variance prior to saddle-node bifurcation with noise added to P popula-
tion only.
(PDF)

S1 Appendix. Observability.
(PDF)

S2 Appendix. Observability matrix made from coordinate transformation.
(PDF)

Acknowledgments
L. A. Aguirre’s research is partially supported by Conselho Nacional de Desenvolvimento Cien-
tífico e Tecnológico (CNPq).

Author Contributions

Conceptualization: EN.

Formal analysis: EN.

Investigation: EN.

Methodology: EN DASR MLSR LAA.

Software: EN.

Visualization: EN.

Writing – original draft: EN.

Writing – review & editing: EN DASR LAAMLSR.

References
1. Boerlijst MC, Oudman T, de Roos AM. Catastrophic collapse can occur without early warning: exam-

ples of silent catastrophes in structured ecological models. PloS one. 2013; 1–6.

2. van Kooten T, de Roos AM, Persson L. Bistability and an Allee effect as emergent consequences of
stage-specific predation. Journal of Theoretical Biology. 2005; 237.1: 67–74. doi: 10.1016/j.jtbi.2005.
03.032 PMID: 15935390

3. Cairoli A, Piovani D, Jensen HJ. Forecasting transitions in systems with high-dimensional stochastic
complex dynamics: A linear stability analysis of the tangled nature model. Physical Review Letters.
2014; 113.26: 264102. doi: 10.1103/PhysRevLett.113.264102 PMID: 25615342

4. McQuarrie DA. Mathematical methods for scientists and engineers. University Science Books, 2003.

5. Reichl LE. A Modern Course in Statistical Mechanics. Austin: University of Texas Press; 1980.

6. Steyn-Ross ML, Steyn-Ross DA, Sleigh JW,Whiting DR. Theoretical predictions for spatial covariance
of the electroencephalographic signal during the anesthetic-induced phase transition: Increased corre-
lation length and emergence of spatial self-organization. Physical Review E. 2003; 68.2:021902. doi:
10.1103/PhysRevE.68.021902

7. Negahbani E, Steyn-Ross DA, Steyn-Ross ML, Wilson MT, Sleigh JW. Noise-induced precursors of
state transitions in the stochastic Wilson-Cowan model. The Journal of Mathematical Neuroscience.
2015 Dec 1; 5.1:1–27. doi: 10.1186/s13408-015-0021-x

8. Negahbani E. Dynamics and precursor signs for phase transitions in neural systems [dissertation].
Hamilton (New Zealand): University of Waikato; 2014.

9. Chaturvedi S, Gardiner CW, Matheson IS, Walls DF. Stochastic analysis of a chemical reaction with
spatial and temporal structures. Journal of Statistical Physics. 1977; 17.6:469–489. doi: 10.1007/
BF01014350

Which System Variables Carry Robust Early Signs of Upcoming Phase Transition?

PLOS ONE | DOI:10.1371/journal.pone.0163003 September 15, 2016 15 / 16

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0163003.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0163003.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0163003.s004
http://dx.doi.org/10.1016/j.jtbi.2005.03.032
http://dx.doi.org/10.1016/j.jtbi.2005.03.032
http://www.ncbi.nlm.nih.gov/pubmed/15935390
http://dx.doi.org/10.1103/PhysRevLett.113.264102
http://www.ncbi.nlm.nih.gov/pubmed/25615342
http://dx.doi.org/10.1103/PhysRevE.68.021902
http://dx.doi.org/10.1186/s13408-015-0021-x
http://dx.doi.org/10.1007/BF01014350
http://dx.doi.org/10.1007/BF01014350


10. Gardiner CW. The Ito Calculus and Stochastic Differential Equations. In: Handbook of Stochastic Meth-
ods for Physics, Chemistry and the Natural Sciences. Third ed. Springer-Verlag; 2004. pp. 80–116.

11. Laub AJ. Kronecker Products. In: Matrix Analysis for Scientists and Engineers. Siam; 2005. pp. 139–
151.

12. Izhikevich EM. Dynamical Systems in Neuroscience. MIT press; 2007.

13. Aguirre LA, Letellier C. Observability of multivariate differential embeddings. Journal of Physics A:
Mathematical and General. 2005; 38:6311–6326. doi: 10.1088/0305-4470/38/28/004

14. Aguirre LA. Controllability and observability of linear systems: some noninvariant aspects. Education,
IEEE Transactions on. 1995; 38.1:33–39. doi: 10.1109/13.350218

15. Aguirre LA, Letellier C. Investigating observability properties from data in nonlinear dynamics. Physical
Review E. 2011; 83.6, p.066209. doi: 10.1103/PhysRevE.83.066209

Which System Variables Carry Robust Early Signs of Upcoming Phase Transition?

PLOS ONE | DOI:10.1371/journal.pone.0163003 September 15, 2016 16 / 16

http://dx.doi.org/10.1088/0305-4470/38/28/004
http://dx.doi.org/10.1109/13.350218
http://dx.doi.org/10.1103/PhysRevE.83.066209

