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Abstract

Minnelide/Triptolide (TL) has recently emerged as a potent anticancer drug in non-small cell
lung cancer (NSCLC). However, the precise mechanism of its action remains ambiguous.
In this study, we elucidated the molecular basis for TL-induced cell death in context to p53
status. Cell death was attributed to dysfunction of mitochondrial bioenergetics in p53-defi-
cient cells, which was characterized by decreased mitochondrial respiration, steady-state
ATP level and membrane potential, but augmented reactive oxygen species (ROS).
Increased ROS production resulted in oxidative stress in TL-treated cells. This was exhib-
ited by elevated nuclear levels of a redox-sensitive transcriptional factor, NF-E2-related fac-
tor-2 (NRF2), along with diminished cellular glutathione (GSH) content. We further
demonstrated that in the absence of p53, TL blunted the expression of mitochondrial SIRT3
triggering increased acetylation of NDUAF9 and succinate dehydrogenase, components of
complexes | and Il of the electron transport chain (ETC). TL-mediated hyperacetylation of
complexes | and Il proteins and these complexes displayed decreased enzymatic activities.
We also provide the evidence that P53 regulate steady-state level of SIRT3 through Protea-
some-Pathway. Finally, forced overexpression of Sirt3, but not deacetylase-deficient
mutant of Sirt3 (H243Y)), restored the deleterious effect of TL on p53-deficient cells by res-
cuing mitochondrial bioenergetics. On contrary, Sirt3 deficiency in the background of wild-
type p53 triggered TL-induced mitochondrial impairment that echoed TL effect in p53-defi-
ceint cells. These findings illustrate a novel mechanism by which TL exerts its potent effects
on mitochondrial function and ultimately the viability of NSCLC tumor.
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Introduction

Minnelide/Triptolide (TL), a diterpenoid triepoxide, was first extracted from a traditional Chi-
nese Médicinal plant Tripterygium wilfordii Hook For Thunder God Vine [1]. It has been well
documented that TL possesses a broad-spectrum therapeutic potential because of its anti-
inflammatory, immunosuppressive, and anti-tumor activities [2]. Therefore, its cytotoxic effect
has been demonstrated in a wide variety of epithelial and hematological malignancies, includ-
ing pancreatic [3, 4], gastric [5], colorectal cancer cells [6], as well as in neuroblastoma [7, 8],
and NSCLC [9, 10]. In addition, TL has been shown to be the most potent inhibitor of lung
inflammation in acute lung injury models [11-13]. TL achieves these beneficial properties by
regulating multiple key proteins. For example, TL inhibits heat shock proteins, survivin, AKT,
c-myc and pRB [14-17]. Because TL is only soluble in organic solvent, a water-soluble deriva-
tive has been developed called Minnelide [18]. Recently, we have provided evidence that Min-
nelide/TL significantly reduced the expression of pro-survival and anti-apoptotic genes,
whereas up-regulated pro-apoptotic genes in non-small cell lung carcinoma (NSCLC) [10] via
mitigating the NF-kB signaling. Despite considerable advances in research for TL in the field of
cancer, the precise mechanism of how TL modulates cytotoxicity in NSCLC is still incom-
pletely defined.

Mitochondria generate cellular energy in the form of ATP utilizing substrates from tricar-
boxylic acid (TCA) which drive oxidative phosphorylation (OXPHOS) [19]. OXPHOS is cata-
lyzed by the electron transport chain, which consists of five mitochondrial protein complexes
(I-V) and is the major ATP producer under physiologic conditions. While complexes I-IV
expedite the reduction of oxygen and the translocation of H" from the matrix to the intermem-
brane space to generate a proton gradient, complex V (F;Fy-ATP-synthase) utilizes these pro-
tons to synthesize ATP [20]. In addition to ATP production, mitochondria also mediate cell
death and produce reactive oxygen species (ROS), which can be harmful for the cells if pro-
duced excessively [21]. In cancer cells, rapidly growing malignant cells are thought to constitu-
tively switch from OXPHOS to glycolysis. In recent years, substantial efforts have been
directed towards new anticancer drugs that target OXPHOS and glycolysis in rapidly growing
cancer cells. In this direction, two approaches have been proposed. The first approach is to acti-
vate OXPHOS leading to accumulation of ROS and subsequent death [22]. In the second
approach, drug treatment of cancer cells decreases both glycolysis and OXPHOS to induce an
overall energy deficiency leading to death [23].

In mitochondria, several ETC components are modified by post-translational modifications
(PTMs). Such modifications of mitochondrial proteins regulate their activities, stability and
subcellular localization [24]. Among these modifications, reversible acetylation of mitochon-
drial protein is emerging as a major PTM and is regulated by acetyltransferases and deacety-
lases [25, 26]. Recently, the class III histone deacetylases, the Sirtuins, have appeared as major
deacetylases [27, 28]. There are seven mammalian sirtuins: Sirt 1,6 and 7 are localized to the
nucleus; Sirt 2 is mainly in cytoplasm; whereas Sirt 3,4 and 5 are prominently in mitochondria
[28]. Given the fact that Sirt3-deficient mice (but not Sirt4 or 5) display extensive hyperacetyla-
tion of mitochondrial proteins, Sirt3 seems to be the major mitochondrial deacetylase [29-31].
Sirt3 regulates mitochondrial respiration and ATP production [32]. Mechanistically, Sirt3 con-
trols the widespread acetylation of mitochondrial proteins including the subunits of electron
transport chain (ETC) that leads to altered activities of these complexes [32-34]. Recent studies
have emphasized the ability of Sirt3 to protect cells from oxidative damage by regulating anti-
oxidant proteins, superoxide dismutase 2 (SOD2), catalase and isocitrate dehydrogenase-2
(IDSH2) suggesting a crucial role of Sirt3 in regulating ROS homeostasis [8, 35]. Given the fact
that mitochondrial ROS-mediated oxidative stress plays a major role in cancer, Sirt3 may
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indeed significantly impact tumor proliferation. Therefore, agents that modulate Sirt3 function
may have some potential therapeutic benefits.

The p53 tumor suppressor gene is a transcription factor that is induced and activated in
response to various cellular stresses. The functional inactivation of p53 is one of the most fre-
quent molecular events of human cancer [36]. Therefore, unprecedented efforts have been
devoted over the last many years to examine the signaling pathway(s) by which p53 exerts its
anti-tumor effect. The growing interest in p53 is due to multiple reasons. For example, genetic
inactivation of p53 is the leading cause of all malignancies [36]. A dysfunctional p53 pathway
has been linked with increased resistance to chemo- and radiotherapy with increased genomic
instability [37, 38]. In recent years multiple therapeutic approaches have been developed based
on the fact that p53-depleted malignant cells demonstrated defective cell cycle regulation. For
instance, cancer cells deficient in p53 are more prone to enter the S and M phase of cell cycle in
response to DNA damaging agents. Therefore, various drugs have been proven to be more
cytotoxic to p53-deficient cells as compared to their wild type counterparts [39]. P53 also plays
a key role in mitochondrial energy metabolism by regulating metabolic events [40]. P53 can
regulate OXPHOS through the modulation of complex activities. In addition, p53 has been
documented to regulate glycolysis [40].

Intrigued by the possibility that certain drugs exert their cytotoxic effect in cancer cells by
targeting mitochondrial function, we hypothesized that TL-mediated cellular toxicity in
NSCLC is due to dysfunctional mitochondria and this effect was p53 dependent.

Materials and Methods
Cell culture and reagents

A549, NCI-H2009, NCI-H460, H1299 and BEAS-2B were obtained from ATCC. HCT116 cells
(p53™* and p537") were a gift from Dr. Bert Vogelstein (John Hopkins Institute, Baltimore,
USA). Myc-tagged Sirt3 plasmids were kind gift from Dr. Toren Finkel (NHLBI, NIH,
Bethesda, MD). P53 expression plasmids has been described before [41].Antibodies used were:
B-actin, p53-DO1, NRF2, Citrate Synthase and HO-1 from Santa Cruz Biotechnology (Santa
Cruz, CA); Anti-hNDFA9, Anti-SDHA, Anti-NQO1; Anti-MSH2 and anti-Cox IV from
Abcam, USA; Anti-acetylated lysine and SIRT3 antibodies from Cell Signaling, USA; Anti-
SOD2 antibody from Millipore, USA; Anti-SKP2 from Bethyl Laboratory, USA. Chemicals
related to complexes assays, MG132, Cycloheximide and Mito-TEMPO were purchased from
Sigma- Aldrich, US. Stock solution of MG132 and mito-TEMPO were prepared in DMSO (20
mM), whereas for cycloheximde 50 pig/ml solution was prepared in DMSO.

Triptolide (TL) was purchased from Calbiochem, NJ, USA and was dissolved in Dimethyl
sulfoxide (DMSO from Sigma-Aldrich, St. Louis, MO, USA) to a stock solution of 1 mg/ml.
Minnelide was a gift of Dr. Ashok Saluja (University of Minnesota, Minneapolis, MN). Cells
were stimulated with indicated doses of TL in complete media. DMSO alone was also included
to serve as a control.

Cell Proliferation Assay

Cell viability was determined by using CYQUANT cell proliferation assay kit (Life Technolo-
gies, USA) according to manufacturer protocol.

Seahorse XF-24 Metabolic Flux Analysis

Cells were treated with indicated amounts of TL for 4 hours and were subjected to measure-
ment for oxygen consumption rate using an XF Analyzer (Seahorse Biosciences, USA). Non-
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ATP linked, maximal and non-mitochondrial respiration of the cells were measured by
sequentially adding Oligomycin (2 (M), Carbonyl cyanide-p-trifluromethoxyphenylhydrazone
(FCCP 0.25 uM) and Antimycin A + Rotenone (2.5 uM) respectively. In some experiment,
cells were first transiently transfected with indicated plasmids or siRNA before stimulating
with TL and then subjected for OCR analysis.

ATP measurement

ATP was measured using an ENLITEN ATP assay system from Promega, USA. Briefly, cells
were harvested in ice-cold ATP buffer [20 mM Tris (pH 7.5), 25 mM NaCl, 2.5 mM EDTA,
0.5% Nonidet P-40]. After being incubated on ice for 10 minutes, samples were centrifuged at
13,000 g for 15 minutes. Lysates were analyzed for ATP content using luminometer, normal-
ized with protein amount and were presented as fold change over control vehicle-treated cells.

Mitochondrial Membrane Potential (AW)

Following stimulation with TL, cells were processed to measure mitochondrial membrane
potential using the JC-1 mitochondrial membrane potential assay kit (Cayman, USA) accord-
ing to manufacturer’s protocol. Briefly, cells were labeled with JC1 dye at 370C incubator for
15 minutes. JC1 fluorescence was measured first for J-aggregates with excitation/emission at
535nm/595 and then for J-monomer with excitation/emission at 485nm/535. The data was
presented as ratio J-aggregates to J-monomer which has been used as an indicator of cell health

Mitochondrial ETC Enzyme Complex Activities

Unstimulated and TL treated cells were harvested in STE buffer (250 mM sucrose, 10 mM Tris,
1 mM EGTA, pH 7.4) at 4°C. The enzyme activities of complexes I, II, IV and citrate synthase
were measured by spectrophotometric kinetic assay as described before [42, 43].

Measurement of Mitochondrial Reactive Oxygen Species (MtROS)

mtROS production was measured in control and treated cells using MitoSOX Red Mitochon-
drial superoxide indicator (Invitrogen, Carlsbad, CA; 5 uM) according to the manufacturer’s
recommendation. Briefly, cells were washed in 1XHBSS (with Calcium and Magnesium) and
labeled with MitoSOX. The fluorescent intensity (510/580 nm) was measured kinetically as
described before and was normalized to the amount of protein used in the assay [42].

Measurement of Glutathione levels

Glutathione (GSH) levels were measured in cell lysates from control or TL-stimulated cells
using Glutathione Assay Kit from Cayman Chemical (USA) according to manufacturer’s rec-
ommendation. Briefly, cells were washed in cold PBS and were lysed using 1XGSH MES buffer
on ice for 10 minutes. Cell lysates were centrifuged at 10,000xg for 15 minutes at 4°C and the
supernatant was deproteinated using equal amount of 5% Metaphosphoric acid. After centrifu-
gation, the resulting supernatant was neutralized with TEAM reagent (50 pl/ml) for the mea-
surement of total glutathione. The GSH content was normalized to amount of protein and
expressed as relative levels over DMSO treated cells.

Measurement of Superoxide dismutase (SOD) activity

The SOD activity was measured in cell lysates from control or TL-stimulated cells using Superox-
ide Dismuatse Assay Kit from Cayman Chemicals (USA) according to manufacturer’s protocol.
Briefly, cells were harvested in STE buffer (250 mM sucrose, 10 mM Tris, 1 mM EGTA, pH 7.4)
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and cells were homogenized in cold. Cell lysates were centrifuged at 1500Xg for 10 minutes at 4
degree C and activity was measured in cell lysates. SOD activity was expressed in U/mg of
protein.

siRNA-mediated Knockdown of Sirt3

Knockdown p53 and Sirt3 was performed as previously described [41]. Cells were plated 1 day
before transfection in antibiotic-free media. On the day of transfection, 20 nM of specific siRNA
targeting specific gene of interest (Sirt3, p53) or nonspecific siRNA was incubated with Lipofecta-
mine 2000 (Invitrogen, CA) at room temperature for 30 min and transfection mixture was added
in cells in Opti-MEM media. Three hour later, the medium was replaced by complete media and
cultured for an additional 48 h. The knocked-down genes were confirmed by immunoblotting.
Stealth siRNA against human p53 and Sirt3 along with the negative control-pool were purchased
from Life Sciences, USA. The sequences of siRNA are: 5’ — CCUGCAGGAUGUAGCUGAG
CUGAUU-3" , 5'~AAUCAGCUCAGCUACAUC CUGCAGG-3'.

Transient Transfection Reporter Assays

Cells were plated at a density of 5x10* per well in 24-well plates 1 day before transfection.
Transient transfection was performed using Lipofectamine2000. A total 1 to 2 pg of plasmid
DNA was used in transfections, and total DNA was kept constant. Cotransfected Renilla lucif-
erase was used as an internal control. Cells were harvested 24 hours after transfection, firefly
and Renilla luciferase activity was measured using a dual luciferase reporter kit (Promega,
USA), and firefly values were normalized to Renilla values in each sample.

Immunoblotting and Immunoprecipitation Analysis

Immunoblotting was performed as described previously [41, 44]. Briefly, 50 pg of protein
lysates from untreated cells and cells exposed to Triptolide were boiled in SDS-PAGE gel load-
ing buffer (Bio-Rad), subjected to SDS-PAGE, transferred to nitrocellulose filter, and probed
with the specified primary antibody and the appropriate peroxidase-conjugated secondary
antibody (Santa Cruz Biotech). Chemiluminescent signal was developed using Super Signal
West Femto substrate (Pierce), blots imaged with a Gel Doc 2000 Chemi Doc system (BioRad).
For immunoprecipitation studies, cells were lysed in IP buffer [50mM Tris (pH 7.4), 150 mM
NaCl, 5% Glycerol, 1% Triton-X100) containing Complete EDTA-free protease inhibitor mix-
ture (Roche). Cell lysates were incubated with indicated antibodies for overnight at 4°C. Next
day, immune complex was captured using Dynabeads Protein G (Invitrogen, USA) by incubat-
ing for additional 45 minutes. Immune complexes were washes four times, eluted with
SDS-PAGE gel loading buffer and were separated by SDS-PAGE as described above. For
endogenous immunoprecipitation of P53 and sirt3, cells were cross-linked with formaldehyde
(1%) for 15 minutes to stabilize the complex before harvesting cells in IP buffer.

Real-Time RT-PCR

Total RNA from cultured cells was isolated using RNeasy Kit (Qiagen, CA). cDNA was synthe-
sized using qScript™ cDNA SuperMix (Qunata Biosciences, USA). Real-time PCR was per-
formed using a SYBY Green mix to monitor the amplification on ABI-7500 PCR machine. The
following primers were used: Human Sirt3 (Forward-TGCGGCAAGACCTACACCAAGAGT;
Reverse-AGCCGCAGCCGTCCCAGTT) and Human GAPDH (Forward-CCACATCGCTCAGA
CACCAT; Reverse- CCAGGCGCCCAATACG). The data was normalized with GAPDH.
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Statistical methods and analysis

All qualitative data are acquired and representative of at least three independent experiments.
Results are expressed as mean + SD or mean + SEM. Statistical analysis was performed with
SigmaStat. Student t-test was used to compare between two groups. Data in which more than
two conditions were compared in a single experiment were tested using ANOVA. A p value of
<0.05 was considered statistically significant.

Results

Maximal cytotoxic effect of TL on NSCLC cells depended upon p53
status-

Prior studies from our group have demonstrated that TL increased cell death in a dose- and
time-dependent manner in multiple cancer cell lines including NSCLC [10, 45]. Because the
tumor-suppressor p53 governs cell cycle arrest and cell viability in NSCLC, we asked whether
p53 plays a part in TL-induced cell proliferation. For this purpose, we assessed the effect of TL
treatment on cell viability of various malignant cell lines with different p53 status e.g. A549
(wt-p53), H1299 (p53 deficient cells), NCI-H460 (wt-p53), NCI-H2009 (mutant p53) of lung
epithelial cancer cells and HCT116 with its isogenic p53 deficient cell line (HCT116 p53

+/+ and HCT116 p53-/-) of colon epithelial cancer cell line. Strikingly, each of these cell lines
displayed differential cellular toxicity based on p53 status. For example, as compared to wild
type p53 lung epithelial cells (A549, NCI-H460), p53 null/mutant cells (H1299, NCI-H2009)
demonstrated significantly decreased cell viability in the presence of similar doses of TL (Fig
1A and 1B). Very similar results were observed when HCT116 p53+/+ and its isogenic
HCT116 p53-/- were stimulated with TL. Decreased cell viability was exhibited in TL-treated
p53-/- cells as compared to p53+/+ cells (Fig 1C). Overall, these findings suggested that TL
exerts its deleterious effect in p53-deficient/mutant transformed cells.

TL promoted mitochondrial dysfunction selectively in p53-deficient cells

In efforts to fully elucidate the role of p53 in TL-induced cell death, we focused on HCT116
p53+/+ and its isogenic p53-/- clone for the remainder of the study. To assess the possible
impact of TL treatment on mitochondrial function, we first measured mitochondrial respira-
tion by determining oxygen consumption rate (OCR) in control and TL stimulated HCT116
cells using Seahorse XF24 analysis. In these experiments, we chose to use lower doses of TL for
6 hours so as to be able to dissect the events more fully. P53 deficient HCT116 cells (p53-/-)
displayed significantly lower basal and maximal respiration in the presence of TL when com-
pared with DMSO treated cells (Fig 2A and S1 Fig). Intriguingly, OCR (basal and maximal)
was unaltered in TL-treated HCT116 p53+/+ cells (Fig 2B and S1 Fig). Consistent with OCR
data, steady state cellular ATP levels were significantly decreased in TL-treated HCT116p53-/-
cells compared to unstimulated cells (Fig 2C). However, no such noticeable difference for ATP
levels were observed between untreated and TL-treated p53+/+ cells (Fig 2C).

Since mitochondrial respiration is a significant source of mtROS through ETC, we deter-
mined whether decreased OCR in TL-induced p53-/- cells leads to changes in mtROS produc-
tion. Indeed, as compared to unstimulated cells, significantly increased mtROS production was
observed in TL treated p53-/- cells as confirmed by a MitoSOX kinetic assay (Fig 2D). More-
over, presence of p53 in wild type HCT 116 cells abolished the effect of TL on mtROS produc-
tion (Fig 2D). To further dissect the significance of mtROS for noxious effect of TL, we
explored the use of Mito-TEMPO, the mitochondrial-targeted antioxidant with superoxide
scavenging properties. HCT116p53-/- cells were pretreated with Mito-TEMPO for 2 hours
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Fig 1. TL decreases cell viability in malignant cells dependent of p53 status. (A-C) A549, H1299,
NCI-H460, NCI-H2009 and HCT116 (p53+/+ and p53-/-) cells were stimulated with TL (50 and 100 nM for 16
hours). Cell viability was measured by CyQUANT cell proliferation assay kit and data was presented as
percent viable cells (mean + SD) over control cells (DMSO treated). (*p<0.05, **p<0.001; n = 3).

doi:10.1371/journal.pone.0160783.g001

PLOS ONE | DOI:10.1371/journal.pone.0160783 August 8, 2016 7/24



@’PLOS ‘ ONE

Triptolide and Mitochondrial Dysfunction

@)
_ * ODMSO
= 1000.0 -
£ §25nM
S 800.0 - @50 nM
b
= 600.0 4
&
~  400.0
3
2000 -
0.0 4 NN " " N
Basal Non-ATP  Maximal Non-
Linked mitochondrial
©
1.4 4 @DMSO

025 nM

D050 nM

Relative ATP levd
1=
)

3303355331
800000003

2222222021

>
o
o

® oDMSO

12 1 * ©25nM

050 nM

Rel. Mitochondrial Potential
Y)
(=4
=

®B)

HCT116 p53-/- HCTI116 p53+/+

OCR (pmole O2/min)

D)

1200.0 1

1000.0 A

600.0

400.0

200.0

0.0 -
Basal

2.00
L75
150
125
1.00
0.75
0.50

0.25

Relative MitoSOX
(RFU/min/mg of protein)

0.00 -

§
§
N
\
\
§

HCT116 p53+/+ ODMSO

825 nm

@50 nM

Non-ATP  Maximal Non-
Linked mitochondrial
*
ODMSO

825nM
850 nM

N

HCT116 p53-/-  HCTI116 p53+/+

Fig 2. TL stimulation causes mitochondrial dysfunction in p53 deficient cells. (A) HCT116 p53-/- and

(B) HCT116 p53+/+ treated with DMSO or indicated doses of TL for 6 hours were analyzed for oxygen

consumption rate (OCR) using the Seahorse Bioscience Extra Cellular Flux analyzer. Data were presented
as basal, non-ATP-linked, maximal and non-mitochondrial respiration (meantSEM; *p<0.05; n = 3). (C) ATP
levels and (D) Mitochondrial ROS (mtROS) were measured in TL-treated (6 hours) and untreated HCT116

cells using MitoSOX assay. Relative MitoSOX fluorescence values were presented as fold change over
control. (E) Mitochondrial membrane potential (AW) were measured in HCT116 p53+/+ and p53-/- cells

following treatment with or without TL (25, 50 nM for 6 hours). Values, normalized to protein content, were
quantified and were expressed as fold change compared to control (untreated) cells (mean+SD; *p<0.05;

n=3).
doi:10.1371/journal.pone.0160783.9g002

before stimulation with TL and were subjected for mitoSOX analysis and cell viability. Indeed,
stimulation of p53 deficient cells with mito-TEMPO prior to TL treatment significantly reduces
the mtROS production induced by TL (S2A Fig) and more importantly improves cell viability

(S2B Fig). Once we confirmed decreased OCR and increased mtROS production mediated by
TL, we next assessed mitochondrial membrane potential (A¥). TL blunted the mitochondrial

membrane potential of HCT116 p53-/- with no effect on HCT116 p53+/+ cells suggesting

depolarization of the mitochondrial membrane by TL in HCT116 p53-/- cells (Fig 2E). Finally
to assess effect of TL for mitochondrial function in NSCLC, H1299 cells were stimulated with

TL (50 nM) for 6 hours and were assessed for OCR, mtROS, and ATP levels. Similar to

HCT116 cells, TL stimulation exhibited impaired mitochondrial function with decreased OCR
and ATP level, but increased mtROS (S3 Fig). Taken together, these results support that p53
protects the cells for TL-induced impaired mitochondrial bioenergetics.
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P53 mitigates TL-mediated mitochondrial dysfunction in p53 deficient
HCT116 cells

We next asked the question whether transient reconstitution of p53 in the background of p53
deleted HCT116 cells could restore TL-mediated mitochondrial dysfunction. To achieve this,
HCT166 p53-/- cells were transected with p53 expression plasmid followed by treatment with
TL and then mitochondrial functions (OCR, ATP, mtROS andA¥) along with cell viability
were measured. Indeed, p53 in the background of p53-/- cells does improve TL-mediated
decreased basal and maximal OCR (Fig 3A and 3B). Concomitant with OCR data, TL-
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Fig 3. P53 overexpression prevents TL-induced mitochondrial dysfunction in HCT116 p53-/- cells.
(A-B) HCT116 p53-/- cells were transiently transfected with control vector or p53 expression plasmid. After 48
hours of transfection, cells were stimulated with vehicle (DMSO) or TL (25 nM for 6 hours) before subjected
for OCR analysis using Seahorse Bioscience Extra Cellular Flux analyzer. In similar experimental conditions,
p53 and control vector transfected cells stimulated with DMSO or TL were also analyzed for (C) ATP level,
(D) mitochondrial ROS production (MitoSOX) and (E) Mitochondrial membrane potential (AW). The data was
presented as fold change over DMSO-treated vector-transfected cells. (F) P53 renders TL-mediated cell
death in HCT 53-/- cells. Cell viability was assessed based on nuclear DNA content by CyQount Cell
proliferation assay kit. The data was presented as %viable cells over vector-transfected DMSO-treated cells
(mean+SD; *p<0.05, **p<0.001; n = 3). (G) Protein lysate from above experiment were subjected for
immunoblotting for P53 to assess the P53 overexpression in HCT116 p53 -/- cells.

doi:10.1371/journal.pone.0160783.g003
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mediated down-regulation of ATP levels (Fig 3C) and membrane potential (Fig 3E) were
diminished in HCT116 p53-/- cells with overexpression of p53. Similarly, p53 overexpression
decreased mtROS production, induced by TL (Fig 3D). Improved mitochondrial function in
HCT116 p53 -/- with presence of exogenous p53 was clearly reflected with decreased cytotoxic-
ity of TL as measured by cell viability (Fig 3F). As shown in Fig 3G, we confirmed the overex-
pression of P53 by immunoblotting. These observations suggest that p53 can rescue the
detrimental effect of TL.

TL induced oxidative stress in a p53-depleted cells

In recent years, several studies have supported that TL-induced cytotoxicity is a result of oxi-
dative stress [46]. The redox-sensitive transcriptional factor, NF-E2 related factor 2 (NRF2) is
believed to be a major sensor of oxidative stress. To investigate its role, we next examined
NRF2 and its target gene Heme-oxygenase-1(HO1) and NAD (P) H: quinine oxidoreductase-
1(NQOL1) in the presence of TL. Stimulation of HCT116 p53-/- with TL led to nuclear accu-
mulation of NRF2 within 30 minutes when compared with unstimulated cells (Fig 4A and
4B). Concomitant with NRF2 expression, nuclear hHO1 and hNQO1 were also upregulated
in a similar fashion (Fig 4A-4D). Interestingly, in similar experimental conditions, we did not
observe any significant difference for nuclear NRF2 or HO1/NQOI in TL-treated HCT116
p53+/+ cells (Fig 4A and 4D).

Oxidative Stress is a complex and dynamic scenario where the balance between the produc-
tion of ROS and the presence of antioxidants is disturbed. Among many antioxidant molecules,
glutathione is the most abundant antioxidant molecule in the cells [47]. Therefore, we next
evaluated the GSH pool of HCT116 cells in presence of TL. As expected, TL considerably
reduced total GSH level in HCT116 p53-/- cells when compared with control cells (30-35%
reduction) (Fig 4E). However, GSH levels were unchanged in TL-treated p53+/+ cells. Finally,
we extended these results by examining the impact of TL on the expression of manganese
superoxide dismutase (Mn-SOD/SOD?2), a superoxide dismutase localized to the mitochon-
drion. TL reduced the expression of SOD2 in p53-/- cells without altering the expression in
TL-stimulated p53 containing HCT116 cells (Fig 4F and 4G). Consistent with protein level,
SOD activity was also decreased in TL-treated HCT116 p53-/- cells with minimal changes in
p53+/+ cells. Taken together, these data suggested that presence of p53 dictates oxidative stress
caused by TL.

TL disrupted ETC Complex activities in p53-/- cells

Armed with the knowledge that TL alters OCR, ATP levels, and mtROS production, we next
asked if TL modulates the activity of specific enzymatic complexes of the electron transport
chain (ETC). To address this, Complex I, Il and IV activities were measured in the mitochon-
drial fraction of the cells. As compared to control (DMSO) cells, TL treated HCT116 p53-/-
cells displayed significantly decreased specific enzymatic activities of complex I and IT (Fig 5A
and 5B). In contrast, HCT116 p53 +/+ cells revealed no difference in complex I and II activity
in the presence of TL (Fig 5A and 5B). Notably, complex IV and citrate synthase activity were
unchanged in similar experimental conditions in both the HCT116 cells (p53+/+ and p53-/-)
suggesting the specificity of the TL effect (Fig 5C and 5D). Protein expression studies demon-
strated no noticeable difference for protein levels of complex I (hNDAUF9) and complex II
(SDHA) following stimulation of HCT116 with TL (Fig 5E). These findings support that TL-
induced inhibition of complex activities are specific in p53 deficient cells and are not due to
changes in protein expression.
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doi:10.1371/journal.pone.0160783.g004

TL promoted hyperacetylation of Complex | and Il through mitochondrial
Sir3

The enzymatic activities of the complexes of the ETC are regulated through post-translational
modifications. For instance, hyperacetylation of complex I and II in mitochondrial diminish
their enzymatic activities [32, 33]. Based on this knowledge, we next evaluated whether TL
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could modulate the acetylation state of ETC complexes to regulate their enzymatic activities
and whether p53 plays any role in such an event. To address this, HCT116 p53+/+ and p53-/-
cells were stimulated with TL (50nM for 4 hours) and acetylation of NDUFA9 (one of the com-
ponent complex I) and succinate dehydrogenase (SDHA, Complex II) were assessed. Indeed,
we observed increased acetylation of NDUFA9 (Fig 6A) and SDHA in TL treated HCT116
p53-/- (Fig 6B). Intriguingly, the presence of p53 diminishes TL-mediated hyperacetylation of
NDUFA9 or SDHA (Fig 6A and 6B). Taken together, these findings demonstrate that TL treat-
ment in p53 deficient cells led to post-translational modification of ETC complexes and dimin-
ishing their activities.

Sirtuins (Sirt1-7) are class III histone deacetylases that regulate key cellular function by
deactylating various proteins. Among these, Sirt3 is a predominant mitochondrial deacetylase
that regulates mitochondrial function through deacetylation of multiple proteins of the elec-
tron transport chain (ETC) and dictates the acetylation state of mitochondrial proteins [28].
Therefore, we directly assessed the effect of TL on Sirt3 expression on the background of p53
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status. In HCT116, in which p53 was knocked-down, SIRT3 expression was significantly
reduced in TL-treated cell lysates when compared with unstimulated cells (40-50% reduction)
(Fig 6C and 6D). In similar experimental conditions, no noticeable changes were observed for
SIRT3 level in TL-treated HCT116 p53+/+ cells. Interestingly, TL stabilizes P53 expression in
HCT116 p53+/+ cells suggesting a potential role of p53 in the TL-mediated response through
Sirt3 regulation. Altogether, our results demonstrated that TL mediated mitochondrial dys-
function involves mitochondrial Sirt3.

P53 regulates steady-state level of Sirt3 through its post-transcriptional
modification

Our observations that TL stabilizes P53 level and fail to alter Sirt3 levels tempted us to investi-
gate the potential role of p53 in Sirt3 regulation. To address this, we first measured SIRT3 pro-
tein level in p53 wild type (A549 and HCT116 p53+/+) and p53 deficient cells (H1299,
HCT116P53-/-). Cells with functional p53 contained significantly increased SIRT3 level as
compared to p53 deficient cells (Fig 7A). Decreased SIRT?3 level in p53 depleted cells doesn’t
seems like due to transcriptional regulation as we did not observe any changes Sirt3 tran-
scripts between p53+/+ and p53-/- cells (Fig 7B). In an effort to elucidate alternate mechanism
for p53-mediated regulation of Sirt3 expression, we then asked if P53 physically associate with
SIRT3. To address this, we performed co-immunoprecipitation studies using FLAG-p53 and
MYC-Sirt3 in p53-/- HCT116 cells. As noted in Fig 7C, immunoprecipitation with FLAG fol-
lowed by immunoblotting with Sirt3 showed the association of P53 with SIRT3 (Fig 7C). Con-
sistent with this observation, endogenous p53 also clearly associates with Sirt3 in TL-
stimulated HCT116 p53+/+ cells. Given that Sirt3 transcript did not change in p53+/+ and
p53-/- cells, decreased Sirt3 level in p53-/- cells may be at post-transcriptional level. To fully
understand the dynamics of this, we measured stability of SIRT3 protein in p53+/+ and
p53-/- HCT116 cells upon stimulation with Cycloheximide, an inhibitor of protein synthesis.
Consistent with decreased SIRT3 levels in p53-/- cells, we noticed significantly reduced
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doi:10.1371/journal.pone.0160783.g007

stability of SIRT3, exhibiting a half-life of less than an hour. Nonetheless, half-life of SIRT3 in
HCT166 p53+/+ cells was more than two hours (Fig 7D). To ascertain if the ubiquitin-protea-
some pathway is required for SIRT3 degradation in p53-/- cells, we assess the half-life of
SIRT3 in p53-/- HCT116 cells in presence of MG132, an inhibitor of Proteasome- pathway.
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As shown in Fig 7E, pretreatment of p53-/- with MG132 prevents SIRT3 degradation by
extending its half-life. To further strengthen our observation about involvement of protea-
some pathway for the increased turnover of SIRT3 in p53 depleted cells, we examined the
expression of Skp2 E3 ligase that has previously been shown to affect steady-state level of
SIRT3 [48]. Remarkably, cells depleted in p53 (H1299 and HCT116 p53-/-) displayed
increased level of SKP2 (Fig 7F) that may be responsible for the increased degradation of
SIRT3 in p53 deficient cells. Most importantly, stimulation of HCT116 p53-/- cells with TL
increases SKP2 level which coincide with decreased Sirt3 level. In our experimental condi-
tions, not much changes for SKP2 or SIRT3 level in p53+/+ cells following TL treatment.
Overall, these finding clearly demonstrate that p53 may regulate SIRT3 protein expression
through Proteasome-Pathway and may involve SKP2 E3 ligase.

SIRT3 attenuated TL-induced mitochondrial dysfunction in p53-deficient
cells

Finally, we determined whether overexpression of SIRT3 in p53 deficient HCT116 rescues
mitochondrial dysfunction induced by TL. As a first step, we measured mitochondrial respira-
tion in HCT116 p53-/- transfected with wild-type or deacetlyase-deficient mutant SIRT3
(H243Y) in the presence of TL. Consistent with Fig 2A, TL significantly decreased basal and
maximal respiration in vector transfected cells (Fig 8A-8C). Remarkably, overexpression of
wild-type SIRT3 completely rescued TL-induced down-regulation of basal and maximal respi-
ration (Fig 8A-8C). Importantly, the SIRT3 mutant (H243Y) was unable to recover triptolide-
mediated decreased mitochondrial respiration (Fig 8A-8C). In agreement with previous stud-
ies, SIRT3 overexpression increased the overall respiration, whereas SIRT3 (H243Y) mutant
appeared to have a dominant negative effect as it reduced overall mitochondrial respiration.
These observations encouraged us to examine the other mitochondrial parameters such as
mitochondrial ROS production, membrane potential, ATP levels and the cell viability in SIRT3
overexpressing cells. As expected, TL stimulated mtROS production, decreased membrane
potential and ATP levels in cells transfected with vector control. Nevertheless, SIRT3, but not
SIRT3 (H243Y) mutant, overexpression significantly diminished the effect of TL on ROS pro-
duction (Fig 8E), ATP levels (Fig 8F) and mitochondrial membrane potential (Fig 8G) and.
Nevertheless, overexpression of SIRT3 (H243Y) mutant failed to recuperate any of the mito-
chondrial function (e.g. OCR, MtROS, membrane potential and ATP levels) in cells stimulated
with TL (Fig 8E-8G). Consistent with mitochondrial function, wild type SIRT3, but not the
mutant SIRT3, was able to revoke the TL-mediated cell death (Fig 8H). Overexpression of tran-
siently transfected SIRT3 or SIRT3H243Y was confirmed by immunoblotting (Fig 8I). Overall,
these findings suggested that activation of mitochondrial SIRT3 could protect the cells against
the development of TL-stimulated mitochondrial dysfunction.

To further elucidate the mechanism behind the protective effect of Sirt3 for TL-induced effect,
we down-regulated Sirt3 in HCT116 p53+/+ cells and asked whether deficiency of Sirt3 in the
background of p53 would sensitize the cells for TL mediated effect. As expected, siRNA-medi-
ated down-regulation of Sirt3 in p53 containing HCT116 cells decreases the basal and maximum
respiration when stimulated with TL (Fig 9A and 9B). More importantly, we observed alteration
of mitochondrial function (decreased mitochondrial potential, lowered ATP and increased
mtROS) in Sirt3-downregulated cells (Fig 9C-9E). Remarkably, TL-mediated dysfunctional
mitochondria was very comparable with findings in TL-stimulated p53 deficient cells. Finally,
these effects are clearly reflected as decreased cell viability in Sirt3 knocked-down cell treated
with TL (Fig 9F). Altogether, diminished Sirt3 expression could be responsible for TL-induced
mitochondrial dysfunction and increased cytotoxicity in p53 depleted cells.
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deficient HCT116 cells were transfected with vector, myc-SIRT3 or myc-SIRT3 (H243Y). 24 hours of post-
transfection, cells were stimulated with TL (50 nM) for 6 hours and were subjected for analyzing oxygen
consumption rate (OCR) using the Seahorse Bioscience Extra Cellular Flux analyzer. Data were normalized
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respiration (D) (mean+SEM; *p<0.05; n = 3). (E-G) SIRT3, but not deacetylase deficient mutant of SIRT3,
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Myc-SIRT3 or Myc-SIRT3 (H243Y) transfected HCT116 p53-/- cells were immunoblotted with Myc antisera to
assess the expression of overexpressed SIRT3 or SIRT3 (H243Y) mutant.

doi:10.1371/journal.pone.0160783.g008

Discussion

NSCLC is the most common malignancies world-wide and there is a clear need for effective
therapies. We previously demonstrated the in vitro and in vivo anti-tumor properties of TL
suggesting its potential as a promising agent for the treatment of NSCLC. We demonstrated
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doi:10.1371/journal.pone.0160783.g009

that TL profoundly reduced the expression of anti-apoptotic genes while upregulating pro-apo-
ptotic gene via NF-kB pathway [10]. In those studies, the differential responsiveness of various
NSCLC tumors was observed, but the mechanism for this was not delineated. In the present
study, we demonstrate that p53 deficiency exacerbates cytotoxic effect of TL (Fig 1 and S1 Fig).
Moreover, TL promotes dysfunctional mitochondria in p53-depleted cells through modulation
of sirt3 expression.

We extended our previous work that TL promoted apoptosis in various lung epithelial cells
by regulating key apoptotic factors. In this study, we examined the significance of p53 for cell
in presence of lower doses of TL. P53 plays a key role in cell viability and proliferation. In addi-
tion, p53 is well known as a major mediator of various cellular events prompted by stress.
Interestingly, p53 deficiency renders cancer cells to enter in the S and M phase instead of cell
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cycle arrest. In these circumstances, p53 deleted/mutated cells when stimulated with drug
exhibit significantly more cells death as compared to their wild-type counter parts due to
absent cell cycle arrest coupled with DNA damage that activates mitotic catastrophic events
[49]. Lastly, there is an immense relevance of crosstalk between two transcriptional factors, p53
and NF-kB in cancer and other diseases for chemotherapeutic potential. Consistent with prior
studies [50], we also demonstrate that p53 depletion resulted reduced nuclear p65 levels with
decreased NF-kB transcriptional activity (S4 Fig). Interestingly, depletion of p53 in normal epi-
thelial cells displays some toxicity of TL (data not shown). Nonetheless, TL effect was more
robust in p53 deficient transformed cells (e.g. HCT116) implying the selective cytotoxicity of
TL in p53 deficient/mutant cancer cells.

The p53 protein has been well recognized for its role in nuclear DNA repair, one of the
mechanisms for tumor inhibition. Nevertheless, there is a growing evidence that p53 also
modulates mitochondrial function. Under stress, p53 translocate to mitochondria and inter-
acts with mtDNA repair machinery to correct the damage [51]. This event of translocation of
P53 to mitochondria is believed to be through mono-ubiquitination of p53 [52]. In addition,
loss of p53 is associated with mitochondrial dysfunction with increased ROS production [53].
Such high ROS levels in cancer cells with dysfunctional mitochondria may be advantageous
for drug therapy. In agreement with this, we observed TL induces mitochondrial dysfunction
demonstrated by decreased OCR, increased mtROS, and decreased ATP in p53 deleted cells
(Fig 2). Nonetheless, cells with functional p53 are resistant to such effect of p53 on mitochon-
drial function. This might due to the fact that TL may increase ROS levels above threshold in
already elevated ROS in p53 deficient cells causing cell death, while p53 containing cells with
significantly lower ROS level can sustain slight increase in ROS level by TL. As a consequence
of increased ROS levels, cells display oxidative stress. In recent years, the role of NRF2 as a
master regulator of cellular redox state has been extensively studied. Under condition of cellu-
lar stress, NRF2 activation neutralizes the increased ROS level in mitochondria by transcrip-
tionally upregulating antioxidant gene expression [54]. In addition, NRF2 directly regulates
the expression of y-glutamyl cysteine ligase, the rate-limiting enzyme of glutathione synthesis.
In cancer, NRF2 can play dual role as tumor suppressor or as an oncogene depending on cell
context and the environment [55]. In fact, increased expression of NRF2 has been demon-
strated in multiple malignancies including lung [56, 57] and colon [58]. In our study, we dem-
onstrate that p53 deficient HCT116 cells which proliferate better that its isogenic p53
containing cells, have increased level of NRF2. Stimulation of such p53 deficient cells with TL
induces oxidative stress, which is reflected by increased nuclear accumulation of NRF2 and
increased expression of NRF2 target genes (HO1 and NQO1). In addition, we also provide the
evidence that TL decreases the level of GSH and SOD2. Remarkably, this effect of TL was
robust in p53 sufficient cells as presence of p53 abolishes TL-induced regulation of NRF2.
Our results are consistent with prior studies where TL has been shown to activate NRF2 in
various cellular systems [59, 60].

In mitochondria, oxidative phosphorylation produces ATP as a result of transfer of elec-
trons from glycolysis and TCA cycle to oxygen by a series of electron transfer reactions in
Complexes I-IV. This process facilitates the reduction of oxygen and the translocation of pro-
tons into intermembrane space generating the membrane potential to be used by ATP synthase
to generate ATP. Therefore, activities of various complexes of ETC are very crucial for oxygen
consumption and generation of ROS. In agreement with blunted oxygen consumption and
increased ROS, treatment with TL inhibits Complex I and II activities, but not complex IV,
demonstrating the specificity of TL for regulating ETC components. Interestingly, such effect
of TL on ETC components was absent in p53 containing cells illustrating the significance of
presence or absence of p53.
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Post-translational modifications (PTM) of OXPHOS component are the key events by
which activities of many complexes are regulated. Reversible acetylation of subunits of complex
I and IT has been shown to downregulate complex activities. Our results suggest that TL
increases acetylation of complex I and II subunits without altering their overall protein expres-
sion. Remarkably, such effect of TL on complex I and IT modifications was absent in p53 posi-
tive cells. These observations are consistent with blunted complex I and II activities in TL-
stimulated p53 deficient cells, but not in p53 sufficient cells. Several lines of evidence suggested
that acetylation state of mitochondrial proteins are controlled by family of sirtuins and Sirt3
has been shown to be a major deacetylase that regulate mitochondrial function by regulating
key metabolic enzymes [28]. Consistent with these findings, we showed that TL blunts the
expression of Sirt3 only in p53-depleted cells that directly correlates with increased acetylation
of NDUAF9 and succinate dehydrogenase (Fig 6C and 6D). In addition, we also provide the
evidence that Sirt3 overexpression can rescue TL-mediated mitochondrial dysfunction. On
contrary, knockdown of Sirt3 in p53 containing cells confers sensitivity for TL suggesting that
TL may use p53-Sirt3 axis to modulate mitochondrial function. Therefore, it will be worthwhile
to fully examine how TL downregulates Sirt3 expression. In this context, studies are underway.
A possible explanation for down-regulation of Sirt3 by TL in cells absent in p53 may be due to
the fact that TL induces P53 expression, which in turn may increase Sirt3 expression. Support-
ing this notion, we observed increased turnover of SIRT3 protein in p53 deficient cells through
post-transcriptional mechanism. This observation raises a possibility of interaction between
P53 and SIRT3. Indeed, we demonstrate that P53 associates with SIRT3 in presence of TL-
stimulation implying a novel role of P53 in regulation of SIRT3. Consistent with our results,
others have also shown interaction of P53 with SIRT3 in presence of genotoxic stress [61].
Finally, we strengthen our conception by demonstrating that p53 deficient cells contains ele-
vated level of Skp2 E3 ligase which have previously shown to mediate SIRT3 degradation [62].
Given the fact that SIRT3 interacts with Skp2 [62] as well as with p53 [63], it will be worthwhile
to investigate the kinetics of this tri-molecular complex if interaction of P53 with SIRT3 could
disrupt the SIRT3-Skp2 complex leading to increase level of SIRT3 in p53 containing cells.
Lastly, our overexpression studies coupled with knock-down studies with Sirt3 supports an
essential role of Sirt3 for TL-induced impairment of mitochondrial function.

In summary, our results demonstrate that mitochondrial Sirt3 plays a fundamental role in
regulating TL-stimulated mitochondrial function in p53 dependent manner in NSCLC. P53
deficient cells are more susceptible to TL for dysfunctional mitochondria. These studies pro-
vide insight into the mechanistic effects of this drug in NSCLC and will be important pre-clini-
cal investigations for the translation of TL in clinical trials.

Supporting Information

S1 Fig. Representative traces for OCR of TL-treated HCT166 p53-/- (A) and p53+/+ (B)
cells.
(TIF)

$2 Fig. Mito-TEMPO abrogates TL-mediated mtROS accumulation and cell death. (A, B).
HCT116 p53-/- were incubated with Mito-TEMPO (10mM) and or with TL (25 nM) for 6
hours. Cells were processed for MitoSOX kinetic assay (A) and cell viability (B). The data were
presented as relative value over DMSO treated cells. (mean+SD;*p<0.05; ** p<0.001; n = 3).
(TTF)

S3 Fig. TL treatment displayed mitochondrial dysfunction in NSCLC. (A, B). H1299 cells
were incubated DMSO or with TL (25 nM) for 6 hours and were assayed for oxygen
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consumption rate (OCR) using the Seahorse Bioscience Extra Cellular Flux analyzer. Data
were presented as basal, non-ATP-linked, maximal and non-mitochondrial respiration
(*p<0.05). (C, D) Cells from (A) were processed for MitoSOX kinetic assay and ATP assay (B).
The data were presented as relative value over DMSO treated cells. (mean+SD; *p<0.05; **
p<0.001;n = 3).

(TTF)

S4 Fig. P53 modulates NF-kB activity. (A) P53 overexpression displayed increase nuclear
p65. HCT116 p53-/- cells were transiently transfected with p53 or control vector plasmids.
Nuclear extract were prepared from transfected cells and were immunoblotted with anti-p65,
anti-p53 and anti-MSH?2. Representative Immunoblot is shown. (B) P53 increases NF-kB tran-
scriptional activity. The activity of 3xNF-kB reporter construct was measured in HCT116
p53-/- cells with and without p53. Normalized (firefly/Renilla) promoter activity is expressed
relative to cells with no p53 (**p<0.001, n = 3).

(TIF)
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