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Abstract

Background

Tumor proliferation speed, most commonly assessed by counting of mitotic figures in histo-

logical slide preparations, is an important biomarker for breast cancer. Although mitosis

counting is routinely performed by pathologists, it is a tedious and subjective task with poor

reproducibility, particularly among non-experts. Inter- and intraobserver reproducibility of

mitosis counting can be improved when a strict protocol is defined and followed. Previous

studies have examined only the agreement in terms of the mitotic count or the mitotic activ-

ity score. Studies of the observer agreement at the level of individual objects, which can pro-

vide more insight into the procedure, have not been performed thus far.

Methods

The development of automatic mitosis detection methods has received large interest in

recent years. Automatic image analysis is viewed as a solution for the problem of subjectiv-

ity of mitosis counting by pathologists. In this paper we describe the results from an interob-

server agreement study between three human observers and an automatic method, and

make two unique contributions. For the first time, we present an analysis of the object-level

interobserver agreement on mitosis counting. Furthermore, we train an automatic mitosis

detection method that is robust with respect to staining appearance variability and compare

it with the performance of expert observers on an “external” dataset, i.e. on histopathology

images that originate from pathology labs other than the pathology lab that provided the

training data for the automatic method.

Results

The object-level interobserver study revealed that pathologists often do not agree on indi-

vidual objects, even if this is not reflected in the mitotic count. The disagreement is larger for

objects from smaller size, which suggests that adding a size constraint in the mitosis
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counting protocol can improve reproducibility. The automatic mitosis detection method can

perform mitosis counting in an unbiased way, with substantial agreement with human

experts.

Introduction
Tumor proliferation speed is an important biomarker for breast cancer. [1] The most common
and accessible method for assessing tumor proliferation speed is by counting of mitotic figures
in hematoxylin & eosin (H&E) stained histological slide preparations. The mitotic count,
expressed as the mitotic activity index (MAI, number of mitoses in 2 mm2 tissue area), is part
of the modified Bloom-Richardson grading system [2], but is also considered an independent
prognostic factor. [3] Although mitosis counting is routinely performed in almost every pathol-
ogy lab, the procedure is tedious, and can suffer from reproducibility problems (particularly
between non-specialized pathologists) that are caused by the underlying subjectivity and diffi-
culty of the task.

The appearance of mitotic figures in H&E stained preparations can in theory be summa-
rized by a list of a few typical characteristics. Mitotic figures appear as hyperchromatic objects
without nuclear membrane and hairy extensions of nuclear material. However, in practice,
scanning the histological slides for objects exhibiting these characteristics is not trivial as there
are many doubtful instances where subjective decisions must be made. This can in some cases
lead to wrong estimation of the tumor proliferation speed and in turn to wrong indications for
systemic therapy.

Inter- and intraobserver reproducibility of mitosis counting can be improved when a strict
mitosis counting protocol is defined and followed. [4] Previous studies of the observer agree-
ment on mitosis counting have examined only the agreement in terms of the mitotic count or
the mitotic activity score. Studies of the observer agreement at the level of individual objects,
which can provide more insight into how pathologists perform this task, have not been per-
formed thus far. The main reason for this is the technical difficulty of performing such studies
with conventional light microscopes and glass slides. With this equipment, it is not possible to
precisely mark the locations of very small objects such as mitoses, which is necessary in order
to assess the object-level agreement.

At present time, a fully digital pathology workflow, where traditional glass slides are
replaced with digital slides that are viewed on a computer screen, is feasible and being imple-
mented in pathology labs. In addition to many workflow benefits, digital slides offer the possi-
bility for precise annotations and use of image analysis techniques to tackle some of the known
drawbacks of manual analysis by pathologists such as the previously mentioned subjectivity
issues.

The development of automatic mitosis detection methods has received large interest in
recent years. [5–8] Automatic image analysis is viewed as a solution for the problem of subjec-
tivity of mitosis counting by pathologists. One additional benefit of automatic analysis is that it
can save pathologists valuable time by fully or partially automating this tedious task. Although
state-of-the-art automatic mitosis detection methods approach the performance of human
expert observers, this is achieved in relatively controlled conditions where automatic mitosis
detectors are trained and evaluated on datasets originating from the same pathology lab. In a
real world scenario, however, mitosis detection must be applied to digital slides originating
from a variety of different pathology labs. Due to the variability of the tissue appearance
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between labs the performance of the methods can be sub-optimal when applied to “external”
image data.

In this paper we describe the results from an interobserver agreement study between three
human observers and an automatic method, and make two unique contributions towards
improving the reproducibility of mitosis counting. For the first time, we present an analysis of
the object-level interobserver agreement on mitosis counting. Furthermore, we train an auto-
matic mitosis detection method that is robust with respect to staining appearance variability
and compare it with the performance of expert observers on an “external” dataset, i.e. on histo-
pathology images that originate from pathology labs other than the pathology lab that provided
the training data for the automatic method.

Materials and Methods

Dataset
The analysis of the observer agreement and the evaluation of the automatic mitosis detection
method is performed with the dataset previously used by Al-Janabi et al. to compare mitosis
counting on conventional glass slides and digital slides. [9] The dataset consists of 100 consecu-
tive breast cancer cases equally sourced from two pathology labs in the Netherlands. These
include six core needle biopsies in cases undergoing neo-adjuvant chemotherapy and 94 resec-
tions. From each case, one representative slide routinely stained with H&E and containing
tumor region was selected by two pathologists. The glass slides were scanned with a Leica
SCN400 whole-slide image scanner at × 40 magnification and a spatial resolution of 0.25 μm/
pixel. Within each slide, one tumor region of size 2 mm2 was marked for mitosis counting. The
regions were selected based on the standard guidelines that state that mitosis counting should
be performed in regions with high cellularity at the tumor periphery. Regions with tissue prep-
aration artifacts were avoided. Mitosis counting on digital slides was performed independently
by three pathologists following a strict scoring protocol using the Digital Image Hub software
from Leica. For the majority of cases, the locations of the counted mitotic figures were
recorded. Eighty-four cases have annotations of the locations of the mitotic figures by all three
observers. The ground truth mitotic figure annotations are provided as pixel coordinates cen-
tered at the mitotic figure.

Automatic mitosis detection
The automatic mitosis detection method was trained with the dataset from the AMIDA13 chal-
lenge. [5] This dataset consists of 23 breast cancer cases from the Department of Pathology at
the University Medical Center, Utrecht, the Netherlands. Each case is represented by one rou-
tinely stained H&E slide and one representative tumor region within the slide, both selected by
an expert pathologist. The slides were digitized with an Aperio XT scanner at ×40 magnifica-
tion and a spatial resolution of 0.25 μm/pixel. Within each region, mitotic figures were anno-
tated based on the consensus of two observers. The dataset is split into two subsets: a subset of
12 cases with 550 annotated mitotic figures used for training the automatic mitosis detection
method and a subset of 11 cases with 533 annotated mitotic figures used for validation. A more
detailed description of the dataset can be found in the overview paper of the challenge [5] and
on the AMIDA13 challenge website (http://amida13.isi.uu.nl) where the data is available for
download.

Mitotic figures were detected with an automatic image analysis method based on deep con-
volutional neural networks. These methods are part of the field of deep learning that has
recently significantly improved the state of the art in many machine learning and computer
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vision tasks. [10] This success is largely owed to their ability to learn a hierarchical set of highly
discriminative features directly from the image data.

The neural network architecture that was used for the mitosis detection in this paper is simi-
lar to the best-performing method of the AMIDA13 challenge. [5,6] The automatic method
was trained with the 12 cases from the AMIDA13 training subset. The optimal operating point
for the detection method was selected based on the 11 cases in the validation subset using the
Dice similarity coefficient (see the following subsection) as the optimization criterion. The
trained detector was then used to automatically detect mitotic figures, and compute the mitotic
count and score in the independent dataset of 100 cases. We note here that these 100 cases orig-
inate from pathology labs that are different from the pathology lab that provided the images
for the AMIDA13 dataset, and in addition, they were digitized with different scanning
equipment.

Since the AMIDA13 data originates from a single pathology lab it does not account for
inter-lab staining variations. In order to improve the generalization of the detection method to
datasets from other pathology labs, a staining normalization procedure [11,12] was applied to
the image data prior to the training of the deep convolutional neural network model. The same
procedure is also applied to the test images prior to the detection. Additionally, during the
training process, the training samples were augmented by creating new samples by random
perturbation of the color and contrast of the original samples. This procedure has a regulariza-
tion effect and makes the method more robust to such variations, which are not completely
eliminated by the staining normalization.

More details on the training of the deep convolutional neural network model and the design
of the automatic mitosis detection method are provided in S1 Appendix. Examples of the auto-
matic mitosis detection are given in Fig 1.

Measures of observer agreement
The observer agreement for the mitotic count was assessed with the Bland-Altman method.
[13] Before calculating the mean difference and limits of agreement, the values were log-trans-
formed because of the right-skewed distribution of the counts. The mitotic score agreement
was assessed by analyzing the confusion matrices and computing the quadratic-weighted
Cohen's kappa statistic, which puts more weight on cases with larger discrepancy of the score.

The object-level observer agreement was assessed by computing the Dice similarity coeffi-
cient.[14] This measure is commonly used in the field of medical image analysis to assess the
amount of overlap between two sets of objects. The Dice similarity coefficient for two sets of
objects A and B is computed as D = 2×|A\B|/(|A| + |B|). In this expression, |A| and |B| indicate
the number of objects in the two sets, and |A\B| indicates the number of objects that appear in
both sets. In the case of mitotic figure counting by two observers, |A| and |B| are the mitotic
counts by the two observers and |A\B| is the number of individual mitotic figures for which
they agree. For example, if one observer counted 12 mitotic figures and a second observer
counted 14 mitotic figures out of which only 6 were also counted by the first observer, the Dice
similarity coefficient would be D = 2×6/(12+14) = 0.46. If the two observers agreed on 10
mitotic figures the value for the Dice similarity coefficient would be 0.76.

The Dice similarity coefficient can take values between 0, meaning that none of the objects
appear in both sets, and 1, meaning that the two sets of objects are identical. Additionally, we
define the Dice similarity coefficient between two empty sets to be 1. Two annotations or a
detection and an annotation are considered to refer to the same object if their distance is less
than 30 image pixels or 7.5 μm. This value corresponds approximately to the average size of
mitotic figures in the data set, and provides a reasonable tolerance for misalignment of the
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Fig 1. Example results from the automatic mitosis detection algorithm. In the images on the left side, a
green cross next to an object indicates a detected mitotic figure and the numbers indicate howmany
observers annotated the object as a mitotic figure. The corresponding probability maps that are the output of
the deep convolutional neural network are given on the right side. All local maxima with a value larger than
0.85 are considered detected mitotic figures.

doi:10.1371/journal.pone.0161286.g001
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ground truth location and the detection. The Dice similarity coefficient is computed for both
the entire dataset and per individual case.

Results

Mitotic count agreement
The analysis of the Bland-Altman plots, which are given in Fig 2, shows that the mean differ-
ences between all pairs of observations were very close to zero. The absolute mean difference
was highest between observers 2 and 3 (|b| = 0.14). These mean differences are low compared
with the range of the log-transformed counts. This means that none of the observers and the
automatic method systematically under- or over-estimated the mitotic count to a substantial
degree, i.e. there are no biases in the estimation. The limits of agreement indicate that the
agreement was better between the three human observers than between the human observers
and the automatic method.

Mitotic score agreement
The results from the analysis of the agreement on the mitotic score between the three observers
and the automatic method are shown in Table 1. The quadratic-weighted Cohen's kappa

Fig 2. Modified Bland-Altman plots for the log-transformedmitotic counts of the 3 observers and the automatic method. The black
line indicates the mean difference b, and the red lines indicate the limits of agreement LA. Logarithm with base 10 was used in the
transformation. The points are jittered in the horizontal direction to help better visualize overlaps.

doi:10.1371/journal.pone.0161286.g002
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coefficient between the three observers varied from κ = 0.7918, CI = [0.6459 0.9378], for
observers 2 and 3 to κ = 0.8926, CI = [0.7894 0.9957], for observers 1 and 2, which indicates
substantial to perfect agreement. For the agreement between the automatic methods and the
three observers, this statistic varied between κ = 0.6648, CI = [0.4847 0.8448], for observer 3,
and κ = 0.7416, CI = [0.5805 0.9026], for observer 1. Compared to the inter-observer agree-
ment of the experts this statistic is lower, but nevertheless indicates substantial agreement.

Clinically more relevant are situations in which the disagreement is two score points, i.e.
score 1 instead of 3 and vice versa. The analysis of the confusion matrices in Table 1 reveals
that there were two such cases of disagreement between the three human observers, and 13
between the human observers and the automatic method.

Object-level agreement
The Dice similarity coefficients D for all pairs of observations for the entire dataset are given in
Table 2. For the three observers, the best object-level agreement was achieved between observ-
ers 1 and 2 with D = 0.6698, CI = [0.6290 0.7106] and the worst between observers 1 and 3 with
D = 0.5729, CI = [0.5224 0.6233]. The automatic method had best agreement with observer 2
with D = 0.5635, CI = [0.5051 0.6219] and worst with observer 3 with D = 0.4993, CI = [0.4415
0.5571].

Fig 3 shows the Dice similarity coefficients for individual cases and for all pairs of observa-
tions. According to these results, the best agreement was achieved between observers 1 and 2
with median Dice similarity coefficient of 0.67, CI = [0.62 0.72]. The agreement was worst
between the automatic method and observer 3 with median Dice similarity coefficient of 0.32,
CI = [0.22 0.43].

Discussion and Conclusions
Recent years have brought significant advances in the field of histopathology image analysis,
including automatic mitosis detection and counting. State-of-the-art methods are already good
candidates for use in clinical practice. However, further methodological advances and valida-
tion is needed in order to achieve this goal. The variability of the staining between pathology
labs, and even within the same pathology lab at different time points, is a major hurdle in

Table 1. Confusion matrices for the mitotic activity score for the 3 observers and the automatic method.

Score 1 Score 2 Score 3 Score 1 Score 2 Score 3 Score 1 Score 2 Score 3

Score 1 59 3 0 46 16 0 46 16 1

Score 2 3 6 0 3 5 1 3 8 4

Score 3 1 6 22 0 5 24 0 2 20

Observers 1 (rows) vs. 2 (columns) Observers 1 (rows) vs. 3 (columns) Observers 2 (rows) vs. 3 (columns)

κ = 0.8926 κ = 0.8324 κ = 0.7918

CI = [0.7894 0.9957] CI = [0.7052 0.9596] CI = [0.6459 0.9378]

Score 1 50 10 2 51 10 2 40 7 2

Score 2 5 4 0 7 4 4 17 6 3

Score 3 4 3 22 1 3 18 2 4 19

Observer 1 (rows) vs. automatic (columns) Observer 2 (rows) vs. automatic (columns) Observer 3 (rows) vs. automatic (columns)

κ = 0.7217 κ = 0.7416 κ = 0.6648

CI = [0.5624 0.8809] CI = [0.5805 0.9026] CI = [0.4847 0.8448]

Score 1: 0–6 mitotic figures per 2 mm2, score 2: 7–12 mitotic figures per 2 mm2, score 3: > 12 mitotic figures per 2 mm2. The inter-rater agreement is

measured with Cohen's quadratic weighted kappa. CI refers to the 95% confidence interval.

doi:10.1371/journal.pone.0161286.t001
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adoption of automatic image analysis methods in the routine workflow, as it directly and
adversely affects the performance. With this study, we made one further step towards address-
ing this issue by training an automatic image analysis method that is robust with respect to
staining variability.

Table 2. Dice similarity coefficients (D) for all pairs of observers and the automatic method for the entire dataset.

Observer 1 Observer 2 Observer 3 Automatic

Observer 1 (C = 783) D = 1 D = 0.6698 D = 0.5729 D = 0.5186

CI = [0.6290 0.7106] CI = [0.5224 0.6233] CI = [0.4698 0.5674]

|A\B| = 496 |A\B| = 446 |A\B| = 369

Observer 2 (C = 698) D = 1 D = 0.5883 D = 0.5635

CI = [0.5342 0.6424] CI = [0.5051 0.6219]

|A\B| = 433 |A\B| = 377

Observer 3 (C = 774) D = 1 D = 0.4993

CI = [0.4415 0.5571]

|A\B| = 353

Automatic (C = 640) D = 1

The analysis is limited to the cases for which ground truth mitotic figures are available from all three observers (N = 84). CI refers to the 95% confidence

interval computed by bootstrapping. C is the number of mitotic figures counted and |A\B| is the number of objects for which the two observers agreed.

doi:10.1371/journal.pone.0161286.t002

Fig 3. Distribution of the Dice similarity coefficients for individual cases and for all pairs of observations. The blue line indicates the
median. The analysis is limited to the cases for which ground truth mitotic figures are available from all three observers (N = 84).

doi:10.1371/journal.pone.0161286.g003
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One conclusion that can be drawn from the analysis of the results is that the best measured
agreement between the pathologists and the automatic method is comparable to the worst
measured agreement among the pathologists. This observation is valid across all three types of
agreement that were measured. Nevertheless, the performance of the automatic method was on
average somewhat worse compared with the three pathologists. It is evident from Table 1 that
there are outlier cases where the number of detected mitotic figures by the automatic method
was large enough to cause a difference in the mitotic activity score by two points. Although
such differences were also present among the pathologists, their number was substantially
lower.

When pathologists score a histological slide for mitoses, they first examine the overall
appearance of the tissue and then proceed to identifying mitotic figures, i.e. they perform a
top-down analysis by including contextual information. The automatic method that was used
in this study works in a different way. A decision if a mitotic figure is present at a particular
location is made based only on local image data in a 63×63 pixel or 15.75×15.75 μm window
around that location. The somewhat worse performance of the automatic method can be in
part explained by the lack of inclusion of contextual information. For example, there are
instances where the number of mitotic figures is overestimated because of the false detection of
hyperchromatic objects that in isolation indeed resemble mitotic figures, but the larger context
reveals that they belong to an area of tissue preparation artifacts. The inclusion of contextual
information in the detection is the most promising direction for future research.

It should be noted that the mitosis detection model is effectively trained with only 458
mitotic figures from 8 cases, and the remainder of the AMIDA13 dataset was used to monitor
for overfitting and determine the optimal operating point of the detector. This number is much
smaller than the number of cases and mitotic figures that a typical pathology resident sees dur-
ing training. Undoubtedly, there are mitotic figure appearance types that are not represented in
this dataset, which adversely affected the performance. The expansion of the training dataset is
likely to lead to better performance. Furthermore, all three pathologists involved in this study
were expert breast cancer pathologists with large experience in the task of mitosis counting. It
can be expected that non-expert pathologists would have lower inter-observer agreement that
compares more favorably to the agreement with the automatic method.

The addition of a staining normalization procedure and data augmentation by random
color and contrast transformation resulted in a method that generalizes well on data from
external pathology labs. When both staining normalization, and color and contrast data aug-
mentation were excluded from the training, the resulting method showed good performance
on data from the same pathology lab, but the results on the external dataset were notably worse
(see the S1 Appendix).

This study compared for the first time the object-level interobserver agreement of mitosis
counting among pathologists. Compared with analysis of the mitotic count and the mitotic
activity score, an analysis at the level of individual mitotic figures can provide a more in-depth
look at the structure of the agreement between the observers.

Analyzing the results from the object-level interobserver agreement in Table 2, it can be
concluded that pathologists often do not agree on a particular object. All observers counted a
similar number of mitotic figures, however pairwise agreement was achieved only for about
two-thirds of the individual objects. The object-level interobserver agreement can be even
lower for some individual cases as shown in Fig 3. It should be noted here that almost all of the
cases with zero and perfect agreement (Dice similarity coefficients of 0 and 1, respectively), are
for cases with only a few mitotic figures, where this is easy to achieve. Such instances disappear
when only considering cases with larger number of mitotic figures (see S1 Fig).
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Fig 4. Top (first eight rows): Objects that were annotated asmitotic figures by all three observers. Bottom (last
eight rows): Objects that were annotated as mitotic figures by only one observer. The numbers in the top-right corner of
the patches indicate the observer that annotated the object. A green bar at the bottom of the image patch indicates that
the object was detected by the automatic method.

doi:10.1371/journal.pone.0161286.g004
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Examples of objects that were annotated by all three observers (good agreement) and only
by one observer (poor agreement) are shown in Fig 4. It can be argued that some of the objects
with low agreement lack one or more of the typical characteristics of mitotic figures. In these
instances, subjective decisions were made that were not seconded by another observer. Further-
more, the objects that were annotated by a single observer appear to be on average smaller in
size compared with the objects with good agreement. To quantify this observation, we mea-
sured the length of the objects at their largest cross-section as an indication of their size (the
analysis was limited to the 192 objects in Fig 4). The results from this analysis are illustrated in
Fig 5. The average length of the objects with poor agreement was 8.7 μm and for the objects
with good agreement 9.8 μm. This difference was statistically significant (p< 0.002; two-sam-
ple t-test). Although the difference in the average sizes is not large, a trend of poor agreement
for small objects is evidently present.

The smaller size of the objects with poor agreement is not surprising. These objects are diffi-
cult to spot when scanning the slide and identification of the typical appearance characteristics
such as the hairy extensions is more difficult due to the small scale at which they appear. The
analysis of the object-level agreement suggests that defining a strict size constraint in the mito-
sis counting protocol might improve the agreement between pathologists.

Fig 5 also reveals that the objects with poor agreement were often not detected by the auto-
matic method. In contrast, a large proportion of the objects with good agreement were also
detected by the automatic method.

In conclusion, we describe the results from an object-level interobserver agreement study
between three human observers and an automatic method. The automatic method was trained
in such a way that it generalizes well to datasets from external pathology labs. The object-level
interobserver study revealed that pathologists often do not agree on individual objects. The dis-
agreement is larger for objects from smaller size, which suggests that adding a size constraint in
the mitosis counting protocol can improve reproducibility. The automatic mitosis detection
method can perform mitosis counting in an unbiased way, with substantial agreement with
human experts. Although the agreement between the automatic method and the experts is
lower compared to the agreement between the experts, we estimate that this performance is
sufficient for use as an interactive tool. In a fully digital pathology workflow, mitosis detection
can be performed in the slides before they reach the pathologists. The results from the detection

Fig 5. Size of the mitotic figures with poor and good agreement. The mitotic figures annotated by only
one observer were on average smaller than those for which all three observers agreed.

doi:10.1371/journal.pone.0161286.g005
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can then be used at the time of diagnosis to guide the pathologists to the region of the tumor
with the highest proliferation speed, and present the detected mitotic figures as candidates in
order to improve objectivity. In future work, we plan to perform a validation study of such a
workflow.

Supporting Information
S1 Appendix. Automatic mitosis detection method description.
(DOCX)

S1 Code. Implementation of the convolutional neural network in the Caffe deep learning
framework.
(PROTOTXT)

S1 Fig. Similar to Fig 3 in the paper, however the analysis is limited to the cases for which
ground truth mitotic figures are available from all three observers and the average mitotic
count is larger than 6 (N = 30).
(TIF)

S2 Fig. Example of data augmentation.One training sample is replicated 20 times by employ-
ing image transformations. In this way, new and plausible training examples are created. This
procedure is called data augmentation.
(TIF)

S3 Fig. Similar to Fig 2 in the paper, however this figure shows the Bland-Altman plots for
an automatic mitosis detection method without staining normalization during the training
and testing.
(TIF)

S1 Table. Mitotic count and number of mitotic figures with agreement for the three pathol-
ogists and the automatic method for individual cases.
(XLSX)
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