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Abstract
RNase H (RNH) is a pivotal domain in retrovirus to cleave the DNA-RNA hybrid for continu-

ing retroviral replication. The crucial role indicates that RNH is a promising drug target for

therapeutic intervention. However, annotated RNHs in UniProtKB database have still been

insufficient for a good understanding of their statistical characteristics so far. In this work, a

computational RNHmodel was proposed to annotate new putative RNHs (np-RNHs) in the

retroviruses. It basically predicts RNH domains through recognizing their start and end sites

separately with SVMmethod. The classification accuracy rates are 100%, 99.01% and

97.52% respectively corresponding to jack-knife, 10-fold cross-validation and 5-fold cross-

validation test. Subsequently, this model discovered 14,033 np-RNHs after scanning

sequences without RNH annotations. All these predicted np-RNHs and annotated RNHs

were employed to analyze the length, hydrophobicity and evolutionary relationship of RNH

domains. They are all related to retroviral genera, which validates the classification of retro-

viruses to a certain degree. In the end, a software tool was designed for the application of

our prediction model. The software together with datasets involved in this paper can be

available for free download at https://sourceforge.net/projects/rhtool/files/?source=navbar.

1 Introduction
The retroviruses encompass a family of enveloped RNA-containing viruses that utilize reverse
transcription of their genomes as an obligate step in virus replication [1]. Based on differences
in morphological and biochemical features, retroviruses can be classified into seven genera
including alpha-retrovirus, beta-retrovirus, gamma-retrovirus, delta-retrovirus, epsilon-retro-
virus, lentivirus and spumavirus [2]. The common replication mode of all these retroviruses
leads to reverse flow of genetic information from RNA template to intermediate DNA-RNA
hybrid and then to complementary DNA [3]. The procedure thus contributes to virus propaga-
tion and influences genetic composition of infected cells [4]. To complete this process, reverse
transcriptase enzyme is absolutely required which is encoded by polymerase (pol) gene [5]. As
a key domain in reverse transcriptase, RNase H (RNH) specifically degrades the RNA strand of
DNA-RNA replication intermediate to free the newly-made minus strand for use as a template
in the synthesis of the plus strand of DNA [6–9].

The indispensable role of RNH in retroviral replication attracts the attention of some
researchers. Their works reveal that inhibiting activity of RNH to break reverse transcription
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can be helpful to therapeutically intervene in some kinds of diseases, such as neoplasia, autoim-
munity and immunosuppression [8–12]. Thus, RNH is qualified as an important and promis-
ing pharmaceutical target. But annotated RNHs in online database are not sufficient for
statistical research. More new putative RNHs (np-RNHs) in the retroviruses are waiting for
prediction with bioinformatics methods. However, the special RNH prediction software has
been absent so far, and some classical database search tools [13–15] achieved unsatisfied accu-
racy rates which were lower than 80% in RNH recognition. Therefore, it is of great importance
to come up with a computational RNH prediction model. This model will be conducive to
reducing the number of amino acid sequences for biochemical experiment corroboration.

On the basis of amino acid sequences only, the proposed model recognizes start and end
sites by SVMmethod to accomplish the aim of RNH prediction. The remainder of this paper is
arranged as follows containing all the requirements of a sequence-based predictor [16, 17]. In
Section 2, we will briefly describe the datasets used in this study. In Section 3, we will introduce
the general scheme of our model and proper validation methods. Then the experimental results
will be provided in Section 4, including the optimal parameters, validity analysis, RNHmotif
and evolutionary relationship. Finally, we will summarize our work and present the conclu-
sions in Section 5.

2 Datasets
All the retroviral protein sequences involved in this work were collected from UniProt Knowl-
edgebase (UniProtKB) [18, 19] and divided into two datasets. One named benchmark dataset
contains 105 pol sequences with RNH annotations so as to complete the establishment of RNH
prediction model. These data are all qualified to meet the criteria which stress RNH domains to
be non-repetitive, manually annotated or reviewed and consistent in different databases. The
other one includes 149,692 pol sequences and 320 non-pol sequences both without RNH anno-
tations for predicting potential np-RNHs.

3 Methods

3.1 Prediction algorithm
Stage 1: Sample preparation. There are two sets of samples corresponding to start and

end sites prediction respectively. The start samples are expressed as:

ss ¼ polði : iþ L1� 1Þ i ¼ startðRNHÞ þ d1 d1 ¼ ½�20; 20�

¼
(
positive start sample if d1 ¼ 0

negative start sample if d1 6¼ 0

; ð1Þ

while the end samples are given by:

es ¼ polði� L2þ 1 : iÞ i ¼ endðRNHÞ þ d2 d2 ¼ ½�20; 20�

¼
(
positive end sample if d2 ¼ 0

negative end sample if d2 6¼ 0

: ð2Þ

Here, L1 and L2 represent the length of start and end samples severally. start(RNH) and end
(RNH) denote either true start and end site for a training pol sequence, or achieved start and
end position after Smith-Waterman alignment [20] with training RNH domains for an
inquired sequence.

Stage 2: Feature extraction. The widely recognized position weight matrix (PWM) [21–
23] was employed to represent the conservative level of amino acid sequences in the
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benchmark dataset. By aligning positive start samples, negative start samples, positive end sam-
ples and negative end samples, PWMs are defined as:

PWMaip ¼ ln
20k � ðfaip þ

ffiffiffiffi
N

p
=20kÞ

ðN þ ffiffiffiffi
N

p Þ k ¼ 1; 1 � i � L

½p; L� ¼

(
½1; L1� for positive start samples

½2; L1� for negative start samples

½3; L2� for positive end samples

½4; L2� for negative end samples

: ð3Þ

Here, fαip refers to the absolute frequency of amino acid α in the i-th position of N aligned
sequences for the p-th matrix. With these four matrixes, the scoring functions (SF) are given as
follows:

SFp ¼
XL

i¼1

PWMaip: ð4Þ

The genuine start or end sample tends to have a larger value of SFp (p = 1 or 3) and a smaller
value of SFp (p = 2 or 4).

Stage 3: SVM classifier. Support vector machine (SVM) [24] is a supervised algorithm
based on statistical learning theory. Its basic idea is to construct an optimal hyperplane as the
discriminative surface with the largest distance to the nearest training data points of any class.
Like in some other publications [25–27], software LIBSVM [28] was used to fulfill the classifi-
cation between positive start (end) samples and negative start (end) samples. LIBSVM can be
obtained from the website http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

Stage 4: RNH prediction. If the inquired sequence did not contain both of start and end
site identified by SVM, it was inferred that no RNH domain exists in this sequence. Otherwise,
the np-RNH could be predicted by the recognition of start and end site.

3.2 Performance assessment
The proposed RNHmodel was tested by jack-knife and n-fold cross-validation (10-fold CV or
5-fold CV) methods for an objective and comprehensive assessment. The quantitative evalua-
tion results were measured by sensitivity (Se), specificity (Sp), overall accuracy (Acc) and Mat-
thew’s correlation coefficient (Mcc). They are defined as follows:

Se ¼ Tp
Tpþ Fn

Sp ¼ Tn
Tnþ Fp

Acc ¼ Tpþ Tn
Tpþ Tnþ Fpþ Fn

Mcc ¼ Tp� Tn� Fp� FnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTpþ FnÞðTpþ FpÞðTnþ FnÞðTnþ FpÞp

; ð5Þ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

where Tp and Fn are the numbers of positive samples that are predicted to be positive and neg-
ative respectively, analogously, Tn and Fp are the numbers of negative samples that are pre-
dicted to be negative and positive respectively.
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4 Results and Discussion

4.1 Parameter analysis
Two sets of parameters will be discussed in detail in this section. They are the range of candi-
date sites (d1, d2) and length of samples (L1, L2). The appropriate values of these parameters
were trained by jack-knife and n-fold CV methods based on the benchmark dataset.

The absolute distances between positive sites and corresponding predicted sites by SW-
alignment were counted for d1 and d2 parameters. They are all smaller than 20 amino acids
(AA). Thus, samples prepared as formula (1) and formula (2) definitely contain all positive
ones and a certain number of negative ones for a better classification by SVMmethod.

The curves ofMcc versus different sample lengths were plotted in Fig 1 for L1 and L2
parameters. In this figure,Mcc values with L1 = 12 AA and L2 = 14 AA reach the peaks with
fewer calculations under jack-knife test, as well as show very small differences from others
under 10-fold CV test. Thus, the optimal L1 and L2 were set as aforesaid when taken into
account both of the performance and computational amounts.

4.2 Validity analysis
The proposed model has been tested from different aspects to demonstrate its validity in np-
RNH prediction (Table 1, Fig 2). The first one is a test by increasingly used and widely recog-
nized validation methods [16]. The classification accuracy rates are 100%, 99.01% and 97.52%
respectively corresponding to jack-knife, 10-fold CV and 5-fold CV test. Another one is a com-
parison with three other classical database search tools. The differences are 20.95, 24.76, and
80.95 points after prediction accuracy of RNHmodel minus that of PSI-BLAST, CS-BLAST,
and HMMER3 severally. The last one is a contrast of np-RNHs predicted in pol sequences and
non-pol sequences. RNHmodel discovered 14,033 and zero np-RNHs after separately scanning
149,692 pol sequences and 320 non-pol sequences, which is in consistency with the existence of
RNH as a domain in reverse transcriptase of pol [4, 8]. These results all confirm the validity of
RNHmodel to a certain degree.

4.3 Sequence analysis
Weblogo software [29, 30] was employed to generate RNHmotif in Fig 3. In this figure, the
underlined D10, E58, D81 and D153 are four active-site residues based on 71 annotations of

Fig 1. Change of averageMcc values versus different sample lengths. (A) Performance changes along with sample lengths from 10 AA to
100 AA under jack-knife test. (B)-(C) Performance varies along with optimal sample lengths selected in Fig 1(A) under 10-fold CV test. SD
denotes the standard deviation ofMcc values.

doi:10.1371/journal.pone.0161913.g001
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the benchmark dataset. These residues can be grouped into the DEDDmotif, which coordi-
nates with divalent metal ions to facilitate RNA hydrolysis during the catalytic process [31]. It
is noteworthy that regions around DEDDmotif are more conserved than others. The result
supports the literatures [32, 33] that DEDD motif is essential for metal binding and catalytic
activity. These conservativeness properties around D10 and D153 make it convenient to recog-
nize start and end sites of RNH domains.

Two properties were analyzed on RNH domains in Fig 4. One is length property and the
other is hydrophobicity calculated by grand average of hydropathy (GRAVY) [34, 35]. This

Table 1. Comparison results between RNH tool and three other classical database search tools.

Method Train/test Scan

Protein d number np-RNHs

RNH tool 5-fold CV Acc = 97.52% a pol 149,692 14,033

Se1 = 99.62%, Sp1 = 100%, Acc1 = 99.99%,Mcc1 = 99.80% b

Se2 = 97.90%, Sp2 = 100%, Acc2 = 99.95%,Mcc2 = 98.92% c

10-fold CV Acc = 99.01%

Se1 = 99.91%, Sp1 = 100%, Acc1 = 99.998%,Mcc1 = 99.96% non-pol 320 0

Se2 = 99.08%, Sp2 = 100%, Acc2 = 99.98%,Mcc2 = 99.53%

jack-knife Acc = 100%

self-consistency Acc = 105/105 = 100%

PSI-BLAST Acc = 83/105 = 79.05% (100%-79.05% = 20.95%) - - -

CS-BLAST Acc = 79/105 = 75.24% (100%-75.24% = 24.76%) - - -

HMMER3 Acc = 20/105 = 19.05% (100%-19.05% = 80.95%) - - -

a: the performance of RNH domain prediction.
b: the performance of start site prediction.
c: the performance of end site prediction.
d: the proteins without RNH annotations for scanning.

doi:10.1371/journal.pone.0161913.t001

Fig 2. Classification results between positive and negative samples by SVMmethod. The solid lines represent the optimal classification
hyperplanes constructed for (A) start samples and (B) end samples.

doi:10.1371/journal.pone.0161913.g002
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figure shows that RNHs in the same genus share particular length and GRAVY values. In other
words, it can be concluded that length and hydrophobicity of RNH domains may have some
relationships with retroviral genera. Based on the conclusion, Intracisternal A-particle (unclas-
sified-retrovirus) may be a part of alpha-retrovirus, beta-retrovirus or delta-retrovirus. On the
other hand, these two characteristics of RNH domains can be regarded as a corroboration of
retroviral genera defined by pol and other elements [1, 2].

4.4 Evolutionary relationship analysis
MEGA software [36] was used to create the phylogenic tree by maximum likelihood method in
Fig 5. This figure gives a comparison result between homology of RNHs within genera and that
of inter-genera. It is expected and clear that RNHs in the same genus show higher homology
than different genera. Thus, Intracisternal A-particle (unclassified-retrovirus) should be classi-
fied as beta-retrovirus, coinciding with analysis result in section 4.3. From another perspective,
the evolutionary relationship in RNH of retroviruses can be seen as a technical validation of
their classification in the literature [1], which uses pol sequence as one of the elements to define
retroviral genera.

4.5 RNH prediction software
A software tool has been developed to further facilitate the application of proposed predic-
tion model. It was implemented with C programing language for windows environment.
This tool receives and sends files both with the format of FASTA. The input files contain
inquired amino acid sequences, while the output files include the predicted np-RNHs. Each
np-RNH annotation in export files indicates clearly its start and end site in the inquired
sequence.

5 Conclusion
A computational RNHmodel was put forward in this paper based on amino acid sequences
only with high classification accuracy. This model discovered 14,033 np-RNHs after scanning
sequences without RNH annotations. Based on these predicted np-RNHs and annotated
RNHs, a preliminary experiment was performed to analyze the length, hydrophobicity and
evolutionary relationship of RNH domains. The results indicate a correlation between these

Fig 3. RNHmotif plotted by weblogo software. The overall height of the stack indicates the sequence conservation at each position, the height of
symbols within the stack represents the relative frequency of amino acid at that position, while the four underlined residues (D10, E58, D81 and D153)
display the DEDDmotif in RNH domain.

doi:10.1371/journal.pone.0161913.g003
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three characteristics and retroviral genera, which confirms the classification of retroviruses to
some extent. To further facilitate the application of our proposed model, software named
RNHtool has been developed.

Fig 4. Hydrophobicity and length characteristics analyzed on RNH domains.RNHs in lentivirus are hydrophilic whose lengths range from
105 AA to 127 AA, RNHs in alpha-retrovirus, beta-retrovirus and delta-retrovirus are hydrophilic or hydrophobic whose lengths range from 130
AA to 136 AA, RNHs in epsilon-retrovirus and gamma-retrovirus are hydrophilic whose lengths range from 146 AA to 148 AA, while RNHs in
spumavirus are hydrophilic whose lengths range from 159 AA to 160 AA.

doi:10.1371/journal.pone.0161913.g004
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