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Abstract
Considering the roles of protein complexes in many biological processes in the cell, detec-

tion of protein complexes from available protein-protein interaction (PPI) networks is a key

challenge in the post genome era. Despite high dynamicity of cellular systems and dynamic

interaction between proteins in a cell, most computational methods have focused on static

networks which cannot represent the inherent dynamicity of protein interactions. Recently,

some researchers try to exploit the dynamicity of PPI networks by constructing a set of

dynamic PPI subnetworks correspondent to each time-point (column) in a gene expression

data. However, many genes can participate in multiple biological processes and cellular

processes are not necessarily related to every sample, but they might be relevant only for a

subset of samples. So, it is more interesting to explore each subnetwork based on a subset

of genes and conditions (i.e., biclusters) in a gene expression data. Here, we present a new

method, called BiCAMWI to employ dynamicity in detecting protein complexes. The prepro-

cessing phase of the proposed method is based on a novel genetic algorithm that extracts

some sets of genes that are co-regulated under some conditions from input gene expres-

sion data. Each extracted gene set is called bicluster. In the detection phase of the pro-

posed method, then, based on the biclusters, some dynamic PPI subnetworks are

extracted from input static PPI network. Protein complexes are identified by applying a

detection method on each dynamic PPI subnetwork and aggregating the results. Experi-

mental results confirm that BiCAMWI effectively models the dynamicity inherent in static

PPI networks and achieves significantly better results than state-of-the-art methods. So, we

suggest BiCAMWI as a more reliable method for protein complex detection.

Introduction
In cellular systems, proteins physically interact to form complexes to carry out their biological
functions[1, 2]. They are essential building blocks for many biological processes. Therefore,
comprehensive investigation of protein complexes from the protein physical interactions can
provide a better understanding of basic components and organization of cell machinery,
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predict protein functions and elucidate cellular mechanisms underlying various diseases from a
system level point [3–6]. With recent advance in high-throughput experimental techniques,
(e.g. Yeast two-Hybrid (Y2H) and Tandem Affinity Purification with mass spectrometry),
large-scale Protein-Protein Interaction (PPI) data has been made available for many species [2,
7, 8]. As a result, One of the most important challenges in the post-genomic era is to analyze
these PPIs data and detect protein complexes from them [9]. As a result, over the past decade,
many computational methods have been proposed for clustering PPI networks to extract pro-
tein complexes from them [10, 11].

According to the absence of temporal information in available physical protein-protein
interactions, most computational methods that have been developed during the past decade
[10–16] have focused on static networks that have not sufficient data for detecting dynamic
protein complexes; however, the cellular processes have dynamic nature and the PPI networks
are changing over experimental conditions/times respect to environments and different cell-
cycle stages[17–20]. Therefore, it is necessary to shift the analysis of PPI networks from static
to dynamic for further understanding of molecular systems [16, 21].

The challenges now are how to employ the dynamic nature of PPI networks and how to
detect temporal protein complexes. With recent advance in high-throughput experimental
techniques, the massive data from differential expressions of thousands of genes under various
experimental conditions/times is provided[22, 23]. If we use gene expression data that are gath-
ered at a sequence of conditions/times during a biological process, we can construct a set of
time-sequenced subnetworks. Every subnetwork is an induced subgraph of the original PPI
graph that its vertexes are a subset of PPI genes from each time-point; which provides some
useful temporal information to complement the static protein interaction data in the gene
level. These time-sequenced subnetworks reflect dynamic changes in the original network and
provide a dynamic view of most of genes involved in a cellular process and cause to have better
understanding of cellular function. More recently, a number of computational methods have
focused on integration of PPI networks with time series expression data, to construct time-
sequenced subnetworks that exhibit dynamic changes in transcription [24–31].

In some methods [18, 32–34] a threshold is used to determine whether genes are signifi-
cantly expressed in order to clean the noisy gene expression data. Based on these thresholds,
active genes for every time-point are selected. Tang et al.[35] and Li et al. [9] have used a fixed
threshold for all time-points of gene expression data. Therefore, if the value of a gene’s expres-
sion is greater than the threshold, the gene is assumed to be active otherwise, inactive. In more
recent methods [26, 36] authors proposed a distinct threshold for each gene and called it as
active threshold. These active thresholds are based on the mean and the standard deviation of a
gene expression levels in all time-points.

The above recent methods have a considerable drawback? They completely neglect of the
correlations between the subnetworks at successive time-points by merely focusing on the sin-
gle dynamic PPI subnetworks. However, experimental observations confirm that protein com-
plexes will also formed and carry out their functions dynamically in multiple consecutive
conserved across different time-points [31, 32].

To overcome the above shortcomings, more recently, Ou-Yang, et al[17], propose a novel
Time Smooth Overlapping Complex Detection model (TS-OCD) to detect overlapping tempo-
ral protein complexes from the constructed dynamic PPI subnetworks, which allows individual
protein complex to form across different time-points. It is confirmed that protein complexes
often have a set of more stably interacting proteins as well as more unstable or transient inter-
actions [37]. TS-OCD can detect both stable and transient interactions. The stable interactions,
as backbone of the protein interaction network are existed through different time-points, while
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a transient interaction exists at a particular time-point depending on the particular functions
two correlated proteins.

Although, TS-OCD is able to distinguish between stable and transient interactions to get
higher accuracy, however, an important limitation of TS-OCD and similar methods is the cor-
respondence of each subnetwork to a time-point in gene expression data. In other words,
TS-OCD marks an interaction as transient; if the expression level of interaction is more than a
certain value. But, many genes can participate in multiple biological processes and cellular pro-
cesses are not necessarily related to every sample, but they might be correlated only for a subset
of samples. So, it is more interesting to extract each subnetwork based on a subset of genes and
time-points simultaneously in a time-series gene expression data.

In Clustering, it is possible to cluster rows of gene expression data, however, in cell reality,
the genes have same co-regulated and co-expressed patterns only over a subset of experimental
samples/conditions and have almost different patterns over the remaining samples/conditions.
Such local patterns cannot identify by typical clustering methods. Biclustering methods, pro-
vide simultaneous clustering of both rows and columns in the data matrix to discover genes
that are co-expressed only in a subset of time-points. Here, biclustering as a powerful tool to
discover the biological patterns of co-regulated genes that a clustering algorithm might not
recover, give us a better view of the cell dynamic reality.

Biclustering is a NP-Hard problem[38] therefore an exhaustive search for solution space is
not feasible. Many biclustering methods apply some heuristics to discover biclusters. Generally,
we can classify all of the biclustering methods in two categories: 1) methods based on some
evaluation measures and 2) non metric-based methods. In the first category, searching for
favorite biclusters is guided by employing a bicluster quality measure (as a cost function). Met-
ric-based methods are divided into four groups: 1) iterative greedy search, 2) stochastic greedy
search, 3) nature-inspired meta-heuristics and 4) clustering-based approaches. Most popular
metric-based biclustering methods are CC[39], FLOC[40] and MOEA[41]. For a complete sur-
vey on bicluster quality measures refer to [42]. Non metric-based methods are divided into five
approaches:1) Graph-based, 2) One-way clustering-based, 3) probabilistic models, 4) Linear
Algebra and 5) Optimal reordering of rows and columns. Most popular Non metric-based
biclustering methods are QUBIC[43], BiMax[44], BBC[45], xMOTISs[46], OPSM[47] and ISA
[48]. A more review details on the biclustering algorithms can be found in [49–52]. Moreover,
there are some other algorithms introduced to overcome different biclustering problems [53,
54], such as time series gene expression data. Now, biclustering became a powerful tool to dis-
cover local patterns on gene expression data [55].

We propose a new method to extract dynamic PPI subnetworks from time series gene
expression data. Firstly, it applies a genetic algorithm called GA-DCM to detect biclusters from
input gene expression data. GA-DCM uses a novel fitness function called DCM to evaluate
biclusters. In comparison with other methods [39, 54, 55], DCM function has two advantages:
1) using a discretized version of gene expression data and bicluster scoring relation in DCM
cause to it more robust to the noise that usually there is in expression data, and 2) it can find
biclusters with shifting and scaling pattern, while formation of protein complexes in the cell
have such shifting and scaling patterns.

Then a post-processing procedure is run to filter out small and not biologically significant
biclusters. Next, correspondent to each bicluster, a subgraph consists of the set of genes in
bicluster is extracted as a dynamic PPI subnetwork. Similar to TS-OCD, the proposed approach
is able to distinguish between stable and transient interactions. Stable interactions, those inter-
actions that exist in all subnetworks (i.e. those are exist across all time-points) while an interac-
tion is transient if its two associated proteins exist at a bicluster. Finally, to assess the
effectiveness of this approach, we present a dynamic version of some recent protein complex
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detection methods. In each case, we run each detection method on all dynamic subnetworks
and aggregate all of predicted complexes while removing duplicate ones.

Experimental results show that the proposed dynamicity based on novel biclustering algo-
rithm, can retrieve more significant dynamic subnetworks (means subnetworks that are
involved by more protein complexes) from static PPI networks and improves the accuracy of
protein complex detection methods. Specially, BiCAMWI, that is a dynamic version of previ-
ously presented method, CAMWI[56], achieves significantly better results than TS-OCD and
the other state-of-the-art methods. So, we suggest BiCAMWI as a more reliable method for
protein complex detection. Source codes of the proposed method are available in S1 File.

Materials and Methods
This section explains the proposed dynamic method that improves detection accuracy of pro-
tein complexes. Our method consists three steps: 1. Develop and applying GA-DCM, a
genetic-based biclustering algorithm on gene expression data, to detect biclusters of genes/con-
ditions (subsection 3.1); 2. Extracting dynamic subnetworks from static PPI network based on
obtained biclusters (subsection 3.2); and applying a protein complex detection method on
every dynamic subnetwork and aggregate the results (subsection 3.3). Fig 1 illustrates the global
view of the proposed approach.

Biclustering algorithm
A genetic algorithm is a metaheuristic tool for solving optimization problems. It simulates the
process of natural selection. Genetic algorithm has an iterative procedure. It starts from an ini-
tial population of candidate solutions called individuals. Properties (chromosomes) of each
candidate solution can be changed. Commonly, the acceptable encoding for each solution is a
binary string from 0s and 1s, but other representations are also possible.

In each generation, the goodness of every chromosome is evaluated by a fitness function.
According to selection paradigm, the better individuals from the current population are
selected and modified by incorporating some genetic operators. The new generation of candi-
date solutions is now used in the next iteration of the algorithm. Commonly, the algorithm
continues to reach a stopping condition. The stopping condition can be either a maximum
number of generations, or an adequate fitness level has been reached for the population.

Fig 1. Global view of the proposedmethod.

doi:10.1371/journal.pone.0159923.g001
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Briefly, a traditional genetic algorithm requires: 1) a genetic encoding of the problem solution,
2) a fitness function to evaluate the solutions.

In this subsection, we explained GA-DCT, the proposed genetic-based biclustering algo-
rithm in details. Encoding of a bicluster of expression matrix into a chromosome of genetic
algorithm (3.1.1), introducing of a novel fitness function to measure the quality of a bicluster
(3.1.2), and presentation of the genetic operators of the algorithm (3.1.3) are presented in this
subsection. Fig 2 shows general flowchart of the proposed genetic algorithm.

Bicluster encoding. Given a two-dimensional gene expression matrix M with m rows and
n columns, it contains the expression level of m genes G = {I1, I2,. . ., Im} over a series of n sub-
sequent time-points(conditions) C = {C1, C2,. . ., Cn} during a biological process. Each element
Mi,j represents the expression level of the ith gene at the jth time-point. A bicluster interpreted
as a submatrix B(I, J) of expression matrix M, where I, J are subsets of genes set G and condi-
tions set C respectively(I � G and J� C). A bicluster is encoded as a genetic chromosome that
is represented by a fixed-size binary string composed of genes and time-points. If a gene or
condition is included in a bicluster, the corresponding bit is set to 1, otherwise 0. Fig 3 shows
an encoding of a bicluster.

Fitness function. We perform a preprocessing step before using gene expression data. Pre-
processing step consists of two tasks: (i) Data normalization, to make restitution systematical
differences between data measured by several microarrays/conditions (the expression matrix
M is called M’ after performing the normalization step); and (ii) discretization, for reducing the
infinite set of real expression values to an acceptable range of discrete values. In normalization
step, the expression value of every gene in all time-points are normalized to mean 0 and stan-
dard deviation 1. The discretization step provides a number of different discretization tech-
niques replacing each absolute expression value by a symbol of a given alphabet. Alphabets of
two or three symbols are the most common, containing the symbols {D, U} and {D, N, U},
respectively, where D means down-regulation, N is no-regulation and U means up-regulation.
We consider four discretizing techniques:[57] (i) Simple threshold; (ii) Mean and standard
deviation of gene expression profile; (iii) Transitional state discrimination; and (iv) Variation
between time-points.

Fig 2. general view of the GA-PCD, the proposed biclustering genetic algorithm.

doi:10.1371/journal.pone.0159923.g002
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Simple threshold technique discretizes expression values in a binary alphabet {D, U} such
that if an expression value is higher than the threshold, it is replaced with U Otherwise D.

Mean and standard deviation of gene expression profile technique uses an alphabet of
three symbols {D, N, U} and parameter α defined by the researcher. Symbol D is used to
replace all expression values below the difference between the mean value and the product of α
and the standard deviation. U is used for expression values higher than the sum of the mean
value and the product of α and the standard deviation. N is used for the remaining expression
values.

Transitional state discrimination uses a binary alphabet {D, U}. The element M’i, j of the
normalized matrix M’ is set to U if the difference between Mi, j and the M’i, j exceeds 0, other-
wise, it set to the symbol D.

Variation between time-points can be used in both two and three-letter alphabets. In the
binary case, using parameter α, a threshold β is calculated as the product of α and the standard
deviation of the expression values of all genes in time-point 0. Then, each element M’i, j of the
normalized matrix M’ is set to U if the difference between M’i, j and M’i, j-1 exceeds the calcu-
lated the β, Otherwise, it is set to D. In the case of three-letter alphabet, the threshold β is
directly chosen by researcher. Each element M’i, j of the normalized matrix M’ is set to U if the
difference between M’i, j and M’i, j-1 exceeds β, or it is set to D if such difference is lower than—
β, or N, otherwise.

After choosing the best discretizing technique, we have a discretized expression matrix M”.
Here, we define a novel fitness function to determine the quality of biclusters. It is called Dis-
cretized Column-based Measure (DCM). Given a bicluster B(I, J) of expression matrix M(G,
C), where I� G and J� C. The DCM value of B is computed by (Eq (1)).

DCMBðI;JÞ ¼
P

j2Jð1�
ð1þ aÞ � f j

jIj Þ ð1Þ

Where α is a penalty factor (0<α<1), |I| is the number of genes in bicluster B and fj is com-
puted for every column j of the bicluster as follows; It counts the frequency of each discrete
symbol {D, U}(in case of two-letters alphabets). If a symbol has the majority (means has more
than |I|/2 occurrences), then fj is the number of discretized symbols in column j that are
unequal to the majority symbol. Otherwise, if none of the symbols have majority, fj is set to |I|.
Also, if the majority symbol is N (in case of three-letters alphabet), fj is set to |I|/2. Considering
(Eq 1), we see that in the best case when all discrete symbols of column j have same value from
{D, U}, fj is 0 and as a result DCMB(I,J) is equal to |J|. On the other hand, in the worst case, if no
discrete symbols have majority, DCMB(I,J) is equal to -α×|J|, So, -α×|J|<DCMB(I,J)≦ |J|.

Genetic operators. Binary tournament[58] is used as selection operator. We design a two-
point crossover operator. Crossover is separately performed on both of gene and time-point
parts of each chromosome. For the gene part, two crossover points are chosen on each of two
selected parent chromosomes, then the segments between these points are exchanged between
two parents. For the time-point parts, it is performed similarly. Mutation operator is done as

Fig 3. Sample encoding of a bicluster.

doi:10.1371/journal.pone.0159923.g003
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follows. For each bit of selected chromosome (in both gene and time-point parts), it is switched
on/off; based on mutation probability.

Dynamic subnetwork extraction
After constructing biclusters by GA-DCM, the proposed genetic algorithm, with respect to
each bicluster, we extract a dynamic subnetwork from input static PPI network. In this step,
each subnetwork is an induced sub-graph of the static PPI network that consists of all genes in
its corresponding bicluster. In this step, some biclusters may overlap but redundant biclusters
are removed before producing dynamic subnetworks.

Results and Discussion
We assess the proposed dynamic method in three steps. First, we compare GA-DCM with
other biclustering algorithms in case of protein complex detection problem. Then, we com-
pared dynamic extension of several protein complex detection methods using the genetic-
based biclustering algorithm. The results of this comparison encourage us to suggest
BiCAMWI, the dynamic variant of previous proposed method CAMWI[56] as more reliable
method for protein complex detection. Finally, we compared BiCAMWI with other detection
methods, both static and dynamic methods.

Datasets and benchmark
To present an accurate analysis, we used two yeast PPI networks to evaluate the efficiency of
the compared methods, including: 1) DIP PPI network[59], and 2) BioGrid PPI network (ver-
sion 3.1.77) [60]. DIP dataset contains 21592 interactions among 4850 proteins, while BioGrid
contains 59748 interactions among 5640 proteins. The Yeast Metabolic Cycle (YMC) gene
expression microarrays [40] is used to extract significant biclusters and to construct their corre-
sponding dynamic PPI subnetworks. The used expression matrix presents the expression val-
ues for 3552 significant periodic genes [61] at 12 time-points (with a time interval about 25
minutes) over three successive cell cycles.

Similar to related researches [17, 26], we used the average expression value of each gene at
the same time-point of three cycles. Among 3552 genes, 2389 genes occur in DIP and 3057
genes occur in BioGrid. Thus, we keep these genes and their corresponding interactions in DIP
and BioGrid when we prune DIP and BioGrid respectively.

In order to assess the predicted complexes, we use two benchmark experimentally deter-
mined complex sets. They are derived from CYC2008 [62] and MIPS [63] respectively. For
both gold standard sets, to bypass selection bias, we remove the proteins that are not existed in
the two PPI networks. So, it only considered the protein complexes with at least 3 proteins.

Evaluation measures
f1-measure [10] is the most common quality measure which is used for complex detection eval-
uation. f1-measure is used to evaluate the overall performance. It is basically the harmonic
mean of two other metrics, precision and recall. precision, measures what fractions of predicted
complexes are matched with real complexes. recall, is also, what fraction of known complexes
are detected correctly.

Let C = {B1,B2,. . .,Bn} denotes the set of benchmark protein complexes and D = {D1,D2,. . .,
Dm} denotes the set of detected complexes. To assess protein complex detection, we need to
define how well a detected complex matches a known complex. According to the literature, the
Jaccard index J(Bi,Dj) [11] is used to determine the overlap between a benchmark complex Bi

Protein Complex Detection by Genetic-Based Biclustering of Gene Expression Data

PLOS ONE | DOI:10.1371/journal.pone.0159923 July 27, 2016 7 / 16



and a detected complex Dj (Eq (2)).

J Bi;Dj

� �
¼ jBi \ Djj

jBi [ Djj
ð2Þ

Let δ>0 be a predefined similarity threshold. If J(Bi,Dj)�δ then Bi and Dj are considered as
matching complexes. In our study, we set δ = 0.25. precision, recall and f1-measure are defined
by Eq (3–5) [10, 11].

precision ¼ jfDijDi 2 D; 9 Bj 2 B : JðDi;BjÞ � dgj
jDj ð3Þ

recall ¼ jfBijBi 2 B; 9 Dj 2 D : JðBi;DjÞ � dgj
jBj ð4Þ

f 1�measure ¼ 2� precision � recall
precision þ recall

ð5Þ

Assessment of proposed genetic-based biclustering algorithm
It is showed that using a biclustering algorithm to extract some dynamic subnetworks from static
PPI networks, improve the accuracy of protein complex detection methods[64]. To have a better
view of the proposed genetic-based algorithm advantages, in this subsection, we compare our
proposed biclustering method, GA-DCT, with some popular biclustering algorithms CC[39],
BiMax[44], xMOTISs[46], OPSM[47],ISA[48] and UniBic[65]. in all methods, after producing
biclusters and extracting dynamic subnetworks, CAMWImethod[56] is used to detect protein
complexes from every dynamic PPI subnetwork. Aggregating the results after removing duplicate
complexes produces the final set of detected protein complexes. The comparison results (based
on DIP and CYC2008 datasets) in terms of precision, recall and f1-measure metrics are showed
in Fig 4. Based on the comparison, GA-DCT has better results in terms of all three metrics such
that it can retrieve the biclusters that are more consistent to protein complexes nature.

Accuracy improvement of protein complex detection methods
To show how effectively the proposed method improves the accuracy of protein complex
detection methods, we compare the results obtained from running several recent methods,

Fig 4. The comparison of GA-DCT with other biclustering algorithms in case of protein complex
detectionmetrics.

doi:10.1371/journal.pone.0159923.g004
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CAMWI[56], COACH [66], ClusterONE [14], SPICi [67] and MCL [68] on three modes: 1)
using static variation of methods (with fine-tuning of their parameters), 2) using dynamic vari-
ation of methods according to recent dynamic approach presented in TS-OCD, 3) using
dynamic variation of methods according to the proposed approach in this paper.

The results in term of f1-measuremetric based on PPI network Biogrid and CYC2008
benchmark complex set, are shown in Fig 5. For each method i.e. X, we call TS-X and Bi-X to
denote dynamic version of X, correspondence to recent dynamic approach presented in
TS-OCD and proposed dynamic approach in this paper. Note that in each case, every method
is fine-tuned with its best parameters [17].

Experimental results confirm that the proposed genetic-based biclustering approach can use
more effectively the inherent dynamicity behind static PPI network such that it improves the
accuracy of protein complex detection. Also, these results encourage us to suggest BiCAMWI
as a more reliable method for protein complex detection. In the next subsections, we continue
the assessment of the proposed approach by comparing BiCAMWI (as the dynamic variant of
CAMWI) with other static and dynamic methods.

The comparison of BiCAMWI with static methods
In order to show how BiCAMWI can effectively detect protein complexes, we compared
BiCAMWI method with six state-of-the-art algorithms, namely COACH [66], ClusterONE
[14], SPICi [67], MCL [68], MINE [69] and OCD [17]. We ran these methods on static PPI
networks DIP and BioGrid. Fig 5 shows the comparative performance on two PPI networks
with respect to benchmark complex set CYC2008. Additionally, Table 1 shows details of these
comparison in terms of precision, recall and f1-measuremetrics for each method on DIP dataset
on both benchmark complex sets. Table 2 shows similar facts on BioGrid dataset.

The results (Figs 6 and 7) show for both DIP and BioGrid respectively, our BiCAMWI out-
performs other methods in terms of f1-measure based on CYC2008 benchmark. For instance,
on DIP dataset, BiCAMWI achieve the highest f1 -measure 0.59, which is 31.1% higher than
the second best f1-measure 0.45, achieved by CAMWI and %35.6 higher than the third best f1-
measure achieved by SPICi. On BioGrid dataset, BiCAMWI also achieves the highest f1-mea-
sure 0.534, which is 9.68% higher than the second best f1-measure 0.5 achieved by CAMWI
and %21.6 higher than the third best f1-measure achieved by OCD.

Fig 5. The results of running CAMWI, COACH, ClusterONE, SPICi and MCLmethods in term of
f1-measure metric. X, TS-X and Bi-X refer to static version, dynamic version of X correspondence to recent
dynamic method presented in TS-OCD and dynamic version of X according to GA-DCM dynamic method
presented in this paper.

doi:10.1371/journal.pone.0159923.g005
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The comparison of BiCAMWI with dynamic methods
In another case, we compared BiCAMWI with two recent dynamic methods, Dynamical Hier-
archical Agglomerative Clustering (DHAC) method [29] (in two versions: DHAC-local and
DHAC-const) and TS-OCD. Also, the result of a dynamic version of COACH, ClusterONE,
SPICi, MCL and MINE are from [17]. In all cases, the input gene expression data is used for
dynamic considerations. Results in case of DIP and BioGrid datasets and CYC2008 as bench-
mark are illustrated in Fig 6. Additionally, Table 3 shows details of these comparison in terms
of precision, recall and f1-measuremetrics on DIP dataset on two benchmark complex sets.
Table 4 shows similar facts on BioGrid dataset.

The results (Figs 8 and 9) show for both DIP and BioGrid, our BiCAMWI outperforms
other methods in terms of f1-measure based on CYC2008 benchmark. For instance, on DIP
dataset, BiCAMWI achieve the highest f1 -measure 0.59, which is 18% higher than the second
best f1-measure 0.50, achieved by PCD-GED and %25 higher than the third best f1-measure
achieved by TS-OCD. On BioGrid dataset, BiCAMWI also achieve the highest f1-measure
0.534, which is 4.7% higher than the second best f1-measure 0.51 achieved by PCD-GED and %
9.6 higher than the third best f1-measure achieved by TS-OCD.

Conclusions
Protein complexes are key functional units in many biological processes. Recent advances in
high-throughput experimental techniques make large Protein-Protein Interactions (PPIs) net-
works available. Researchers get PPI networks as input and provide computational methods to

Table 1. Analysis details of BiCAMWI comparison with other static methods in terms of precision, recall and f1-measure metrics on DIP dataset
and CYC2008 and MIPS benchmark complex sets. Best values are bolded.

CYC2008 MIPS

Method Precision Recall f1-measure Precision Recall f1-measure

ClusterONE 0.301 0.447 0.36 0.247 0.331 0.283

SPICi 0.453 0.417 0.435 0.387 0.331 0.357

MCL 0.163 0.592 0.255 0.121 0.39 0.185

COACH 0.305 0.544 0.39 0.245 0.426 0.311

MINE 0.355 0.505 0.417 0.355 0.463 0.402

OCD 0.415 0.417 0.416 0.39 0.331 0.358

CAMWI 0.43 0.47 0.45 0.35 0.5 0.411

BiCAMWI 0.621 0.553 0.585 0.607 0.514 0.556

doi:10.1371/journal.pone.0159923.t001

Table 2. Analysis details of BiCAMWI comparison with other static methods in terms of precision, recall and f1-measure metrics on BioGrid data-
set and CYC2008 and MIPS benchmark complex sets. Best values are bolded.

CYC2008 MIPS

Method Precision Recall f1-measure Precision Recall f1-measure

ClusterONE 0.312 0.655 0.422 0.208 0.445 0.283

SPICi 0.294 0.448 0.355 0.228 0.315 0.265

MCL 0.167 0.405 0.236 0.133 0.301 0.184

COACH 0.324 0.56 0.411 0.247 0.466 0.323

MINE 0.311 0.655 0.421 0.201 0.473 0.282

OCD 0.332 0.647 0.439 0.27 0.486 0.347

CAMWI 0.4 0.61 0.5 0.29 0.5 0.36

BiCAMWI 0.433 0.695 0.534 0.412 0.58 0.481

doi:10.1371/journal.pone.0159923.t002
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detect protein complexes in order to provide a better understanding of basic components and
organization of cell machinery. The cellular systems are highly dynamic and protein interac-
tion networks are not static, in other words, they dynamically change across different time-
points [17–20, 30]. However, the most computational methods that have been developed dur-
ing the past decade [10–16] have focused on static PPI networks which cannot model the natu-
ral dynamicity of protein interactions.

Recently, a number of methods have concentrated on cell dynamics in computational analy-
sis by integrating PPI networks with time series expression data [24–31]. But these methods try
to extract each dynamic subnetwork corresponding to every time-point in gene expression
data and completely neglect the correlations between the subnetworks at consecutive time-
points. More recent method, TS-OCD [17], that categorizes PPI interactions into stable and
transient interactions [37] achieves better results. However, TS-OCD and related researches
have an important drawback: they retrieve every dynamic subnetwork correspondent to every
time-point in gene expression data and while, genes might be co-regulated and co-expressed
only under a subset of experimental conditions, and behave almost independently under other
conditions.

It would be more accurate to retrieve some PPI subnetwork based on a subset of genes and
time-points (called bicluster) in a time-series gene expression data. Biclustering, which is a two
dimensional clustering of both rows and columns in the data matrix, can discover a subset of

Fig 6. The comparison of BiCAMWI with other static protein complex detectionmethods. The
comparison results are based on DIP dataset in terms of f1-measure with respect to CYC2008 benchmark
complex set.

doi:10.1371/journal.pone.0159923.g006

Fig 7. The comparison of BiCAMWI with other static protein complex detectionmethods. The
comparison results are based on BioGrid dataset in terms of f1-measure with respect to CYC2008
benchmark complex set.

doi:10.1371/journal.pone.0159923.g007
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genes that are co-regulated over a subset of experimental conditions. Here, we proposed a
novel method to employ dynamicity in detection of protein complexes. The proposed dynamic
method uses a genetic algorithm with a novel fitness function called Discretized Column-based
Measure (DCM) to extract significant biclusters from input time-series gene expression data.
Then, correspondent to each bicluster, a dynamic PPI subnetwork is extracted from input static
PPI network. Final protein complexes set are obtained by performing a detection method on
all subnetworks and aggregating the results. The proposed DCM fitness function is based on
discretized version of gene expression data. So, it can handle the noise that usually there exists
in expression data. Also, it can find biclusters with complicated patterns such as shifting and
scaling pattern, while formation of protein complexes in the cell have such patterns. So, it is
suitable in case of protein complex detection problem.

Experimental results show that the proposed dynamicity based on biclustering of gene
expression data, can retrieve more significant dynamic subnetworks from static PPI networks
and improves the accuracy of protein complex detection methods. Specially, BiCAMWI, that is
a dynamic variant of previously presented method, CAMWI, achieves significantly better
results than TS-OCD and the other state-of-the-art methods. Future works will focus on some
improvements on the proposed biclustering algorithm to extract more significant dynamic
subnetworks.

Table 3. Analysis details of BiCAMWI comparison with other dynamic methods in terms of precision, recall and f1-measure metrics on DIP dataset
divided in CYC2008 and MIPS benchmark complex sets. Best values are bolded.

CYC2008 MIPS

Method Precision Recall f1-measure Precision Recall f1-measure

ClusterONE 0.327 0.612 0.427 0.299 0.574 0.393

SPICi 0.369 0.505 0.426 0.342 0.434 0.383

MCL 0.17 0.718 0.274 0.136 0.544 0.218

COACH 0.295 0.553 0.385 0.269 0.5 0.35

MINE 0.358 0.592 0.446 0.318 0.566 0.407

DHAC-const 0.179 0.184 0.182 0.225 0.154 0.183

DHAC-local 0.186 0.0874 0.119 0.274 0.11 0.157

PCD-GED 0.485 0.52 0.5 0.45 0.44 0.444

TS-OCD 0.429 0.524 0.472 0.397 0.449 0.421

BiCAMWI 0.621 0.553 0.585 0.567 0.514 0.556

doi:10.1371/journal.pone.0159923.t003

Table 4. Analysis details of BiCAMWI comparison with other dynamic methods in terms of precision, recall and f1-measure metrics on BioGrid
dataset divided in CYC2008 andMIPS benchmark complex sets. Best values are bolded.

CYC2008 MIPS

Method Precision Recall f1-measure Precision Recall f1-measure

ClusterONE 0.16 0.724 0.262 0.114 0.479 0.184

SPICi 0.285 0.681 0.402 0.255 0.61 0.36

MCL 0.134 0.612 0.22 0.0962 0.466 0.159

COACH 0.284 0.716 0.406 0.221 0.562 0.317

MINE 0.278 0.741 0.404 0.234 0.541 0.327

DHAC-const 0.413 0.121 0.187 0.413 0.116 0.182

DHAC-local 0.323 0.103 0.157 0.362 0.116 0.176

PCD-GED 0.43 0.63 0.51 0.35 0.53 0.42

TS-OCD 0.363 0.741 0.487 0.312 0.575 0.404

BiCAMWI 0.433 0.695 0.534 0.412 0.58 0.481

doi:10.1371/journal.pone.0159923.t004
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benchmark complex set.
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