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Abstract
One of fundamental challenges in cancer studies is that varying molecular characteristics of

different tumor types may lead to resistance to certain drugs. As a result, the same drug can

lead to significantly different results in different types of cancer thus emphasizing the need

for individualized medicine. Individual prediction of drug response has great potential to aid

in improving the clinical outcome and reduce the financial costs associated with prescribing

chemotherapy drugs to which the patient’s tumor might be resistant. In this paper we

develop a network based classifier (NBC) method for predicting sensitivity of cell lines to

anticancer drugs from transcriptome data. In the literature, this strategy has been used for

predicting cancer types. Here, we extend it to estimate sensitivity of cells from different

tumor types to various anticancer drugs. Furthermore, we incorporate domain specific

knowledge such as the use of apoptotic gene list and clinical dose information in our method

to impart biological significance to the prediction. Our experimental results suggest that our

network based classifier (NBC) method outperforms existing classifiers in estimating sensi-

tivity of cell lines for different drugs.

Introduction
American Cancer Society estimates that in 2015, there will be 1,658,370 new cancer cases diag-
nosed and 589,430 cancer deaths in the US. In over four decades of research, cancer therapy
has evolved from surgery, radiotherapy, chemotherapy, endocrine therapy to targeted and
combined therapy. Surgery is known to be most effective in complete excision of solid tumors
but there are concerns of morbidity and mortality associated with it. Combinatorial approaches
of radiation and chemotherapy have reduced the use of invasive surgical excision of tumors
[1]. A majority of conventional chemotherapeutic drugs target rapidly dividing cells. However,
these drugs often do not specifically target the cancer site causing systemic off target effects.
Based on increasing knowledge of specific tumor subtypes and their molecular basis, new tar-
gets including growth factors, signaling molecules, cell-cycle proteins, immunotherapeutic
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agents, modulators of apoptosis and molecules that promote angiogenesis or target hypoxia
have shown promise in cancer therapy [1].

One of fundamental challenges in cancer studies is that varying molecular characteristics of
different tumor types may lead to resistance to certain drugs. As a result, the same drug can
lead to significantly different results in different types of cancer thus emphasizing the need for
individualized medicine. Individual prediction of drug response has great potential to aid in
improving the clinical outcome and reduce the financial costs associated with prescribing che-
motherapy drugs to which the patient’s tumor might be resistant. Techniques to improve the
clinical outcome of chemotherapeutic drugs include improved genetic profiling and tumor
characterization. Developing targeted drugs to specific kinases for example or targeting muta-
tions observed in specific tumor types has also shown decrease in drug resistance and off target
effects [2]. Discovery of predictive biomarkers have already helped in understanding the
response of the tumors to drugs that work on specific molecular targets. However, this infor-
mation is still missing for many of the tumor types. In vitro cell culture models have been used
widely by researchers to understand in vivo responses to drugs since decades. cDNA microar-
ray studies and gene expression levels have been used as tools to predict chemosensitivity of
cancer cell lines and primary tumor cells as well [3]. As new cancer types and cell lines are
being identified everyday, screening of each of the cancer cell lines against the available drugs
requires extensive manual labor and can be time consuming.

A promising approach to overcome the limitations with in vitro drug sensitivity prediction
is to employ computational techniques. Qin et al, for instance, have developed a network flow-
based method to predict anticancer drug sensitivity using the drug response data from the Can-
cer Genome Project (CGP) [4]. It exploits the topological structure of pathways whose activity
difference before and after drug treatment is used as a measure of drug response. Park et al pro-
posed a novel outlier-resistant method for identifying sensitivity-specific biomarkers for indi-
vidual patients and predicting anticancer drug sensitivity [5]. In reality, genomic datasets
usually include outliers which may notably affect the result of analysis. In this method, robust
Mahalanobis distance in robust principal component space controls outliers of gene expression
levels and drug response in high dimensional space. Costello et al compared various drug sensi-
tivity prediction algorithms and discussed the advantages of Bayesian multitask multiple kernel
learning (MKL) methodology over others [3]. MKL method exploits four machine learning
principles: kernelized regression, multiview learning, multitask learning, and Bayesian infer-
ence. Kernelized regression can capture non-linear relationships between genomic features,
and drug sensitivities of cell line. Multiview learning principle integrates heterogeneous input
data into a single model. Multitask learning is the sharing of information between drugs, which
implies simultaneous modeling of drug sensitivities across all the drugs. Additionally, Bayesian
inference learned all model parameters to handle the uncertainty from the small sample size.
Berlow et al proposed a novel sensitivity prediction approach based on functional perturbation
data that incorporates the drug protein interaction information and sensitivities to a training
set of drugs with known targets [6]. According to Berlow, “the proposed framework provides a
unique input-output based methodology to model a cancer pathway and predict the effective-
ness of targeted anti-cancer drugs”. Zhang et al proposed a dual-layer integrated cell line-drug
network model. It uses both cell line similarity network (CSN) data and drug similarity net-
work (DSN) data to predict the drug response of a given cell line [7]. Zhang noted that “pro-
posed dual-layer integrated cell line-drug network model combines the predictions from the
individual CSN and DSN layers, and predicts a response of a cell line to a drug based on how
similar cell lines (CSN) respond to similar drugs (DSN)”. Their method is not significantly
affected by the huge dimensionality of gene expression features because the model only
requires correlations between cell lines or drugs as input.
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In this paper we develop a network based classifier (NBC) method for predicting sensitivity
of cell lines to anticancer drugs from transcriptome data. In the literature, this strategy has
been used for predicting cancer types. Here, we extend it to estimate sensitivity of cells from
different tumor types to various anticancer drugs. Furthermore, we incorporate domain spe-
cific knowledge such as the use of apoptotic gene list and clinical dose information in our
method to impart biological significance to the prediction. Our experimental results suggest
that our NBC method outperforms existing classifiers in estimating sensitivity of cell lines for
different drugs. We also show that network models created by NBC method is able to guide the
selection of genes that are worth further investigation for certain anticancer drugs.

Results
In this section we evaluate the performance of our method for predicting drug sensitivity.
Below, we first describe our experimental set up. We then present out results.

Implementation detailsWe implemented NBC in the C programming language, and used
“scikit-learn” library [8] for the other predictors and χ2 feature selection [9]. Mehmet Gonen
implemented Bayesian multitask multiple kernel learning (BMTMKL) in R language [3].

The transcriptome in the CCLE dataset containsm = 18,926 genes in total, and the tran-
scriptome in the GDSC dataset containsm = 19,930 genes in total. In our experiments, we
selected a subset ofm0 = 100 genes from these genes using the χ2 feature selection method
unless otherwise stated. When we chose genes less than 100, the prediction performance of the
model got worse. When we chose genes more than 100, the prediction performance remained
the same or got worse. That is why we selected 100 genes.

We used 5-fold cross-validation (CV) to assess the performance of our method and the
competing predictors and also to tune the parameters of predictors. 5-fold cross-validation
(CV) randomly partitions the original dataset into five subsets. We use four of these subsets for
training, and the remaining one to test the accuracy of the predictor. We repeat the cross-vali-
dation (CV) process 5 times, each with a different test dataset as the validation data. We then
report the average of the resulting five accuracies. We repeat the CV this way 100 times and
report the average balanced accuracy (BAC).

Comparison of NBC using Support Vector regression (SVR) to existing
predictors
Our first experiment compares the accuracy of the NBC method using SVR (non-linear) pre-
dictor with a broad spectrum of existing state-of-the-art methods. More specifically, we com-
pare it with eight different methods; NBC using Ridge regression (linear), Support Vector
Machine (SVM) using linear and RBF (non-linear) predictors, Random Forest (RF), Gaussian
Naive Bayes (GNB), k-nearest neighbor (kNN) methods, ElasticNet, and Bayesian multitask
multiple kernel learning (BMTMKL). NBC is a network-based method, while the classical
learning algorithms are single-gene-based. Network-based method exploits the interaction
among genes through their expression levels. Thus, we expect the network-based method to
yield higher accuracy than the classical learning algorithms.

For each drug, we perform double nested 5-fold cross-validation and compute the average
balanced accuracy (BAC) and Matthews correlation coefficient (MCC). We repeat this 100
times each time with a different partitioning of the training and test samples and report the
average result. In the double cross validation, the inner 5-fold CV tunes the parameters of pre-
dictors. The outer 5-fold CV measure the BAC or MCC of the resulting predictor. To avoid
overfitting problem, we split the data randomly into two subsets. We use the first one to train
the model and the second one to test the model. We call the first one as training data, the
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second one as test data. We do not know the appropriate parameters to train the model. Thus,
we again split the training data randomly into two subsets. We use the first one to train the
parameters in the inner CV, the second one to validate the parameters in the inner CV.

Notice that each learning algorithm has a unique set of parameters. NBC has one parameter
that is a correlation threshold used to construct network graph models. Linear Support Vector
Machine (SVM) has a penalty parameter C to control the trade-off between the error obtained
on the training data and margin maximization. Support Vector Machine (SVM) using radial
basis function (RBF) kernel has a penalty parameter C and also a parameter γ to govern how
far the influence of a single training point reaches. Random Forest (RF) has many parameters.
Among them, we only learn the parameter describing the number of decision trees. Gaussian
Naive Bayes (GNB) is the only predictor that does not have any parameter. K-nearest neighbor
(kNN) has a parameter k that defines the number of neighbors used in classifying a test sample.
ElasticNet has a tuning parameter α, which controls the strength of the penalty term. It con-
trols the trade-off between fitting a linear model, and shrinking the coefficients. ElasticNet also
has a parameter l1_ratio to control the ratio of L1 penalty used. If it is zero, then the penalty is
an L2 penalty. If it is one, then the penalty is an L1 penalty. If it is between zero and one, then
the penalty is a combination of L1 and L2. Bayesian multitask multiple kernel learning
(BMTMKL) has two parameters α and β for gamma prior to control the trade-off between the
goodness for obtaining sparsity and the goodness for small sample size problems. We use the
parameter spaces for each of the predictors as shown in the Table 1.

Fig 1 shows the performance comparison when we use CCLE dataset. The results of BAC
(Fig 1A) demonstrate that the accuracy of NBC using Support Vector regression (SVR) is the
highest among all competing methods considering the average over all 14 drugs. The second
best is NBC using Ridge regression (linear) predictor, and Gaussian Naive Bayes (GNB) has the
highest accuracy among single-gene-based methods. In 6 out of the 14 drugs, NBC using Sup-
port Vector regression (SVR) is the winner among the six different methods we tested. Linear
SVM yields the best accuracy in three drugs, NBC using Ridge regression (linear) predictor is
the best in two different drugs, GNB is the best in one drug, SVMwith radial basis function
(RBF) kernel is the best in one drug, and kNN is the best in one drug. More complex models
(i.e., low-bias models) show the performance at least comparable to the performance of less
complex models for all drugs except for PHA-665752. Linear SVM is a certain winner for the
drug PHA-665752. It means that unnecessary complexity can drop the prediction performance.

For the standard deviation of the accuracy over 100 trials, NBC using SVR regularly shows
stable performance. NBC using SVR is the best in ‘Erlotinib’, ‘Lapatinib’, and ‘TAE684’ in
terms of both the balanced accuracy (BAC) and the standard deviation of the performance.

Table 1. Parameter spaces for each of the predictors.

Method Parameter Values

NBC correlation threshold {0.4, 0.46, . . ., 0.88, 0.94}

Linear SVM C {10−5, 10−4, . . ., 103, 104}

SVM-RBF C {10−5, 10−4, . . ., 103, 104}

SVM-RBF γ {10−5, 10−4, . . ., 103, 104}

RF n {2, 4, . . ., 18, 20 }

kNN k {1, 3, . . ., 17, 19 }

ElasticNet α {10−2, 10−1, . . ., 101}

ElasticNet l1_ratio {0.0, 0.25, . . ., 0.75}

BMTMKL α {10−10, 10−5, . . ., 1010}

BMTMKL β {10−10, 10−5, . . ., 1010}

doi:10.1371/journal.pone.0162173.t001
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Fig 1. Performance comparison using CCLE dataset between NBC using SVR, NBC using Ridge regression,
Gaussian Naive Bayes, SVM-RBF, SVM-Linear, K-Nearest-Neighbor, Random Forest. X-axis represents drug
names and average of all drugs, and y-axis represents BAC or MCC. (A)Balanced Accuracy (BAC). (B)Matthews
correlation coefficient (MCC).

doi:10.1371/journal.pone.0162173.g001
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The results of Matthews correlation coefficient (MCC) (Fig 1B) is almost similar with the
results of BAC (Fig 1A). Only small difference between two figures is MCCs of SVM(RBF),
SVM(linear) are greater than MCCs of NBC(SVR), NBC(Ridge) for Irinotecan, and MCC of
NBC(SVR) is similar to that of SVM(RBF) for PLX4720. Fig 2 shows two Receiver operating
characteristic (ROC) curves for Erlotinib, and Lapatinib. For Erlotinib, even if BAC of SVM
(linear) was less than that of NBC(SVR), SVM(linear) in the ROC figure has the highest Area
Under Curve (AUC). For Lapatinib, NBC(SVR) has the highest AUC. Balanced accuracy or
MCC is based on one specific cutpoint, while ROC tries all of the cutpoint and plots the sensi-
tivity and specificity. So when we compare the balanced accuracy or MCC, we are comparing
based on some cutpoint. The balanced accuracy or MCC varies from different cutpoint. SVM
(linear) has higher AUC in Fig 2B though balanced accuracy/MCC of SVM (linear) for Erloti-
nib is lower than that of NBC (SVR) in Fig 1. That shows NBC (SVR) is better in a particular
cutpoint in measuring balanced accuracy or MCCmetric. However, SVM (linear) is better
when we have to take account of not a particular cutpoint but all cutpoints overall.

Fig 3 shows the performance comparison between NBC(SVR), ElasticNet, and Bayesian
multitask multiple kernel learning (BMTMKL) when we use CCLE dataset. Recall that we have
two clinical cutoff values for each drug. If the −log(EC50) is above the sensitive cutoff, we call
this cell line to be sensitive to that drug. Likewise, if the −log(EC50) is below the resistant cutoff,
we say that this cell line is resistant to that drug. If the −log(EC50) is between resistant and sen-
sitive cutoffs, that cell line does not clearly belong to any of the two classes. We ignore such cell
lines in our experiments. Therefore, all samples are either resistant or sensitive. However,
regression methods yield the ambiguous class when predicted value lies between two clinical
cutoff values. Thus, the shape of confusion matrix for regression methods in our experiments
is two (actual sensitive, and actual resistant) by three (predicted sensitive, predicted ambiguous,
and predicted resistant). We modify the formula of balanced accuracy for regression methods.
We call when the sample is actual sensitive and predicted sensitive as true sensitive (TS), when
the sample is actual sensitive and predicted ambiguous as false ambiguous from sensitive
(FAS), when the sample is actual sensitive and predicted resistant as false resistant (FR), when
the sample is actual resistant and predicted sensitive as false sensitive (FS), when the sample is
actual resistant and predicted ambiguous as false ambiguous from resistant (FAR), and when
the sample is actual resistant and predicted resistant as true resistant (TR).

ModifiedBAC ¼ 0:5�TS
TSþFASþFR

þ 0:5�TR
FSþFARþTR

We also define balanced rate of falling to ambiguous zone as 0:5�FAS
TSþFASþFR

þ 0:5�FAR
FSþFARþTR

. The balanced

rate of falling to ambiguous zone of classification methods must be zero because classification
methods do not predict the sample as ambiguous. NBC (SVR) method classifies each samples to
either resistant or ambiguous class. Thus, unlike ElasticNet and BMTMKL, it guarantees to never
produce an ambiguous classification. It always has a rate of zero for falling into ambiguous class.

Fig 3A presents BACs, and Fig 3B presents the balanced rate of falling to ambiguous zone. A
natural outcome is the higher the balanced rate of falling to ambiguous zone is, the less the
BAC is. The BAC of regression methods is inherently inferior compared to the BAC of classifi-
cation methods because a lot of samples that belong to predicted ambiguous class hurts the
performance.

Fig 4 shows the performance comparison when we use GDSC dataset. The results of BAC
(Fig 4A) demonstrates that the accuracy of NBC using Support Vector regression (SVR) is the
highest among all competing methods considering the average over all four drugs. However,
the MCCs of NBC(SVR) for AZD6244 and PD-0325901 are less than those of GNB, kNN. Due
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Fig 2. Receiver operating characteristic (ROC) curves using CCLE data set. X-axis represents false positive rate,
and y-axis represents true positive rate. (A)ROC curve for drug Lapatinib. (B)ROC curve for drug Erlotinib.

doi:10.1371/journal.pone.0162173.g002
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Fig 3. Performance comparison using CCLE dataset between NBC using SVR, ElasticNet, BMTMKL. X-axis
represents drug names and average of all drugs, and y-axis represents BAC or balance rate of falling to ambiguous
zone. (A)Balanced Accuracy (BAC). (B)Balanced rate of falling to ambiguous zone.

doi:10.1371/journal.pone.0162173.g003
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Fig 4. Performance comparison using GDSC dataset between NBC using SVR, NBC using Ridge regression,
Gaussian Naive Bayes, SVM-RBF, SVM-Linear, K-Nearest-Neighbor, Random Forest. X-axis represents drug
names and average of all drugs, and y-axis represents BAC or MCC. (A)Balanced Accuracy (BAC). (B)Matthews
correlation coefficient (MCC).

doi:10.1371/journal.pone.0162173.g004
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to the big loss in AZD6244 and PD-0325901, NBC(SVR) yields the top rank to GNB in Fig 4B.
It is true that often when the balanced accuracy of a confusion matrix is higher than another
confusion matrix, MCC of the confusion matrix is also higher than that of another confusion
matrix. However, this does not have to hold all the time. The disagreement between the two
measures can happen when the two classes have very different sizes. For instance, a few mis-
classifications in the small class can decrease the balanced accuracy rapidly, while decreasing
MCC gradually. NBC (SVR) tries to minimize the misclassification mistake on the small class,
which makes the balanced accuracy high and hurts the MCC, while GNB tends to allow the
misclassification mistake on the small class assuring a better classification performance on the
big class. In conclusion, if we particularly care about correct classification of the smaller sized
class, NBC outperforms GNB, otherwise it is the opposite.

Fig 5 shows the performance comparison between NBC(SVR), ElasticNet, and Bayesian
multitask multiple kernel learning (BMTMKL) when we use GDSC dataset. Like the preceding
result using CCLE, the BAC of regression methods is inferior compared to the BAC of classifi-
cation methods.

Thus we conclude that NBC using SVR (non-linear) predictors yields the most accurate pre-
dictions about drug sensitivity. In the rest of our experiments, we focus on this method.

Detailed evaluation of the NBCmethod
In our previous experiment, we observed that the NBC method using SVR (non-linear) predic-
tors yields the highest accuracy among all competing methods tested. For simplicity, we will
use the name NBC to indicate the NBC method with SVR (non-linear) predictors in the rest of
the experiments. Note that, the NBC method relies on a parameter, correlation threshold for
building the network model (see Materials and Methods section). This parameter governs the
density of the resulting network model. Thus, it has the potential to affect the prediction accu-
racy of NBC. In this experiment, we focus on the NBC method to understand how this parame-
ter affects the accuracy of NBC for different drugs.

More specifically, for each of the 14 different drugs, we evaluate the accuracy of NBC by
varying the correlation thresholds (from 0.40 to 0.94) at 10 equally spaced correlation values.
We perform 5-fold CV where we use 80% of the samples for training and the remaining 20%
for testing at each iteration of the CV. Unlike the previous experiment, here we do not perform
double nested CV as we do not need to tune the correlation threshold parameter. For each
value of the correlation threshold and drug combination, we repeat this experiment 100 times,
each time with a different partitioning of the training and test samples. We report the average
BAC value over all the 100 experiments.

Fig 6 presents the BAC heatmap of the results using CCLE dataset. To present the results in
a readable form, we use hierarchical clustering [10] to organize the rows (i.e., drugs). Hierarchi-
cal clustering creates a tree structure of the hierarchy among drugs based on the similarity of
the BAC values. This tree structure successively merges pairs of clusters (each cluster is a subset
of drugs) until all clusters are merged into a single cluster. We perform clustering using the
Euclidean distance between the vectors corresponding to the rows of this heatmap.

Our results suggest that gene expression profile based prediction is suitable for certain drugs
but not for all. BACs of Erlotinib, PLX4720, and TAE684 drugs are the best three among 14
drugs regardless of the correlation threshold value. The BAC values of L-685458, LBW242, and
PHA-665752 drugs are the worst among all. Overall, we observe that the NBC method is robust
to varying values of the correlation threshold for all drugs.

Next we focus on the drugs for which NBC yields highest average BAC values (those with
BAC values over 0.56) to see how NBC’s accuracy varies with growing correlation threshold. To
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Fig 5. Performance comparison using GDSC dataset between NBC using SVR, ElasticNet, BMTMKL. X-axis
represents drug names and average of all drugs, and y-axis represents BAC or balance rate of falling to ambiguous
zone. (A)Balanced Accuracy (BAC). (B)Balanced rate of falling to ambiguous zone.

doi:10.1371/journal.pone.0162173.g005
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do that, we compute the average BAC value of all such drugs for each correlation threshold. Fig
7 plots the results. We observe that the BAC value first increases with growing correlation
threshold value. After reaching to a peak value, it then tends to drop. The reason behind this is
the following. When the correlation threshold is too small, the network model contains many
false-positive edges. In other words even genes that have negligible correlation in transcriptional
values contribute to the function that estimates a given gene’s transcription level. This leads to
inaccurate estimations. On the other hand, when the correlation threshold is too stringent (i.e.,
too large), the predictor functions in the underlying network model loses key parameters for
estimating the transcription level of genes. Such false dismissals can also result in reduced accu-
racy. Correlation threshold values around 0.75 to 0.8 yield the best results in our experiments.

Evaluation of NBC for different pairs of drug and cancer type
In the previous section, we computed the accuracy of the NBC method for predicting the drug
sensitivity over the entire CCLE dataset. This dataset contains samples belonging to various
cancer types. The resistance of cells to a given drug can vary greatly depending tissue and cell
type origin or the cancer. Thus, the accuracies reported in the previous section shows the

Fig 6. Heatmap using CCLE dataset for Balanced Accuracy of NBC using SVR. X-axis represents 10 different correlation thresholds, and y-
axis represents 14 different drugs. Color intensity of the figure represents the BAC of each threshold and each drug combination.

doi:10.1371/journal.pone.0162173.g006
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average behavior of the NBC method across difference cancer types. An interesting question
would be; how accurate are NBC and other predictors for individual cancer types? Here, we
seek an answer to this question. Next, we describe how we do this.

We only consider the drug/cancer type combinations for which we have sufficient number
of samples for training and testing for each of the resistant and sensitive classes. We decide
whether the number of samples is sufficient or not as follows. For each drug/cancer type com-
bination, we perform double nested 5-fold cross-validation. We eliminate the combinations
where the inner most validation split in nested CV contains either no resistant or no sensitive
cell lines. After this filtering, only 8 drugs and 4 cancer types remain. The Table 2 shows the
number of available cell lines for the combination of each drug and each cancer type in CCLE
dataset. For each of the remaining combinations, we repeat the CV steps 100 times, each time
with a different partitioning of the training and test samples and report the average balanced
accuracy (BAC) of NBC. Fig 8 presents the results using CCLE dataset in heatmap form. In this
figure, the rows and the columns denote cancer types and drugs respectively. Note that that
some of the drug/cancer type combinations in this heatmap are excluded as well for they do
not have sufficient number of samples. These are shown by the light color in the figure (e.g.,
Erlotinib and skin cancer combination).

Fig 7. Line graph representing average BAC across drugs whose BAC is over 0.56 for each correlation threshold.
X-axis represents 10 different correlation thresholds, and y-axis represents BAC value.

doi:10.1371/journal.pone.0162173.g007

Table 2. The number of cell lines used for the combination of each drug and each cancer type in CCLE dataset.

CancerType/Drug AEW541 AZD0530 AZD6244 Erlotinib Lapatinib PD-0325901 RAF265 TAE684

HLT 37 28 0 0 0 31 41 0

LUNG 59 0 33 44 41 54 61 52

PANCREAS 0 0 0 0 0 25 0 0

SKIN 0 0 0 0 0 37 0 26

doi:10.1371/journal.pone.0162173.t002
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We observe that the accuracy varies across different drugs (i.e., columns) as well as cancer
types (i.e., rows). For instance, we predict the resistance level to PD-0325901 in skin cancer bet-
ter than other cancer types. Also, we are more accurate for predicting the resistance to Erlotio-
nib than any other drug for the lung cancer. This suggests that, our method is more preferable
for certain combinations of drugs and cancer types than others.

The results (Fig 8A) demonstrate that our method can yield higher prediction accuracy
when it focuses on specific drug/cancer type combinations as opposed to training with the
entire dataset. For example, BAC of the combination of AEW541 and HLT (0.72) is higher
than that of AEW541 for overall cancer types (0.53—see Fig 1). However, this does not hold
for all combinations. For instance, BAC of the combination of TAE684 and SKIN (0.39) is
lower than that of TAE684 for overall cancer types (0.61—see Fig 1). We conjecture that such
drop in prediction accuracy results from lack of sufficient number of training samples when we
limit the training set to only those combinations. Thus, we expect that as more cell line data
becomes available, the accuracy of those combinations would also increase drastically.

We also observe that the BACs of combination of AEW541/HLT, Erlotinib/Lung, and
PD-0325901/Skin are the overall three highest for all predictors in Fig 8. NBC(SVR) is the
best for predicting sensitivity of those combinations which has the BACs of 0.72, 0.71 and
0.66 respectively.

Evaluation of the impact of feature selection strategies
Drug sensitivity prediction accuracy can vary for different sets of genes (i.e., features) used for
the learning algorithm. Here, we explore this variation for several key feature selection strate-
gies. One standard way to select these genes is to use the χ2 feature selection method. Note that
this method purely uses the transcriptional variation between the two classes; resistant and sen-
sitive (see Materials and Methods section). An alternative to this method is to exploit biological
domain knowledge about the genes. This can be done in various ways. As the underlying chal-
lenge in this paper is to predict the resistance of cells to drugs that regulate cell death, we use
the set of apoptotic genes (i.e., genes that belong to the Apoptosis network). We classify apo-
ptotic genes as three subtypes which are pro-apoptotic, anti-apoptotic, and the union of these
two sets. We compare statistical gene selection (χ2 method) with gene selections by biological
domain knowledge. Random feature selection method takes a role of null hypothesis.

For each gene selection method and for each drug, we perform double nested 5-fold cross-
validation and compute the average balanced accuracy (BAC). We repeat this 100 times each
time with a different partitioning of the training and test samples and report the average result.

We have total 271 pro-apoptotic genes, 439 anti-apoptotic genes, and 661 combined-apo-
ptotic genes. The reason why the number of combined-apoptotic genes is not equal to the sum
of the number of pro and anti apoptotic genes is that some genes are considered as both pro
and anti apoptotic. For all different gene selection methods, we pickm0 = 100 genes. We do this
by picking the top 100 genes with the highest χ2 score.

Fig 9 presents the result using CCLE dataset. The result demonstrates that domain knowl-
edge helps to select genes that improve prediction accuracy for a certain drug type. In 9 out of
the 14 drugs, χ2 feature selection method is the winner among the five different feature selec-
tion methods. Pro-apoptotic feature selection yields the best accuracy in three different drugs,
and anti-apoptotic feature selection is the best in two different drugs.

Biological relevance of the drug sensitivity network
So far, we have demonstrated that we can determine whether a given transcriptome sample
from cancer cell lines is resistant or sensitive to a large collection of well studied drugs. In this
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Fig 8. Heatmap using CCLE dataset for Balanced Accuracy. X-axis represents 8 different drug types, and y-axis
represents 4 different cancer types. Color intensity of the figure represents the BAC of each drug and each cancer
combination. (A)NBC(SVR). (B)NBC(Ridge). (C)SVM(linear). (D)SVM(RBF). (E)RF. (F)GNB. (G)kNN. (H)Color Key.

doi:10.1371/journal.pone.0162173.g008
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Fig 9. Performance comparison using CCLE dataset between χ2, pro-apoptotic, anti-apoptotic, both-apoptotic
and random feature selections. X-axis represents drug names, and y-axis represents BAC. (A)Balanced Accuracy
(BAC). (B)Matthews correlation coefficient (MCC).

doi:10.1371/journal.pone.0162173.g009
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experiment we evaluate if our predictions are supported by the evidences existing in the litera-
ture. Below, we first explain how we conduct this experiment in detail. We then present the
detailed results.

For each gene g and drug d combination, we calculate two values. The first one captures the
number of publication evidences potentially indicating the use of drug d to target gene g. To
compute this value, we search the NCBI (National Center for Biotechnology Information)
PubMed database for the co-occurrence of the two keywords that is the combination of drug
name and gene name. We call the number of publications that contain both keywords as the
publication evidence. We conjecture that a large number of publications found this way implies
that either the gene belongs to a regulatory pathway that is targeted by the drug or strongly
affects the efficacy of the drug.

The second value we compute, named the prediction success rate, reflects the contribution of
gene g in successful classification of test samples to resistant and sensitive classes for drug d.
Conceptually, this can be viewed as the importance of g induced by the NBC method on d.
More specifically, we compute this value as follows: Note that NBC constructs two network
models for d, one for sensitive and one for resistant cell lines. Also, note that NBC predicts
gene expression levels for all the genes using each of these two network models (see Materials
and Methods section). For each gene g, we calculate the error introduced by the sensitive net-
work model as the square of the difference between its predicted expression level of g and the
actual expression level of g for each test sample. Let us denote the resulting error value with �s.
Similarly, we calculate the error introduced by the resistant network model and denote it with
�r. We say that gene g contributes to the correct classification of a test sample if the error of the
true class of g is less than that of the other class. For instance, if a given test sample is resistant,
g contributes only if �r < �s. We compute the prediction success rate as the fraction of samples
for which gene g contributes.

Ideally, we conjecture that genes that contribute more to the decision whether a cell line is
resistant or sensitive to a given drug should have a large number of publication evidences. In
order to test this conjecture, for each drug, we sort the genes in increasing order of their predic-
tion success rates and compute the cumulative publication evidences. Note that, different drugs
may appear in the literature with varying frequencies. To eliminate any bias introduced by
such gap, we normalize the cumulative publication evidences of each drug to the [0, 1] interval
by dividing it with the total publication evidence across all genes. Fig 10 presents the results for
three drugs, Lapatinib, Erlotinib, and PLX4720. These are the three drugs for which the NBC
method yields the highest accuracy.

Fig 10 demonstrates that the prediction success rate correlates with the publication evi-
dence. The genes with low prediction success rates tend to have smaller increase in the publica-
tion evidences, while those with high prediction success rate tends to have steeper increase. For
instance, for PLX4720 and Erlotinib, half of the publication evidences are for the genes with
very high prediction success rates (i.e.,� 0.8 prediction success). This suggests that, high pre-
diction success has great potential to guide future research on lesser studied drugs by limiting
the studies to only those genes with highest prediction success rates.

Discussion
In this paper we discussed a network based classifier method for predicting sensitivity of cell
lines to anticancer drugs from transcriptome data. In the literature, this strategy has been used
for predicting cancer types. Here, we extended it to estimate sensitivity of cells from different
tumor types to various anticancer drugs. Instead of simply dividing cell lines equally into sensi-
tive vs. resistant, we used clinical dose information to impart clinical relevance to the
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prediction. Our experimental results suggest that our NBC method outperforms existing classi-
fiers in estimating sensitivity of cell lines for different drugs. If a prediction algorithm is to be
used for predicting the sensitivity of particular cancer to chemotherapeutic drugs, it has to be
able to select gene features. To this end, we explored and tested the application of domain spe-
cific knowledge by selecting genes that is known to regulate apoptosis. We also show that net-
work models created by NBC method is biologically relevant and may be used to identify genes
that are worth to be further investigated for certain anticancer drugs.

Materials and Methods
In this section, we describe the dataset that we use in our experiments. The dataset contains the
Cancer Cell Line Encyclopedia (CCLE) and the Genomics of Drug Sensitivity in Cancer
(GDSC). We also describe how we use the NBC method for predicting drug sensitivity in
tumor cell lines in detail. We then explain how we extend it to consider nonlinear associations
among the transcripiton levels of genes. Next, we discuss how we integrate the domain

Fig 10. The relationship between prediction success rate of genes and their publication evidences for
the top three drugs with the highest classification accuracy rate.

doi:10.1371/journal.pone.0162173.g010

Table 3. The number of cell lines used for each drug in CCLE dataset.

Drug Number of Cell lines

AEW541 319

AZD0530 231

AZD6244 211

Erlotinib 203

Irinotecan 264

L-685458 106

LBW242 72

Lapatinib 246

Nutlin-3 77

PD-0325901 328

PHA-665752 56

PLX4720 105

RAF265 304

TAE684 264

doi:10.1371/journal.pone.0162173.t003
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knowledge to NBC in the form of the apoptotic genes. Finally, we summarize existing major
classifiers and regression methods in the literature.

Dataset
We use the Cancer Cell Line Encyclopedia (CCLE) dataset in our experiments (www.
broadinstitute.org/ccle/home). The pharmacological profiles for 24 anticancer drugs across
479 of the cell lines available in this database was used in our study for prediction of cancer cell
drug sensitivity. However, the number of cell lines available for each drug is different. The
Table 3 and the Table 4 show the number of available cell lines for each drug in CCLE and
GDSC dataset respectively. The Table 2 shows the number of available cell lines for the combi-
nation of each drug and each cancer type in CCLE dataset. These data sets were described in
detail in Jordi Barretina et al [11]. For evaluation of performance of our method in addition to
the CCLE dataset, we have also used Genomics of Drug Sensitivity in Cancer (GDSC) dataset
which contains drug response data of about 700 cancer cell lines to 138 anticancer drugs [12].

To make our model relevant to clinical setting, drug concentrations, defined as the average
Cmax (uM) in blood plasma of patients taking the standard prescribed doses, for 15 drugs were
obtained from literature search as shown in the Table 5. We took an approach to identify the
average blood concentration of patients or healthy volunteers that were administered with the
respective drug. By using the clinical concentration as the threshold, we make our predictions
clinically relevant. Log transformed values of the clinical concentrations −log(Cmax × 1.5) + 6
and −log(Cmax/1.5) + 6 were used as resistant and sensitive cutoffs for the experiments respec-
tively. These two clinical cutoff values are to determine the sensitivity class of a cell line to a
given drug, one for drug resistant and the other for sensitive class. Table 5 lists the drugs avail-
able in the Cancer Cell Line Encyclopedia (CCLE) dataset, their two clinical cutoff values, and
their literature where these cutoff values were obtained from. We do not have reliable clinical
concentrations for the drug whose literature is ‘From statistical data’. For those drugs, we
instead extract clinical cutoff values from statistical data as follows. EC50 is defined as the effec-
tive concentration at which the drug exhibits its half-maximal activity. EC50 value of each cell
line is recorded in CCLE and GDSC dataset. Let us denote the mean and the standard deviation
of the EC50 value of such a drug across all cell lines with μ and σ respectively. We compute the
resistant and sensitive cutoffs as −log(μ ± 0.3 � σ).

Let us denote the EC50 of a given cell line for a drug with E. If the −log(E) is above the sensi-
tive cutoff, we call this cell line to be sensitive to that drug. Likewise, if the −log(E) is below the
resistant cutoff, we say that this cell line is resistant to that drug. If the −log(E) is between resis-
tant and sensitive cutoffs, that cell line does not clearly belong to any of the two classes. We
ignore such cell lines in our experiments.

Among the 24 drugs in the Cancer Cell Line Encyclopedia (CCLE) dataset, the distribution
of resistant and sensitive cell lines of 10 drugs (17-AAG, Nilotinib, PD-0332991, PF2341066,
Paclitaxel, Panobinostat, Sorafenib, TKI258, Topotecan, ZD-6474) is significantly biased to
either almost resistant or almost sensitive classes. As a result, one of the two classes have too

Table 4. The number of cell lines used for each drug in GDSC dataset.

Drug Number of Cell lines

AZD0530 565

PD-0325901 548

PHA-665752 232

PLX4720 483

doi:10.1371/journal.pone.0162173.t004
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few samples to train any learning model. We do not consider these 10 drugs in our experiments
to ensure reliable results. For Genomics of Drug Sensitivity in Cancer (GDSC) dataset, we first
consider drugs that exist in both CCLE and GDSC. Then, we exclude drugs for which the dis-
tribution of resistant and sensitive cell lines is significantly biased to either almost resistant or
almost sensitive classes. Finally, we consider only AZD6244, PD-0325901, PHA-665752, and
PLX4720 in GDSC dataset.

Network-based Classifier (NBC)
Expression levels of genes provide key clues about how the cells function. This is because not
only they impact almost all major biological processes within cell but also they are influenced
by extra cellular signals. As a result, many machine learning techniques use gene expression
levels as features for predicting different characteristics of cells. Network Based Classifier
(NBC) [28], Support Vector Machines (SVM) [29], and Random Forest (RF) [30] are just a few
examples to these methods.

Unlike most of the classical machine learning approaches, NBC exploits the interaction
among genes through their expression levels. As a result, it often yields more accurate predic-
tion than most of the other existing methods in the literature. In this paper, we adapt the NBC
algorithm to predict the drug sensitivity level of a given cell line based on the expression levels
of its genes. More specifically, for each cell line and drug combination, we classify that cell line
into one of the two classes: resistant or sensitive depending on the EC50 value of that drug for
that cell line. If the minus-log EC50 value is above a user defined sensitivity cutoff, we say that

Table 5. List of resistant and sensitive cutoffs from the drug concentration values.

Drug Resistant Sensitive Supporting literature

17-AAG 5.000 5.002 [13]

AEW541 5.299 5.615 From statistical data

AZD0530 5.910 6.262 [14]

AZD6244 5.618 5.970 [15]

Erlotinib 5.562 5.915 [16]

Irinotecan 5.592 5.944 [17]

L-685458 5.290 5.626 From statistical data

LBW242 5.605 6.003 From statistical data

Lapatinib 5.579 5.931 [18]

Nilotinib 5.593 5.945 [19]

Nutlin-3 5.336 5.512 From statistical data

PD-0325901 6.269 6.621 [20]

PD-0332991 6.186 6.539 [21]

PF2341066 6.045 6.397 [22]

PHA-665752 5.303 5.616 From statistical data

PLX4720 5.392 5.682 From statistical data

Paclitaxel 5.000 5.267 [23]

Panobinostat 6.541 6.894 [24]

RAF265 5.718 6.125 From statistical data

Sorafenib 5.000 5.110 [25]

TAE684 5.477 5.755 From statistical data

TKI258 5.925 6.277 [26]

Topotecan 7.563 7.916 [27]

ZD-6474 6.219 6.571 From statistical data

doi:10.1371/journal.pone.0162173.t005
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it is sensitive. If that value is below a user defined cutoff, we say that it is resistant. If it is
between those two cutoff values than we cannot clearly say whether it is sensitive or resistant.
We elaborate on how these cutoffs are determined in the section named ‘Dataset’ in Results.

In the following, we first take a small detour to describe how the NBC method works. We
then explain how we extend it to handle nonlinear associations among the genes to tackle the
problem considered in this paper.

The NBC algorithm. This algorithm has three major steps; (1) selection of features, (2)
building a network model for each class, (3) learning functions to predict transcription levels of
genes. We summarize these steps next.

Step 1: Feature selection Similar to most transcription datasets, the transcriptome from the
CCLE database contains a large number of genes (over 18,000). Using all of these genes to pre-
dict a cell characteristic, such as drug sensitivity, is not feasible for several reasons. First, the
number of genes (i.e., features) is much larger than the number of samples (e.g., cell lines).
Learning in such a high dimensional space possibly will lead to overfitting, and yield inaccurate
predictions. Second, most of these genes have no influence on the sensitivity of cells to drugs.
Thus, it is desirable to select only a small subset of features that are relevant and have high pre-
dictive power.

NBC uses the χ2 method [9] to select features as follows. Assume that we are given a set of n
samples, where each sample contains the expression levels ofm genes. For each gene gi, we con-
struct a matrix Ai with two rows. The first and the second rows of this matrix correspond to the
samples in the resistant and sensitive classes respectively. Next, we describe how we construct
the first row this matrix for the resistant samples. The second row for the sensitive samples fol-
low the same pattern. We quantize the expression level of gi in all resistant samples by partition-
ing the range of gene expression values observed in the dataset for gi into fixed length intervals.
We call each of these intervals a term. Let us denote the number of terms with t. We say that a
sample is assigned to a term if its gene gi has an expression value in the corresponding interval.
For each term, we count the number of resistant samples with gene gi assigned to that term. We
set the value of each entry in the first row of Ai to the count corresponding to that term. Thus,
for gene gi, for each class c 2 {1, 2} (i.e., resistant and sensitive respectively), and each term j, the
entry Ai

c;j shows the number of samples in class c which are assigned to the jth term.

We maintain the expected frequency of all class and term combinations for gene gi in matrix
Ei which has the same size as Ai. Next, we discuss how we compute this matrix. We compute the
probability of observing the jth term for gene gi as the fraction of samples which are assigned to
that term (i.e., (Ai

1;j+A
i
2;j)/n). We denote this with Pi

termðjÞ. Similarly, we compute the probability

of observing the cth class for gene gi as the fraction of samples belonging to that class (i.e.,

(
Pt

j¼1 A
i
c;j=n). We denote this with Pi

classðcÞ. We next compute the expected frequency of Ai
c;j as

Ei
c;j ¼ n� Pi

termðjÞ � Pi
classðcÞ. Finally, we compute the χ2 value for gene gi as

Pt
j¼1

P2

c¼1

ðAi
c;j�Eic;jÞ

2

Ei
c;j

.

Notice that, χ2 method tests the independence between two events; in our problem the inde-
pendence between the term and the class of samples. The higher the χ2 value is, the more
dependent the occurrence of the given term and class pair are. Thus, one can be used to predict
the other. Once we compute the χ2 value for all genes, we select the top 100 genes with the
highest χ2 values.

Step 2: Constructing network models At the end of Step 1, we have a small number of
genes (i.e., we choose top 100 genes in our experiments) whose expressions can explain the sen-
sitivity levels of cells to drugs the best. Let us denote the number of genes selected withm0. In
this step, we construct a network model for each of the two classes, sensitive and resistant.
Briefly, each model describes the relationship between the transcription levels of genes for the
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class corresponding to that model. More specifically, let us denote the set of genes selected in
Step 1 with G ¼ {g1, g2, . . ., gm0}. Assume that the number of cell lines in the sensitive and resis-
tant class for a given drug is s and r respectively. Let us denote the set of cell lines in the sensi-
tive class with {c1, c2, . . ., cs} and those in the resistant class with {c01, c

0
2, . . ., c

0
r}. Each gene

gi 2 G defines two vectors, one for sensitive and one for resistant class, denoted with ei and e0i.
The jth entry in ei is the transcription level of gi in cell line cj. Similarly, the jth entry in e0i is the
transcription level of gi in cell line c0j.

Now that we have defined the two vector sets, we are ready to construct the network models
for sensitive and resistant classes. In the following, we first describe how we construct the
graph model for the sensitive class. We denote this graph with GS = (V,ES). Here 8i, 1� i�m0,
node vi 2 V corresponds to gene gi. For all pairs of genes gi, gj 2 G, we compute the Pearson’s

correlation coefficient between the pair of vectors ei and ej. If the absolute value of this correla-
tion is above a user specified threshold � then we say that gi and gj are correlated in the sensitive
class. We draw an undirected edge between vi and vj and insert it to ES if gi and gj are correlated
in the sensitive class.

We construct the graph model for the resistant class similarly. We denote this graph with
GR = (V,ER). The only difference between this graph and GS is that for all gene pairs gi, gj 2 G,

we use the vectors e0i and e
0
j instead of ei and ej to compute their correlation. Similarly, if the

absolute value of this correlation is above a user specified threshold � then we say that gi and gj
are correlated in the resistant class. We draw an undirected edge between vi and vj and insert it
to ER if gi and gj are correlated in the resistant class.

Step 3: Learning predictor functions At the end of Step 2, we have two graph models, GS

and GR for sensitive and resistant classes respectively. We construct two predictor functions for
each vi 2 V, one for GS and the other for GR using the edges incident to vi in ES and ER respec-
tively. These functions follow the conjecture that correlated genes can explain the transcription
levels of each other. More specifically, NBC uses Ridge regression for this purpose. For each
node vk 2 V, let us denote the matrix that consists of vector sets ei as column vectors for all
i 2 {i |(vi, vk) 2 ES} with Ak for the sensitive class. Similarly, let us denote the matrix that con-
sists of vector sets e0i as column vectors for all i 2 {i |(vi, vk) 2 ER} with A0

k for the resistant class.
We derive a regression model Fk that predicts ek from matrix Ak for each node vk in sensitive

class, and another one F 0
k that predicts e

0
k from matrix A0

k for each node vk in resistant class.
NBC uses Ridge regression with regularization for this purpose. Regularization solves an ill-
posed problem or prevents overfitting by introducing a form of a penalty for complexity. Ridge
regression is a type of linear regression that uses regularization technique. It has a penalty
parameter λ. We use λ = 10−3 for all predictor functions globally. We create Ridge regression
model [31] that predicts ek from matrix Ak for each node k in sensitive class, and similarly e0k
from matrix A0

k for each node vk in resistant class.
Learning non-linear predictor functions. Though time complexity of NBC using Ridge

regression is low, it is limited to the transcription of linear relationships among genes. Therefore,
it is not expressive enough to describe the complex relationships that govern the process of
genes’ regulation of each other. Here, we extend the NBC algorithm to capture non-linear associ-
ations among genes. We adopt Support Vector Regression (SVR) [32] for this purpose. SVR
learns a non- linear regression model by using the kernel trick. The regression model is a linear
function in the space induced by the kernel. However, that linear function corresponds to a non-
linear function in the original space. We create a SVRmodel that predicts ek frommatrix Ak for
each node vk in sensitive class, and similarly e0k frommatrix A0

k for each node vk in resistant class.
Unlike the NBCmethod, we use the radial basis function (RBF) [33] as a kernel to transform the
problem from non- linear to a linear space. This requires using three parameters. (i) γ is a kernel
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coefficient for radial basis function (RBF). (ii) C is a penalty parameter. This parameter controls
the trade-off between the error obtained on the training data and margin maximization. (iii) �
specifies the epsilon-tube within which no penalty is associated in the loss function.

In NBC using SVR, each predictor function of a node vk has flexible parameters to maximize
the capability to capture variable non-linear characteristics. To search the best parameters of
SVR for the predictor function of each node vk, we use a grid-search method. This method
exhaustively searches through a manually specified subset of parameter space. We use the fol-
lowing parameter space: C 2 {10−1, 100, 101}, γ 2 {10−1, 100, 101}, and � 2 {10−1}. We use 5-fold
cross-validation to find the best parameters of the predictor function of a node vk.

For each node vk 2 V, Fk with different parameters will give a different predicted gene expres-
sion level. We consider the parameters that yield the predicted gene expression level closest to
the actual gene expression level as the best. In this way, we compute the parameters of each Fk,
and those of F 0

k for sensitive and resistant network models respectively. Thus, this strategy
requires three nested loops for each predictor function Fk and F 0

k to tune the best parameter in
SVR while no loop is required to tune the best parameter in Ridge regression. Nevertheless, we
conjecture that NBC using SVR has great potential to capture non-linear associations among
genes and thereby to outperform NBC using Ridge regression for predicting drug sensitivity.

Predicting drug sensitivity using NBC. Once the NBC method constructs the network
models and the corresponding predictor functions, we are ready to use to to classify new sam-
ples into resistant or sensitive classes. Briefly, we do this as follows. NBC considers a new sam-
ple as a vector that consists of gene expression levels of them0 genes selected by the χ2 method
described above. Let us denote this vector with x = [x1, x2, . . ., xm0]. For all k (1� k�m0) NBC
makes two predictions; one assumes that the test sample is sensitive and the other assumes that
it is resistant. The function Fk predicts the expression level of the kth gene in this vector as yk =
Fk(x) should the test sample be in the sensitive class. Similarly, the function F 0

k predicts the
expression level of the kth gene as y0k ¼ F 0

kðxÞ if it was in the resistant class. Of these two predic-
tions, the more accurate one will be the one corresponding to the true class of the test sample.
Thus we construct two vectors y = [y1, y2, . . ., ym0] and y0 ¼ ½y01; y02; . . . ; y0m0 � for sensitive and
resistant classes. We then calculate the mean square error (MSE) for the sensitive and network

model as 1
m0

Pm0
k¼1 ðxk � ykÞ2, and that for the resistant network model as 1

m0
Pm0

k¼1 ðxk � y0kÞ2.
We predict the class of the test sample as the one with less mean square error (MSE).

Apoptotic genes
Apoptosis is a genetically controlled mechanism that leads to the suicide of the cell. The cellular
basis of many anticancer drugs are to induce apoptosis of cancer cells. A number of genes that
encode anti or pro apoptotic regulators, have known to function as oncogenes or tumor suppres-
sor genes, respectively [34]. Expression status of pro-apoptotic and anti-apoptotic genes could
potentially predict sensitivity to anticancer drugs. Human genes annotated with Gene Ontology
IDs 0043065 and 0043066 were extracted as pro-apoptotic and anti-apoptotic gene lists respec-
tively and filtered by ‘Direct Annotation’. We use the list of apoptotic genes for a feature selection
exploiting biological domain knowledge. Then, we compare the prediction performance between
a statistical feature selection method such as χ2 and a feature selection using apoptotic genes in
the section named ‘Evaluation of the impact of feature selection strategies’ in Results.

Overview of the existing classifiers
In this section, we summarize four state of the art classifiers in the literature, namely SVM [29],
Random Forest (RF) [30], Naive Bayes [35], and K-nearest Neighbor (kNN) classifier [36]. We
compare our method with these four methods in our experiments.
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Support Vector Machines (SVM). The SVMmachine learning algorithm has been used
frequently in many fields such as bioinformatics, text recognition, image recognition. It is
inherently a binary, and discriminative classifier. Two key components that define SVM are a
maximum margin hyperplane and kernel trick [29]. SVM finds a maximum margin hyper-
plane that separates the given training data points into two half-spaces lying on each side of the
hyperplane. Support vectors are the data points which reside closest to the maximum margin
hyperplane. Typically, Lagrange multipliers are used to find the maximum margin hyperplane
analytically.

Linear SVM assumes that the data points are linearly separable. When this assumption fails,
we exploit kernel trick to find a non-linear hyperplane. The basic idea of finding non-linear
hyperplane is to map the original feature space to higher dimensional feature space in which
the data points are linearly separable. Common kernel functions are polynomial, radial basis
function (RBF), and sigmoid.

Random Forest (RF). Random Forest (RF) is an ensemble method that uses multiple deci-
sion trees [30]. The decision tree consists of internal and leaf nodes. Each internal node has a
splitting rule and each leaf node is labeled with a class. The decision tree algorithm uses infor-
mation gain as a splitting criterion. Information gain shows how important a given feature is.
In other words, most useful features for discriminating between the classes to be learned are
determined by information gain. Thus, the feature with the highest information gain is embed-
ded at the root node. Branching occurs at each internal node after making its decision until it
reaches a leaf node.

The disadvantage of decision tree algorithm is that small variations in the data result in a
totally different tree being generated. RF overcomes this disadvantage by exploiting bootstrap-
ing. More specifically, RF constructs multiple decision trees by bootstraping samples. To pre-
dict the class of a test sample, the algorithm uses all these multiple trees in the way that takes
the majority vote over all the decision trees.

Naive Bayes (NB). Given a class variable y and a feature vector {x1, . . ., xn}, Bayes’ theorem

states the following relationship: Pðyjx1; . . . ; xnÞ ¼ PðyÞPðx1 ;...;xn jyÞ
Pðx1;...;xnÞ

Briefly, NB is based on Bayes’ theorem with the assumption that independence exists
among all features. It is difficult to learn the joint probability P(x1, . . ., xn|y) in Bayes method

without this assumption. With this assumption, we write P(y|x1, . . ., xn) as

PðyÞ
Yn

i¼1

PðxijyÞ
Pðx1 ;...;xnÞ .

Since P(x1, . . ., xn) is constant given the data, NB uses the following classification rule:

ŷ ¼ argmax
y

ð PðyÞ
Yn

i¼1

PðxijyÞ Þ

There are different NB classifiers depending on which distribution of P(xi|y) we use. In our
study, we use Gaussian distribution as it is one of the most commonly used distribution.

K-Nearest-Neighbor (kNN). kNN is an instance-based learning algorithm which com-
pares new test samples with those samples whose classes are already known [36]. More specifi-
cally, it computes the distance between the given test sample and the remaining samples. It
then classifies the test sample into the class where the majority of its K nearest neighbors
agrees. In general, the distance function depends on the underlying application. That said, after
it uses the euclidean distance for this purpose, we also use this distance function in our experi-
ments. Unlike other learning algorithms, kNN induces its hypothesis directly from training
instances. As a result, hypothesis complexity increases with the size of the training data.
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Overview of the existing regression methods
Bayesian multitask multiple kernel learning (BMTMKL). Bayesian multitask multiple

kernel learning (BMTMKL) method [3] exploits four machine learning principles: kernelized
regression, multiview learning, multitask learning, and Bayesian inference. Kernelized regres-
sion can capture non-linear relationships between genomic features, and drug sensitivities of
cell line. Multiview learning principle integrates heterogeneous input data into a single model.
Multitask learning is the sharing of information between drugs, which implies simultaneous
modeling of drug sensitivities across all the drugs. Additionally, Bayesian inference learned all
model parameters to handle the uncertainty from the small sample size.

Elastic Net (EN). Elastic Net regression is a hybrid approach that blends both penalization
of the L2 and L1 norms. The combination of both penalization of the L1 and L2 allows that the
model is sparse where few of the weights are non-zero, and the model also maintains the regu-
larization properties of Ridge regression. Elastic Net is particularly useful when the number of
predictors is much bigger than the number of observations [37], and when there are multiple
predictors which are correlated with one another.
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