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Abstract
A spectrum of reproductive system anomalies (cryptorchidism, hypospadias, dysgenesis of

Wolffian duct-derived tissues and prostate, and reduced sperm production) in male rats

exposed in utero to phthalate esters (PEs) are thought to be caused by PE inhibition of fetal

testosterone production. Recently, dibutyl and dipentyl phthalate (DBuP, DPnP) were

shown to disrupt the retinol signaling pathway (RSP) in mouse pluripotent P19 embryonal

carcinoma cells in vitro. The RSP regulates the synthesis and cellular levels of retinoic acid

(RA), the active metabolite of retinol (vitamin A). In this new study, a total of 26 di- and

mono-esters were screened to identify additional phthalate structures that disrupt the RSP

and explore their mechanisms of action. The most potent PEs, those causing > 50% inhibi-

tion, contained aryl and cycloalkane groups or C4-C6 alkyl ester chains and were the same

PEs reported to cause malformations in utero. They shared similar lipid solubility; logP val-

ues were between 4 and 6 and, except for PEs with butyl and phenyl groups, were stable for

prolonged periods in culture. Mono- and cognate di-esters varied in ability to disrupt the

RSP; e.g., DEHP was inactive but its monoester was active while DBuP was active yet its

monoester was inactive. DBuP and dibenzyl phthalate both disrupted the synthesis of RA

from retinol but not the ability of RA to activate gene transcription. Both PEs also disrupted

the RSP in C3H10T1/2 multipotent mesenchymal stem cells. Based on this in vitro study

showing that some PEs disrupt retinol signaling and previous in vivo studies that vitamin A/

RA deficiency and PEs both cause strikingly similar anomalies in the male rat reproductive

system, we propose that PE-mediated inhibition of testosterone and RA synthesis in utero

are both causes of malformations in male rat offspring.

Introduction
Phthalates, alkyl or aryl esters of phthalic acid (referred to here as PEs), are non-covalently
incorporated into polyvinyl chloride plastics during manufacturing to increase softness and
flexibility of the finished product. They are also used in a wide variety of consumer products
including cosmetics, personal-care products, adhesives, detergents, food packaging, medical
devices, as excipients in pharmaceuticals, and in dietary supplements [1–3]. Because of their
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widespread use and tendency to leach from products, PEs have become pervasive in the envi-
ronment. Metabolites of some PEs have been found in more than 97% of some NHANES urine
samples indicating widespread human exposure [4]. Food is a significant source of exposure [3,
5]. Other important sources include water, personal care products, and cosmetics.

Evidence for widespread human exposure to PEs has raised human health concerns because
of the similarities between congenital anomalies observed in the human male reproductive sys-
tem and malformations in the reproductive systems of male rats exposed to PEs. Increased
prevalence of cryptorchidism and hypospadias, two common congenital malformations of the
male reproductive system, and a decline in sperm quality have been reported in some human
populations [6–8]. Exposure of pregnant rats to PEs during late gestation causes a spectrum of
malformations in the reproductive system of male offspring including cryptorchidism and
hypospadias, dysgenesis of Wolffian duct-derived tissues (vas deferens, epididymis, seminal
vesicles) and prostate, as well as reduced sperm production[9]. It should be noted that the
adverse effects of PEs on the male reproductive system are not limited to exposure during
development, but are also seen in pre-pubertal, pubertal, and adult rats exposed to PEs[9]. The
adverse effects of PEs on the development of androgen-dependent reproductive tissues are gen-
erally attributed to low fetal testosterone (T) levels caused by PE interference with T synthesis
by Leydig cells of the fetal testis [9, 10].

We recently described the development of a rapid cell based screen for identifying chemicals
that disrupt the retinol (ROH; vitamin A) signaling pathway (RSP) [11]. This screen uses the
mouse pluripotent P19 cell which can be induced to differentiate into cell types that are repre-
sentative of all three embryonic germ layers. This cell line has a functional retinol signaling
pathway [12] found in all vertebrates (Fig 1A) and, therefore, can metabolize retinol to its
active metabolite, retinoic acid (RA), and maintain this compound at a concentration compati-
ble with normal cellular function [13, 14]. RA is the activating ligand that controls the expres-
sion of a large number of protein-coding genes [15] and non-coding regulatory RNAs [16] by
binding to, and activating, the RXR/RAR receptor complex on the retinoic response elements
of RA-regulated genes. A well regulated retinol signaling pathway is essential for normal devel-
opment of embryos and maintenance of cellular phenotype in adults in all vertebrates. Inade-
quate cellular levels of RA caused by vitamin A deficiency (VAD) or by interference with the
synthesis of RA from vitamin A can cause abnormal development and loss of phenotype in
adult tissues; abnormally high levels of RA caused by interference with its metabolism also can
have adverse cellular effects [12].

The screen uses the level of ROH-induced expression of the homeobox gene, Hoxa1, as a
measure of pathway function and the ability of a chemical to decrease or increase ROH-
induced expression as an indication of pathway disruption. Hoxa1 is rapidly upregulated by
ROH, RAL, and RA in P19 cells [12]. It is one of numerousHox genes regulated by retinol sig-
naling in the mammalian embryo [17] where its expression is essential for normal hindbrain
development and fetal survival [18]. In humans, homozygous mutations inHOXA1 are associ-
ated with defects in brainstem, cardiovascular, and cognitive development [19, 20]. Chemicals
that disrupt the retinol signaling pathway in this screen, therefore, have the potential to be tera-
togenic in rodents and humans.

In the original description of the screen [12], we reported that two phthalate diesters, DBuP
and DPnP, significantly interfered with the retinol signaling pathway while a third, DEHP, had
no apparent effect [11]. The monoester metabolite is thought to be the active form of PEs
responsible for reproductive toxicity [21] yet these two diesters tested positive in the screen.
Since PEs had not been shown previously to have an effect on retinol signaling, this unexpected
mode of action prompted us to carry out a more extensive analysis of PE effects on the RSP to
gain a better understanding of how members of this class of compounds affect the pathway.
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The goals of this study were: (1) to identify additional PE structures that interfere with the
pathway to determine whether active compounds share structural and/or physicochemical
properties that may provide insight into mechanisms of action in the P19 stem cells; (2) assess
the relative stabilities of PE structures in culture; (3) compare the inhibitory effects of diesters
with their cognate monoesters; (4) identify step(s) in the pathway that are inhibited by PEs;
and (5) determine if PE inhibition of retinol signaling is unique to the P19 cell or if another cell
type with a functional RSP is also affected.

Materials and Methods

Test Chemicals
For information on sources and purity of PEs used in this study, see S1 Table. Stock solutions
were prepared in DMSO at a concentration of 50 mM and stored in the vapor phase of liquid
nitrogen. Calculated values for logP, the physicochemical descriptor of lipophilicity (lipid solu-
bility), were obtained from the ChemSpider Web site (http://www.chemspider.com). Some PEs
were supplied as mixtures of isomers (S1 Table). The logP values used for these samples were
based on the compound name designated by the supplier.

Cell Culture and Assay Conditions
Mouse P19 pluripotent embryonal carcinoma cells [22] were obtained from the American
Type Culture Collection (ATCC, Manassas, VA) and cultured in MEMαmedium (Invitrogen,
Carlsbad, CA) supplemented with 10% FBS (ATCC). The serum used in this study was from
the same lot used previously [11] which had a retinol serum concentration of 73 nM; complete
medium containing 10% serum, therefore, had a background retinol concentration not greater
than 7.3 nM. All culture and assay conditions employed in the 96-well-format, P19-cell screen
used for detecting chemicals that interfere with the retinol signaling pathway, including the
MTT assay for cytotoxicity, direct cDNA synthesis from cell lysates, and quantitative real-time
PCR using GAPDH as the reference gene for normalizing relative changes in gene expression

Fig 1. (A) Major steps in the retinol signaling pathway of vertebrates. (B) Timeline for PE and ROH
additions and duration of exposures for the 7 h and 30 h screens. The initial PE concentration was 50 μM.
After the addition of ROH, the PE and ROH concentrations were 45 μM and 0.3 μM respectively. The initial and
final DMSO concentration was 0.5%. P19 cells were cultured in 96-well plates as described previously [11].

doi:10.1371/journal.pone.0161167.g001
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by the 2 -ΔΔCt method, have been described in detail previously (11). The rationale for the use
of a single PE test concentration of 45 μMwas given previously [11] and is restated hear.
Briefly, the screen was designed for prioritizing large numbers of chemicals for further studies
(including dose-response analysis) so it was decided to use a single concentration initially to
allow higher throughput. Citral was previously found to be a potent inhibitor (IC50 = 4.2 μM)
of ALDH1A/RALDH2, the enzyme that converts RAL to RA in P19 cells (12) so all chemicals
are initially screened at 45 μM, an approximately 10-fold higher concentration than the IC50

for citral, to allow detection of chemicals that are less potent than citral.
To ensure compound solubility in vitro, all PE stock solutions produced a final DMSO con-

centration of 0.4% in the medium. In the presence of added ROH, the final DMSO concentra-
tion was 0.5%. Untreated control cultures also contained 0.5% DMSO. The schedule of PE and
ROH additions for the 7 h and 30 h screens are indicated in Fig 1B.

Mouse C3H10T1/2 mesenchymal stem cells, obtained from ATCC, were cultured in BME
(Invitrogen) supplemented with 10% FBS (ATCC) as described previously [23] with the excep-
tion that the FBS was not heat-inactivated. Duplicate confluent monolayer cultures grown in
60-mm culture dishes containing 5 ml of medium were pre-treated for 1 h with DBuP or DBnP
stock solutions or with DMSO only (control cultures). ROH was then added to PE-containing
cultures and one set of DMSO-only cultures and incubation was continued for 6 h. During the
1st hr of culture, the final concentration of additions was: DMSO, 0.5% and DBuP or DBnP,
50 μM. After ROH addition (final concentration 0.33 μM), the PE concentration was 45 μM
for the remainder of the 6 hr culture period. At the end of the 7 h culture period, cells were
trypsinized, RNA was purified from pelleted cells, and RT-qPCR carried out as described previ-
ously [12]. Alp1 primers: 5’-aacagaagttcgctatctgcc-3’ and 5’-tgcccaagagagaaacctgc-3’.

Statistics
Data are presented as mean ± SEM on replicate cell cultures as indicated in the figure legends.
The statistical significance between Hoxa1 expression in cultures containing retinoid only and
cultures containing retinoid and PEs was estimated by the Student’s t test using two-tailed dis-
tribution and two-sample unequal variance.

Results

Effect of PEs on the RSP during Short-Term Exposure
Initially, 20 phthalate diesters representing a variety of structures were screened at a single con-
centration of 45 μM in the 7-h assay (Fig 1B). The compounds are arranged in Fig 2A accord-
ing to their relative inhibitory activity; chemical structures are shown in S1 Fig. No evidence
for cytotoxicity was detected in the MTT assay (data not shown). Of the 20 PEs, 10 inhibited
the retinol signaling pathway by 30% or greater. The most potent inhibitors, #s 16–20, con-
tained benzyl, cyclohexyl, or phenyl groups. These compounds clustered in a range of inhibi-
tory activity between 65 and 75%. No significant difference in inhibitory activity was observed
between phenyl groups in orthophthalate or isophthalate configurations (#s 16 and17, respec-
tively). PEs containing C4-C6 alkyl ester chains (#s 12–15) were also potent pathway inhibitors,
however, they were less potent than the PEs carrying ring structures.

Because different substituents can influence lipophilicity and, therefore, cellular uptake and
inhibitory activity, the data were plotted to determine the relationship between logP and path-
way inhibition (Fig 2B). Compounds with the highest inhibitory activity,>40% (#12–20), had
logP values between 4 and 7. For compounds that inhibited the pathway by approximately 50%
or greater (#13–20) the logP range narrowed to 4–6. PEs with very high lipid solubility (#s1, 4,
7–9) were ineffective pathway inhibitors as were the more water soluble compounds (#s 2, 3, 5,
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6, 10). PEs containing aryl or cycloalkane groups (#s 16–20) had similar pathway inhibitory
activity which is evident in the clustering shown in Fig 2B. This was also the case for the most
inhibitory alkyl esters (#s 13–15). An interesting linear relationship between increasing logP
and increasing pathway inhibitory activity was also observed (#s 3, 5, 6, 10, 11, 12).

Effect of PEs on the RSP during Long-Term Exposure
It was of interest to know the stability of the inhibitory response to these compounds in vitro;
e.g., is inhibitory activity lost during extended time in culture which may indicate cellular
metabolism or chemical instability, and what chemical structures give a more sustained

Fig 2. (A) Effect of PEs on the induction of Hoxa1 by ROH in the 7 h screen.Hoxa1 expression in PE-treated cultures
was quantitated by RT-qPCR on cell lysates [11] and normalized to Hoxa1 expression in ROH-only treated control cultures.
The data are arranged according to increasing relative inhibitory activity. Values are Means ± SEM; n� 8. (B) Relationship
between logP and RSP inhibition by PEs for data shown in A. Horizontal dashed lines bracket the logP range
containing the most inhibitory PEs. LogPs are calculated values obtained from the ChemSpider web site (http://www.
chemspider.com).

doi:10.1371/journal.pone.0161167.g002
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response than others? To assess the effects of longer exposure in culture, cells were exposed for
30 h to the most potent inhibitory PEs (#s12-20) identified in Fig 2. Along with the 30 h expo-
sure assay, we repeated the 7 h exposure assay for PE #s 12–20 for comparison with data in Fig
2 to assess reproducibility. Although DEHP did not significantly inhibit the pathway (Fig 2), it
and dihexyl phthalate (DHxP) were added to compare with the effect of Di-HxP (# 12) which
inhibited the pathway by ca. 40% (Fig 2). Dibenzyl phthalate (DBnP) was also added for com-
parison to BnBuP (# 20). The data for the 7 h and 30 h exposure assays are shown in Fig 3. The
same compound numbering used in Fig 2 is used in Fig 3. Compounds are arranged in Fig 3A
according to their relative inhibitory activity and that format is maintained for the 30 h assay
(Fig 3B). As in the first 7 h screen (Fig 2), PEs containing aryl and cycloalkane groups were the
most potent pathway inhibitors (Fig 3A). The extent of inhibition, clustering around 70%, by
these compounds was the same as that seen in Fig 2. The aryl-containing diester, DBnP, clus-
tered with this group (Fig 3A). The alkyl esters (#s12-15) also showed the similar inhibitory
effect (Fig 3A) seen in Fig 2. Long-term exposure (30 h) to PEs showed the same inhibitory
activity for most compounds with the notable exception of the butyl phthalates, DBuP and Di-
BuP, and the phenyl phthalates, DPhP and DPhIP. Although these four PEs showed no evi-
dence of cytotoxicity in the MTT assay, they showed significant loss of inhibitory activity after
prolonged culture suggesting that they may be less stable in culture and/or are metabolized by
the cells. With the exception of these four PEs and DCyP, which did show evidence of cytotox-
icity in the MTT assay, the other compounds gave essentially the same level of pathway inhibi-
tion during the 30 h culture period as during 7h culture.

Relative Effects of Phthalate Monoesters and Diesters on the RSP
PE-induced malformations in the male rat reproductive system are thought to be caused by the
monoester metabolite of the diester compound [21]. In this in vitro test system, however, some
known PE reproductive toxicants were active inhibitors of retinol signaling as diesters (Figs 2
and 3) while some were inactive. DEHP is a potent reproductive toxicant in male rats exposed
in utero during late gestation but was inactive as an inhibitor of the RSP in this in vitro test sys-
tem (Figs 2 and 3). It was of interest, therefore, to compare the relative inhibitory activities of
some phthalate diesters with their cognate monoesters.

A comparison of the effects of DEHP and its monoester, MEHP, is shown in Fig 4A.
Although DEHP did not cause significant inhibition, MEHP significantly inhibited the path-
way during both short- and long-term exposure periods. Unlike DEHP, the diester DHxP
showed limited, but significant, pathway inhibition during both short-term and long-term
exposure, as did its monoester, MHxP (Fig 4B). Although the monoester appeared to be more
inhibitory than the diester, the difference was not significant. Again, there was no apparent dif-
ference during short or long-term culture in inhibitory activity by the diester or monoester.
The levels of pathway inhibition by the C6-containing alkyl chain compounds MHxP and Di-
HxP (cpd #12 in Fig 2A and 2B), were comparable (approximately 40%) but were less than the
inhibition caused by C6-containing MEHP which carries an ethyl group on the two carbon of
the alkyl chain.

A comparison of the inhibitory activities of DBuP and its monoester, MBuP, showed the
monoester to be inactive as an inhibitor of the RSP (Fig 4C). Conversely, DBuP, significantly
inhibited the pathway during short-term exposure but lost that ability after prolonged culture
suggesting metabolism of the diester during long-term culture (Fig 4C). It is again noted that
the logP for DBuP falls within the range occupied by other inhibitors of the RSP while the inac-
tive monoester falls outside of this range. The loss of inhibitory activity by DBuP during long-
term culture was also observed for Di-BuP, DPhP and DPhIP (Fig 3).

Phthalate Disruption of Retinol Signaling
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Both DBnP and MBnP significantly inhibited the pathway during short- and long-term cul-
ture (Fig 4D). The difference in inhibitory activity between the diester and monoester during
short-term culture was small with the diester slightly more inhibitory. This difference increased
markedly during long-term culture suggesting metabolism of the monoester to inactive metab-
olites. Again we note the correlation between logP and RSP inhibitory activity. It is worth not-
ing that, with the exception of DHxP and MHxP (Fig 4B), the most inhibitory PE of each
diester- monoester pair in Fig 4 had a logP value between four and six while the value of its less
inhibitory partner fell considerably outside of this range.

Fig 3. Comparison of short-term and long-term effects of PEs on the induction of Hoxa1 expression by
ROH. The same compound numbering used in Fig 2 is used in Fig 3. Compounds are arranged in Fig 3A according
to their relative inhibitory activity and that format is maintained for the 30 h assay (Fig 3B). The screens were carried
out on PE #s 1, 12–20 (see Fig 2A) plus DHxP and DBnP which were not screened in Fig 2 and, therefore, are not
numbered. (A) 7 h screen; (B) 30 h screen; n = 4.

doi:10.1371/journal.pone.0161167.g003
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Phthalate-Sensitive Steps in the RSP
To elucidate the possible mechanisms through which PEs interfere with the RSP, experiments
were carried out to identify where in the pathway PEs interfere. Two PE structures, representa-
tive of the two classes of PEs screened here, the alkyl diester, DBuP, and the aryl diester, DBnP,
were tested as inhibitors ofHoxa1 induction by ROH, RAL, and RA, to determine if PE-sensi-
tive steps in the RSP could be identified. To account for the approximately 150-fold greater
potency of RA as an inducer of Hoxa1 expression compared to ROH[12] and RAL (Chen and
Reese, unpublished data), the concentrations of the three retinoids were adjusted to give the
same increase (approximately 30-fold) in Hoxa1 expression during a 6 h treatment period.

Consistent with data already shown (see Figs 3, 4C and 4D), DBuP and DBnP were potent
inhibitors of ROH-induced Hoxa1 expression (Fig 5A) indicating that both compounds target
essential processes associated with the first oxidative step in the retinol signaling pathway.
When RAL was used to induce Hoxa1 expression, DBuP did not significantly inhibit induction
indicating that the target (or targets) of DBuP inhibitory action is associated primarily, or
exclusively, with the first step in the pathway (Fig 5B). DBnP, however, significantly inhibited
induction ofHoxa1 by RAL suggesting that this aryl-containing PE may have additional tar-
gets. Finally, neither compound interfered with induction by RA indicating that neither

Fig 4. Comparison of the effects of phthalate diesters and cognatemonoesters on the induction ofHoxa1 expression by ROH. P values for
phthalate effects on Hoxa1 expression compared to +ROH controls are indicated at the top of each bar. n = 4.

doi:10.1371/journal.pone.0161167.g004
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compound interferes with post RA synthesis events that are necessary for the upregulation of
Hoxa1 expression (Fig 5C). The observation that the level of Hoxa1 expression that was
induced by RA in the presence of DBuP was greater than that induced by RA alone has been
observed with some butyl-containing compounds (see Discussion).

DBuP and DBnP Interfere with the RSP in C3H10T1/2 Mesenchymal
Stem Cells
An additional cell type was evaluated to determine if the effects of PEs on the RSP in pluripotent
P19 cells is unique to that cell type or whether other cell types give a similar response to PEs. The
multipotent mesenchymal stem cell, C3H10T1/2 [24], which differs considerably from the plu-
ripotent P19 cell in differentiation potential, can differentiate into a number of mesodermal cell
types including osteoblasts, chondrocytes, adipocytes and myocytes [25]. The osteoblast marker
enzyme, tissue nonspecific alkaline phosphatase (ALP1), which is essential for bone mineraliza-
tion, is induced in C3H10T1/2 cells by RA [23]. It is not known, however, if this cell line has a
RSP and will support the induction of Alp1mRNA synthesis by ROH.We tested the ability of
ROH to induce Alp1 in this cell line, which would be evidence for a RSP, and whether DBuP
and/or DBnP interfere with induction, which is diagnostic of PE interference with the RSP. ROH
induced an approximately 20-fold increase in Alp1mRNA expression during a 6 h treatment
period and both PEs significantly inhibited this increase (Fig 6) indicating that the C3H10T1/2
cell, like the P19 cell, has a functional RSP which can be inhibited by PEs.

Discussion
In vertebrate species, a tightly regulated RSP is essential for normal embryonic development
and maintenance of cellular phenotype in adult tissues. Disruption of the pathway can be toxic

Fig 5. Effects of DBuP and DBnP onHoxa1 induction by ROH, RAL, and RA. The final ROH and RAL
concentration were 0.3 μM and the RA concentration was 2.0 nM. n = 4.

doi:10.1371/journal.pone.0161167.g005
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Fig 6. Effects of DBuP and DBnP on the induction of Alp1 expression by ROH in C3H10T1/2 cells. 7 h
screen. The final PE and ROH concentrations were 45 μM and 0.3 μM respectively. n = 2.

doi:10.1371/journal.pone.0161167.g006
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to the fetus and adult organism. Using an in vitro screen developed for detecting chemicals
that interfere with the RSP [11], we have identified multiple PE structures that significantly dis-
rupt the pathway. Of the 26 mono- and di-esters screened in this study, 13 inhibited the path-
way by 40% or more. PEs with the highest inhibitory activities shared some structural and
physiochemical features. They contained either C4-C6 alkyl ester chains or esters with aryl or
cycloalkane groups. With the exception of MBnP, they also had logP values that fell in a range
between 4 and 7; for PEs that inhibited the pathway by approximately 50% or greater, the logP
range narrowed to 4–6. It should be noted that of the PEs that fell within this range, molecules
containing aryl or cycloalkane esters inhibited the pathway more than PEs with alkyl esters
suggesting that, while logP is an important descriptor of pathway inhibitory activity in this in
vitro system, structure may be a more critical factor.

The significance of the association between chemical structure, lipophilicity, and pathway
inhibitory activity is unknown. PEs did not appear to interfere directly with the ability of ROH
(logP = 6.84) to traverse the plasma membrane of P19 cells since RA with the same logP (6.83)
induced the same level of Hoxa1expression in the presence or absence of DBuP or DBnP indi-
cating that neither PE interfered with RA uptake and likely did not interfere with ROH either.
Inside the cell, ROH binds tightly to the soluble cellular retinol-binding protein, RBP1/CRBP1
[26], the product of the Rbp1 gene. Because of its high affinity for ROH, RBP1 has been pro-
posed to facilitate cellular uptake and retention of ROH [27]. It also has been proposed to func-
tion as a chaperone for controlling enzyme access to ROH [27]. Recent data show a correlation
between reduced expression of RBP1and reduced synthesis of RA in human and a mouse
model of endometriosis [28] indicating the dependence of RA synthesis on cellular levels of
RBP1. It is possible that inhibitory PEs share a combination of structural and physicochemical
properties that facilitate access to cellular compartments, for example binding to RBP1, where
they can interfere with ROHmetabolism. Identification of the subcellular site(s) occupied by
PEs in the P19 cell may help to elucidate the mechanism(s) of RSP inhibition by PEs and add
to a better understanding of the pathway itself.

A more extensive analysis of PEs will be needed to determine if the most potent inhibitors
of the pathway (#s 12–20, MEHP, and MBnP) all act on the first step or whether some, like
DBnP, affect cellular processes associated with the second oxidative step. It is clear from this
study, however, that both DBuP and DBnP interfered with the synthesis of RA (Fig 5A and 5B)
and that neither compound interfered with post RA-synthesis events necessary for gene tran-
scription (Fig 5C). It is possible that PEs may be identified in the future that interfere with post
RA synthesis events and, therefore, would be detected by probing cell cultures with RA. How-
ever, it is worth noting, in light of the overwhelming number of in vitro studies that use RA as
a probe relative to studies that use ROH, that an adverse effect of a chemical caused by inhibi-
tion of RA synthesis is not likely to be detected using RA as a probe and may only be detectable
using ROH.

The enhanced expression ofHoxa1 above control values that was induced by DBuP but not
by DBnP (see Fig 5C) has been seen with other butyrate-containing compounds that have been
tested in this screen (Chen and Reese unpublished). While this phenomenon may have other
plausible explanations, we postulate that the C4 compound, butyrate, a known inhibitor of
class I histone deacetylases (HDAC) [29], is particularly relevant to the DBuP effect observed
here. Large co-repressor complexes bind to unliganded nuclear receptors, e.g., the retinoic acid
receptors (RAR-RXR) in the absence of RA, and recruit class I histone deacetylases (HDAC) to
the complex. HDACs remove acetyl groups from histone tails in the chromatin complex caus-
ing chromatin compaction and transcriptional repression [30, 31]. It is possible, therefore, that
the two C4 chains of DBuP may inhibit HDAC enzyme activity associated with the co-repres-
sor complex. This would cause transcriptional de-repression thus enhancing the level ofHoxa1

Phthalate Disruption of Retinol Signaling

PLOS ONE | DOI:10.1371/journal.pone.0161167 August 17, 2016 11 / 18



expression above that initiated by the concentration of RA used in this study (Fig 5C) which
was less than the RA concentration required for maximal expression[12]. We have observed
that butyrate, and another HDAC1 inhibitor, tricostatin A, significantly upregulate the expres-
sion ofHox genes, including Hoxa1, in P19 cells (Reese, unpublished data). It should also be
pointed out that if DBuP-induced overexpression of Hoxa1 observed in this study is caused by
butyrate, then other members of the nuclear receptor family may be similarly affected by
C4-containing PEs.

Although DEHP did not significantly inhibit the pathway, its monoester, MEHP was inhibi-
tory suggesting that P19 cells lack the ability to metabolize DEHP to MEHP, even during long-
term culture and that the monoester, or a metabolite, is an inhibitor of the retinol signaling
pathway. It is interesting that MEHP inhibitory activity was the same for both short-term and
long-term culture period suggesting that MEHP or an active metabolite are stable in culture for
extended periods of time. It is notable that the logP value (4.66) for MEHP falls within the
range occupied by the most potent PE inhibitors of the RSP (Fig 2B) while the value for the
inactive DEHP falls considerably outside of this range. This was not the case with other diesters
(#s 12–20 and DBnP) which significantly inhibited the pathway. Whether these diesters inter-
fered directly with the pathway or first required metabolism to the monoester, or a metabolite,
will need to be answered by metabolite analysis of PE-exposed P19 cells. During short-term
culture, DBuP appeared to act directly to interfere with the pathway since its monoester metab-
olite, MBuP, was not inhibitory. Furthermore, after long-term culture DBuP lost inhibitory
activity suggesting that it was metabolized to the non-inhibitory monoester or another metabo-
lite. The lack of pathway inhibitory activity by MBuP in this in vitro system is contrary to
results from in vivo studies which conclude that the monoester is the active form responsible
for the effects of DBuP [32]. This lack of inhibition by MBuP may be related to factors unique
to the in vitro system and further emphasizes the importance of metabolite analysis in under-
standing how phthalates disrupt the RSP in vitro which also may shed light on in vivo mecha-
nisms. Since DPhP and DPhIP also lost much of their inhibitory activity during long-term
culture, it would be interesting to know if their monoesters, like MBuP, lack inhibitory activity
and if in utero exposure to DPhP and DPhIP cause reproductive system malformations in the
male rat fetus.

RA was shown previously to be a potent inducer of ALP1 (tissue non-specific alkaline phos-
phatase) in mouse C3H10T1/2 cells [23]. It was not known, however, if ROH could induce
Alp1mRNA synthesis in this cell line which would be evidence for metabolism of ROH to RA
and the presence of a functional RSP in this multipotent mesenchymal stem cell. Both DBuP
and DBnP significantly inhibited the ROH-induced synthesis of Alp1 in C3H10T1/2 cells in
this study. The inhibition of the RSP by PEs, therefore, is not unique to the P19 cell and proba-
bly occurs in other cell types that have a functioning pathway in the embryo and in fully differ-
entiated cells in adult organisms.

The inhibition of RA synthesis caused by PEs in this in vitro study is the functional equiva-
lent of VAD. Vitamin A deficiency can be caused by depriving an organism of vitamin A
needed for RA synthesis or by inhibiting the synthesis of RA from vitamin A. In both cases, RA
deficiency is the basis of malformations in the developing embryo [13, 14]. It has been known
for almost a century that VAD causes a spectrum of reproductive system malformations,
including dysgenesis of the seminiferous tubules, seminal vesicles, epididymis, prostate, genital
tubercle (hypospadias), and cryptorchidism, in the reproductive system of male rat fetuses
[33–35]. Next to eye defects, malformations of the genital ducts were the most frequently
observed adverse effects of VAD[36]. One study [35] described the effects of VAD as causing
complete testicular atrophy in the absence of any impairment of testicular circulation or
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supporting tissues indicating that the adverse effect on testis development was directly on the
testis and not an indirect effect.

The types of adverse effects caused by VAD and PEs in the development of male rat repro-
ductive system are strikingly similar. In addition, PEs found to be the most potent inhibitors of
the RSP in this in vitro study (DPnP, DCyP, DBuP, BnBuP, Di-BuP) are also some of the most
effective inducers of malformations in the male rat reproductive system [37–41]. This correla-
tion between PEs that interfere with the pathway in vitro and PEs that cause malformations in
utero may involve more than the five PEs listed here since four additional potent in vitro inhib-
itors of the pathway, DBnP, DPhP, DPhIP, and Cyi-BuP, have not, to our knowledge, been
tested in vivo. Moreover, Cyi-BuP is closely related structurally to DCyP which inhibits the
pathway in vitro and causes malformations in utero [38]. In light of the malformations caused
by VAD and PEs in the male rat, it is also worth noting that the ovaries of female rats from
VADmothers did not appear to be adversely affected [35, 36] nor apparently were the ovaries
of females exposed in utero to Pes [9]. The significance of this difference between the response
of male and female rats to both VAD and PEs is unknown.

In addition to the adverse effects of VAD on the development of the male reproductive sys-
tem described in previous studies, recent mechanistic studies provide additional evidence for
the important role RA plays in the development and maintenance of the male reproductive sys-
tem. RA has been shown to play a role in Sertoli cell differentiation and function [42, 43] and
to regulate the expression of Stra8 (stimulated by retinoic acid gene 8), the gene that controls
entry into meiosis and, therefore, is essential for sperm maturation [44]. Recent studies also
show that RA is necessary for the development of the male genital tubercle, the anlage of the
penis [45]. Furthermore, it may play a role in testicular decent by regulating the expression of
Rxfp2/Lgr8 [46], the receptor for the Leydig cell hormone, INSL3, thought to be necessary for
testicular decent [6]. In addition, Rdh10 and Aldh1a2/Raldh2, the genes that code for the
enzymes that catalyze the first and second oxidative steps in RA synthesis, respectively, show
enhanced stage-specific patterns of expression in the genital tubercle, Wolffian duct, and
Wolffian duct-derived tissues during mouse embryogenesis [45, 47–49] further highlighting
the importance of RA synthesis in the development of these male reproductive structures.

We propose, therefore, that the reproductive system malformations seen in male rat fetuses
exposed in utero to PEs are due, in part, to disruption of the RSP and resultant inhibition of
RA synthesis. This is based on (1) the similarities in the types of malformations induced in the
male reproductive system in utero by both PEs and VAD; (2) data presented here showing that
PEs cause the equivalent of VAD in vitro by interfering with the synthesis of RA; (3) PEs that
are the most potent inhibitors of RA synthesis in vitro are also the most effective inducers of
reproductive system malformations in utero; and (4) mechanistic studies documenting the
essential role that RA synthesis plays in male reproductive system development and function.
This hypothesis is further supported by studies showing that in utero exposure to DBuP during
critical periods in development led to malformations, suggestive of homeotic transformations,
in the axial skeleton of male and female rats [32] and that a VAD diet also causes a pattern of
homeotic transformations in the rat axial skeleton [33, 50]. It should also be noted that exces-
sive levels of RA also induce distinct patterns of homeotic transformations in the mouse axial
skeleton [17, 51]. The fact that PEs cause malformations in two organ systems, reproductive
and skeletal, that are dependent on RA for normal development suggests that PEs have the
potential to induce the equivalent of VAD in other embryonic or adult cells that require RA
synthesis for maintenance of phenotype. Fig 7 is a summary depicting the relationships
between malformations caused by phthalates and VAD discussed above.

We are not proposing that PE-induced VAD is an alternative mechanism for the cause of
male reproductive system malformations. Nor do we suggest that lowered levels of T are not a
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cause of malformations in male reproductive tissues. We think, however, that PE inhibition of
RA synthesis during early stages of male reproductive system development may contribute to
the severity or extent of malformations caused by low T levels. RA can play permissive and
instructive roles in development. It is thought to create permissive conditions for forelimb
induction [52] and given the mechanistic similarity in strategies used in the development of
limbs and external genitalia [53], RA also may play a similar role in the development of some
male reproductive structures. During development of the mouse genital tubercle (GT), RA sig-
naling plays a role in regulating the Sonic hedgehog signaling pathway [45] which is essential
for both initial and sexually dimorphic development of the male external genitalia [54]. Hedge-
hog signaling has been suggested to promote masculinization of the external genitalia by facili-
tating androgen responsiveness in the GT mesenchyme and it should be noted that androgen

Fig 7. Synopsis of connections between fetal malformations induced by PEs and RA deficiency.Gestational exposure to some phthalates or to a VAD
(vitamin A deficient/RA deficient) diet cause a characteristic spectrum of malformations (dysgenesis of seminiferous tubules, seminal vesicles, epididymis,
prostate, genital tubercle/hypospadias, and cryptorchidism) in the reproductive system of the male rat fetus; phthalates or VAD also cause malformations in
the axial skeleton of both sexes. PE-mediated fetal testosterone (T) deficiency is generally considered to be the cause of male reproductive system
malformations. Given that PEs also caused cellular RA deficiency in this in vitro study, PE-mediated RA deficiency is hypothesized (indicated in red) to be an
additional cause of malformations in the male rat reproductive system and axial skeleton in utero.

doi:10.1371/journal.pone.0161167.g007

Phthalate Disruption of Retinol Signaling

PLOS ONE | DOI:10.1371/journal.pone.0161167 August 17, 2016 14 / 18



alone does not appear to be sufficient for GT development in the absence of RA-regulated Shh
signaling [54].

If PE-induced malformations in the male rat reproductive system are caused, in part, by the
inhibition of RA synthesis, it may be possible to lessen these effects by administering RA to PE-
treated pregnant animals. RA can support the growth of rats raised on a vitamin A deficient
diet [33] and RA has been shown to rescue the adverse effects of experimentally induced VAD
[55, 56]. Evidence for amelioration of the adverse effects of PEs by RA supplementation in the
rat model may have therapeutic relevance to studies in humans that show an association
between PE exposure and adverse health effects in cells and tissues that are dependent on reti-
nol signaling for maintenance of normal phenotype.
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