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Abstract

Background and Aims

Probiotic properties of Enterococcus strains have been reported previously. In this study,

we investigated the effects of Enterococcus (E.) durans TN-3 on the development of dextran

sulfate sodium (DSS) colitis.

Methods

BALB/c mice were fed with 4.0% DSS in normal chow. Administration of TN-3 (10mg/day)

was initiated 7days before the start of DSS feeding. Mucosal cytokine expression was ana-

lyzed by real time-PCR and immunohistochemistry. The lymphocyte subpopulation were

analyzed by flow cytometry. The gut microbiota profile was analyzed by a terminal-restric-

tion fragment length polymorphism method (T-RFLP).

Results

The disease activity index and histological colitis score were significantly lower in the DSS

plus TN-3 group than in the DSS group. The mucosal mRNA expression of proinflammatory

cytokines (IL-1β, IL-6, IL-17A and IFN-γ) decreased significantly in the DSS plus TN-3

group as compared to the DSS group. The proportion of regulatory T cells (Treg cells) in the

mucosa increased significantly in the DSS plus TN-3 group as compared to the DSS group.

Both fecal butyrate levels and the diversity of fecal microbial community were significantly

higher in the TN-3 plus DSS group than in the DSS group.

Conclusions

E. durans TN-3 exerted an inhibitory effect on the development of DSS colitis. This action

might be mediated by the induction of Treg cells and the restoration of the diversity of the

gut microbiota.
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Introduction
Inflammatory bowel disease (IBD), such as ulcerative colitis (UC) and Crohn’s disease (CD),
are chronic intestinal inflammatory disorders of unknown etiology [1, 2]. Recent studies sug-
gested that a dysfunction of the host immune response against dietary factors and the com-
mensal bacteria plays an important role in the pathogenesis of IBD [3–7].

Probiotics are live microorganisms that provide beneficial effects to the host when adminis-
tered in adequate amounts [8]. They exert these effects by modulating the gut microbiota and
promoting mucosal barrier functions and resistance to pathogens. Now, probiotics are consid-
ered to be a therapeutic option for inducing or maintaining clinical remission of IBD.

Most of probiotics consist of Lactobacillus spp., Bifidobacterium spp. and Enterococcus spp.
[9]. Among Enterococcus spp., Enterococcus durans (E. durans) has been reported to exert vari-
ous probiotic effects. For example, E. durans strain 6HL, isolated from the vagina of heathy
women, possesses the ability to inhibit the growth of pathogenic microorganisms [10]. Avram-
Hananel et al. reported that E. durans strain M4-5, isolated from the human colon, improved
intestinal inflammation [11]. Kondoh et al. reported that E. durans strain TN-3, isolated from
deep seawater, effectively suppressed dermal eosinophil accumulation in allergen-primed mice
[12].

Several animal models of experimental colitis induced by chemical agents have been
employed to investigate the pathophysiology of IBD [13, 14]. DSS colitis model is one of the
widely used models owing to the reproducibility. DSS colitis is morphologically characterized
by epithelial cell damage, ulceration, submucosa edema, and the infiltration of granulocytes
and mononuclear immune cells. Therefore, DSS colitis model is considered to exhibit features
of relevance of human ulcerative colitis [15–17]. In this study, we used the regimen of a contin-
uous administration of DSS to examine the effect of preventive treatment of TN-3 on the
induction of acute phase of intestinal injury.

Here, we investigated the effects of E. durans TN-3 on dextran sulfate sodium (DSS)-
induced colitis to explore its therapeutic potential for IBD patients. We further analyzed the
effects of E. durans TN-3 on the mucosal lymphocyte subpopulation and fecal levels of short-
chain fatty acids.

Materials and Methods

Experimental animals and induction of colitis
BALB/cAJcl mice (Six to eight week-old females) were purchased from CLEA Japan (Tokyo,
Japan). They were acclimatized for one week before the experiment, and were housed individu-
ally in a room maintained at 22°C under a 12-h day/night cycle throughout the experiments.
They were allowed free access to rodent chow (MF; Oriental Yeast Co., Ltd, Tokyo, Japan) and
drinking water. Experimental colitis was initiated by the oral administration of 4% DSS (molec-
ular weight 5000; Wako Pure Chemical Industries, Ltd, Osaka, Japan) mixed with normal
chow. Mice were divided into 4 groups; control mice, TN-3-treated mice, 4% DSS-treated
mice, and 4% DSS plus TN-3-treated mice. For the examination of preventive effect of TN-3
on the colitis, TN-3 (10mg/day in 0.3ml phosphate buffered saline (PBS)) was administrated
by oral gavage 7 days before the start of DSS administration. For the examination of the thera-
peutic effect of TN-3 on the colitis, the administration of TN-3 (10mg/day in 0.3ml PBS)
started simultaneously with starting of DSS. The mice were euthanized at day12 under diethyl
ether anesthesia by quick cervical distortion to minimize animal suffering. This study was car-
ried out in strict accordance with the recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health. This study protocol was approved by
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the Animal Care and Use Committee of Shiga University of Medical Science (Otsu, Japan)
(Permit number:2013-9-8).

Preparation of E. durans TN-3
E. durans strain TN-3 was isolated from deep-sea water in Toyama bay. TN-3 was cultures for
18h at 30°C in a broth medium containing 2.46% (w/v) glucose, 1.4% (w/v) yeast extract,
0.77% (w/v) peptone and 4.39% (w/v) K2HPO4. After cultivation, the cells were collected by
centrifugation and washed with distilled water. Heat-killed TN-3 was treated by autoclave for
10 min at 110°C and then lyophilized.

Assessment of inflammation in DSS-induced colitis
Mucosal inflammation was assessed using the disease activity index (DAI) described previously
[18]. Histologic evaluations were performed in a blinded fashion using a validated scoring sys-
tem [19].

Real-time polymerase chain reaction (real-time PCR)
The mRNA expression in the samples was assessed by real-time-polymerase chain reaction
(PCR) analyses using a Light Cycler 480 system (Roche Applied Science, Tokyo, Japan) and
SYBR Premix Ex Taq II (TAKARA, Otsu, Japan). The data were normalized versus β-actin
mRNA. The oligonucleotide primers used in this study are shown in Table 1.

Immunohistochemistry
Immunohistochemical analyses were performed according to a method described in our previ-
ous report [20]. Briefly, rabbit anti-IL-1β (clone H-153; Santa Cruz biotechnology Inc., Dallas,
TX), goat anti-IL-6 (clone H-19; Santa Cruz Biotechnology Inc.), rat-anti-IFN-γ (clone
XMG1.2; BioLegend, San Diego, CA), rabbit anti-IL-17A (clone H-132; Santa Cruz Biotechnol-
ogy Inc.), and goat anti-IL-10 antibody (clone M-18; Santa Cruz Biotechnology Inc.) were used
as the primary antibodies. After incubation with the primary antibodies, the sections were
treated with HRP (horseradish peroxidase)-labeled anti-rabbit IgG, anti-goat IgG, or anti-rat
IgG antibodies. Diaminobenzidine was used as a substrate for color development.

Table 1. PCR primers used in this study.

Gene Accession number Primers

IL-1β NM_008361 sense 5’-CAGGATGAGGACATGAGCACC-3’

anti-sense 5’-CTCTGCAGACTCAAACTCCAC-3’

IL-6 NM_031168 sense 5’-GACAAAGCCAGAGTCCTTCAGAGA-3’

anti-sense 5’-CTAGGTTTGCCGAGTAGATCTC-3’

IL-10 NM_010548 sense 5’-GTGAAGACTTTCTTTGAAACAAAG-3’

anti-sense 5’-CTGCTCCACTGCCTTGCTCTTATT-3’

IL-17A NM_010552 sense 5’-TCTCTGATGCTGTTGCTGCT-3’

anti-sense 5’-CGTGGAACGGTTGAGGTAGT-3’

IFN-γ NM_008337 sense 5’-TACTGCCACGGCAGTCATTGAA-3’

anti-sense 5’-GCAGCGACTCCTTTTCCGCTTCCT-3’

β-actin NM_007393 sense 5’-GTGGGCCGCCCTAGGCACCA-3’

anti-sense 5’-CGGTTGGCCTTAGGGTTCAGGGGGG-3’

doi:10.1371/journal.pone.0159705.t001
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Cell isolation and flow cytometry
Mononuclear cells were isolated from the lamina propria of the colon. The isolated cells were
stained with PE-labeled anti-CD4 (clone RM4-4; eBioscience, San Diego, CA), Alexa Fluor
488-labeled anti-Foxp3 (clone MF-14; BioLgend), PECy7-labeled anti-F4/80 (clone BM8;
eBioscience), and APC-labeled anti-Gr-1 antibody (clone RB6-8C5; eBioscience). The cells
were analyzed using FACS Calibur (BD Biosciences, Franklin Lake, NJ) according to the meth-
ods described previously [21, 22].

High-performance liquid chromatography
High-performance liquid chromatography (HPLC) was carried out for the analysis of stool
extracts as previously described [23]. HPLC was performed using an Agilent 1120 Compact LC
system (Santa Clara, CA) and a COSMOSIL 4.6×150mm 5C18-AR-II column (nacalai tesque
inc., Kyoto, Japan).

DNA extraction and terminal restriction fragment length polymorphism
(T-RFLP) analysis
DNA samples from feces were isolated using the method described previously [24]. The final con-
centration of DNA sample was adjusted to 10 ng/μl. T-RFLP analysis of the gut microbiota was
performed according to the method described previously [24]. The T-RF fragments were divided
into 30 operational taxonomic units (OTUs) as described by Nagashima et al. [25]. The prediction
of bacteria was performed according to the BslI-digested T-RFLP database [25]. The diversity
among the different samples was compared by the Shannon diversity index (SDI) [26, 27].

Statistical analysis
The statistical significance of the differences was determined by Mann-Whitney U test. Differ-
ences resulting in P values less than 0.05 were considered to be statistically significant.

Results

Effects of TN-3 on the development of DSS colitis
To evaluate the preventive effects of TN-3 on the development of DSS colitis, we treated mice
with TN-3 for 7 days prior to the start of DSS administration. As shown in Fig 1A, body weight
(BW) was significantly lower in the DSS mice as compared to the DSS plus TN-3 mice. The dis-
ease activity index (DAI) was significantly higher in the DSS mice than the DSS plus TN-3
mice (Fig 1B). Furthermore, the histological inflammatory score was significantly lower in the
DSS plus TN-3 mice than in the DSS mice (Fig 2A and 2B). The infiltration of immune cells
also reflects the severity of colitis. Flow cytometric analysis for CD4+ T cells, F4/80+ macro-
phages, and Gr-1+ neutrophils in the colonic lamina propria was performed. As shown in Fig
3A and 3B, the infiltration of CD4+ T cells and Gr-1+ neutrophils was significantly suppressed
in the DSS plus TN-3 mice as compared to the DSS mice. The infiltration of F4/80+ macro-
phages in the DSS plus TN-3 was also suppressed as compared to the DSS mice, but there was
no significant difference between two groups.

We also examined the therapeutic effect of TN-3 on the development of colitis. We started
the treatment of TN-3 at the same time of the starting of DSS administration. As shown in S1
Fig, BW in the TN-3 plus DSS mice was as low as the DSS mice, and the DAI in TN-3 plus DSS
mice as high as the DSS mice. These results suggested that TN-3 has the preventive effect, but
not the therapeutic effect, on the development of colitis.
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Effect of TN-3 on the mucosal mRNA expression of proinflammatory
cytokines
The mRNA expression of cytokines in the colonic mucosa was analyzed using real-time PCR.
As shown in Fig 4, the mRNA expression of IL-1β, IL-6, IL-17A and IFN-γ decreased signifi-
cantly in the DSS plus TN-3 mice as compared to the DSS mice. The mRNA expression of
TNF-α decreased in the DSS plus TN-3 mice as compared to the DSS mice, but there was no
significance between these two groups. Interestingly, we found that the mRNA expression of
IL-10, which is an anti-inflammatory cytokine, was significantly elevated in the DSS plus TN-3
mice as compared to the DSS mice. As shown in Fig 5, we also confirmed that the expression of
IL-1β, IL-6, IL-17A, and IFN-γ decreased, and the expression of IL-10 increased in the colon
tissues of the DSS plus TN-3 mice as compared to the DSS mice using immunohistochemistry.
Thus, TN-3 significantly suppressed the expression of proinflammatory cytokines and
enhanced IL-10 expression.

Effect of TN-3 on the induction of regulatory T cells (Treg cells)
To explore the mechanism underlying the effects of TN-3 on DSS colitis, we focused on Treg
cells in the colonic mucosa. Treg cells are known as a major source of IL-10 and have anti-
inflammatory effects on the development of colitis [28]. As shown in Fig 6A, Treg cells were
detected as CD4+Foxp3+ double positive cells by flow cytometry. As shown in Fig 6B, the

Fig 1. Effect of E.durans TN-3 on the development of DSS colitis. BALB/cAJcl mice were orally inoculated with E. durans TN-3 (10mg/day) for 7 days
prior to the start of 4% DSS treatment. The mice were sacrificed at day12 for the experiments. (A) Changes in body weight. (B) Disease activity index on day
12. Data are expressed as means ± SD (n = 10 mice/group).*P < 0.05 between the DSSmice and the DSS plus TN-3 mice.

doi:10.1371/journal.pone.0159705.g001
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proportion of Treg cells was not altered in the TN-3 or DSS mice as compared to the control
mice, but significantly increased in the DSS plus TN-3 mice as compared to the DSS mice.
These results suggest that the preventive effects of TN-3 on the development of DSS colitis
might be mediated by the induction of Treg cells in the colonic mucosa.

Effect of TN-3 on fecal short-chain fatty acid (SCFA) levels
Short-chain fatty acids (SCFAs), such as butyrate, acetate and propionate, are generated by the
fermentation of dietary fibers by anaerobic bacteria [29]. Recent studies reported that butyrate
plays a crucial role in the induction of mucosal Treg cells [30, 31]. Therefore, we examined the
effects of TN-3 on fecal SCFA levels. As shown in Fig 7, fecal butyrate and acetate levels signifi-
cantly increased in the TN-3 mice as compared to the control mice. Fecal butyrate levels signif-
icantly decreased in the DSS mice as compared to the control mice, but increased significantly
in the DSS plus TN-3 mice as compared to the DSS mice. On the other hand, acetate levels sig-
nificantly increased in the TN-3 mice as compared to the control mice, but there was no differ-
ence between the DSS and the DSS plus TN-3 mice. We also measured the fecal propionate
levels, but there was no significant difference between the TN-3 mice and the control mice, and
between the DSS and the DSS plus TN-3.

Fig 2. Histological evaluation of colitis. (A) Histologic findings of the colonic tissue on day 12. Hematoxylin and eosin staining. (original magnification
x100). (B) Histological score. Data are expressed as means ± SD (n = 10 mice/group). *P < 0.05, **P < 0.01, n.s.: not significant.

doi:10.1371/journal.pone.0159705.g002
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Effects of TN-3 on the fecal microbial composition and diversity
We investigated the effects of TN-3 on the fecal microbial structure using the T-RFLP method.
The prediction of bacteria was performed according to the BslI-digested T-RFLP database [25].

Fig 3. The proportion of the immune cells in the DSS colitis. (A) The Flow cytometric analysis for CD4+ T cells, F4/80+ macrophages, and Gr-1+

neutrophils in the colonic lamina propria. Data are representative of five independent experiments. (B) The absolute number of T cells, macrophages,
and neutrophils in the colonic lamina propria. Data are expressed as means ± SD (n = 5 mice/group). *P < 0.05, **P < 0.01, n.s.: not significant.

doi:10.1371/journal.pone.0159705.g003

Enterococcus durans TN-3 Suppresses Murine Colitis

PLOS ONE | DOI:10.1371/journal.pone.0159705 July 20, 2016 7 / 15



As shown in Fig 8A and Table 2, the results of bacteria prediction by T-RFLP analysis showed
that proportion of Bacteroides significantly decreased and that of Clostridium cluster XI signifi-
cantly increased in the TN-3 mice as compared to the control mice. In the DSS mice, the pro-
portion of Bacteroides and Clostridium subcluster XIVa significantly increased and that of
Clostridium cluster XI significantly decreased as compared to the control mice. However, there
was no significant difference in the fecal microbial structure between the DSS mice and the
DSS plus TN-3 mice. Next, we calculated the Shannon diversity index in each group. As shown
in Fig 8B, the microbial diversity increased significantly in the TN-3 mice but decreased signifi-
cantly in the DSS mice as compared to the control mice. However, the microbial diversity sig-
nificantly increased in the DSS plus TN-3 mice as compared to the DSS mice. There was no
significant difference in the diversity of microbial community between the control mice and
the DSS plus TN-3 mice.

Fig 4. mRNA expression of cytokines in the colon.Real-time PCR analysis for the mRNA expression of cytokines was performed on the colonic mucosa.
The cytokine mRNA expression was converted to a value relative to β-actin mRNA expression, and was presented as an increase relative to the results for
control mice (no treatment). Data are expressed as means ± SD of five different samples. *P < 0.05, **P < 0.01.

doi:10.1371/journal.pone.0159705.g004
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Discussion
IBD is heterogeneous diseases characterized by overly aggressive immune responses to a subset
of gut bacteria in genetically susceptible individual [3]. The relative imbalance of aggressive
and protective bacterial species, termed dysbiosis, has been reported to be one of critical factors
involved in the pathogenesis of IBD [4, 32]. Recent studies suggest that the therapeutic
approaches targeting the gut microbiota, such as the use of probiotics, prebiotics and synbio-
tics, may improve the clinical outcome of patients with IBD [3]. The efficacy of probiotics for
IBD has been reported. There are some large clinical trials of probiotics in IBD, especially in
UC, in the setting of remission and maintenance of remission. A clinical traial demonstrated
that E. coli Nissle 1917 was similar in efficacy to mesalamine for maintaining UC in remission
[33]. E. coli Nissle 1917 is considered an effective alternative to mesalazine for maintenance of
remission in UC. Two clinical trials suggested that the use of multistrain probiotic VSL#3 for

Fig 5. The expression of cytokines in the colon tissue. The expression of IL-1β, IL-6, IL-17A, IFN-γ, and IL-10 in the colon tissues was examined using
immunohistochemistry. Control staining was also presented. The data are representative of four independent experiments. Magnification x 100.

doi:10.1371/journal.pone.0159705.g005

Enterococcus durans TN-3 Suppresses Murine Colitis

PLOS ONE | DOI:10.1371/journal.pone.0159705 July 20, 2016 9 / 15



moderate active UC was able to improve the remission rate and the clinical response rate [34,
35].

Most probiotic microorganisms are classified as lactic acid bacteria, such as Lactobacillus
spp., Bifidobacterium spp. and Enterococcus spp.[9] Enterococcus spp. strain TN-3 was isolated
from deep seawater in Toyama bay in Japan [12]. TN-3 causes liquefaction of gelatin, fermen-
tation of litmus milk, and possesses β-galactosidase activity. TN-3 has high homology to E. dur-
ans with respect to its 16S rDNA nucleotide sequences [12]. Irit Raz et al. suggested E. durans
has the immunoprotective and anti-inflammatory effect in DSS-induced colitis. They isolated
E. durans, which was able to produce butyrate, from human feces, and demonstrated that E.
durans suppressed DSS-induced colitis by colonizing in the colon and supplying adequate
butyrate to colonocytes [36]. However, the mechanisms of suppressive effect of E. durans
remained unclear. In the current study, we showed that E. durans TN-3 suppresses the devel-
opment of DSS colitis via the induction of mucosal Treg cells. This was accompanied by the
restoration of the fecal microbial diversity and an increase in fecal butyrate levels.

Fig 6. Proportion of Treg cells in the lamina propria of the colon. (A) Flow cytometric analysis for Foxp3+CD4+ T reg cells in the colonic lamina propria.
Data are representative of five independent experiments. (B) Proportion of Foxp3+CD4+ T reg cells. Data are expressed as means ± SD of five different
samples. *P < 0.05, **P < 0.01, n.s.; not significant.

doi:10.1371/journal.pone.0159705.g006
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A number of studies have demonstrated that IL-10 is a key immunomodulatory factor that
inhibits the release of proinflammatory cytokines by immune and inflammatory cells [37, 38],
and that Treg cells are considered as a major source of IL-10 in the intestinal mucosa [39, 40].
In this study, we found that both IL-10 mRNA expression and the proportion of Treg cells
increased significantly in the DSS plus TN-3 mice as compared to the DSS mice. These results
suggest that E. durans TN-3 might induce Treg cells and stimulate IL-10 production, leading to
the suppression of the development of DSS colitis.

Recent studies demonstrated that butyrate, generated by the fermentation of dietary fiber by
anaerobes, plays a crucial role in the induction of Treg cells in the mucosa [32, 41]. Other stud-
ies have demonstrated that butyrate has an anti-inflammatory property by suppressing the
activation of transcription factor NF-κB, which is a central transcription factor mediating vari-
ous inflammatory responses [42, 43]. Based on these findings, we hypothesized that TN-3
modulated the gut microbial community and stimulated butyrate production, leading to the
induction of Treg cells. As we expected, the diversity of fecal microbial community was
restored in the TN-3 plus DSS mice as compared to the DSS mice, and fecal butyrate levels
were significantly elevated in the TN-3 plus DSS mice as compared to the DSS mice. These
findings suggest that E. durans TN-3 modulated the gut microbial community and stimulated
butyrate production. Subsequently, Treg cells were induced in response to increased butyrate
generation, leading to the suppression of the development of DSS colitis. Additionally, butyrate

Fig 7. Effect of TN-3 on the concentration of fecal SCFAs. The concentrations of fecal SCFAs were measured by High-performance liquid
chromatography: (A) the concentration of butyrate, (B) the concentration of acetate, (C) the concentration of propionate. Data are expressed as means ± SD
of five different samples. *P < 0.05, **P < 0.01, n.s.; not significant.

doi:10.1371/journal.pone.0159705.g007
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Fig 8. Effects of E. durans TN-3 on the gut microbial community and its diversity. (A) Changes in the fecal bacteria in DSS- and TN-3-treated mice. The
value indicates the percentage of the predicted bacteria. (B) The Shannon Diversity Index (SDI) in comparison of the fecal bacterial diversity between groups.
SDI was calculated from the BslI-digested terminal restriction fragment patterns. Data are expressed as means ± SD of five different samples.

doi:10.1371/journal.pone.0159705.g008

Table 2. Comparison of predicted bacteria.

Predicted bacteria control TN-3 DSS+PBS DSS+TN-3

Bifidobacteriales 0.2 ± 0.4 0.0 0.0 0.0

Lactobacillales　 8.1 ± 2.6 9.4 ± 6.1 5.0 ± 3.9 5.6 ± 2.2

Bacteroides 43.6 ± 9.4 a 30.6 ± 6.5 b 59.0 ± 8.3 c 52.5 ± 6.0ac

Prevotella 3.0 ± 1.2 4.6 ± 1.2 4.0 ± 3.3 7.3 ± 4.3

Clostridium 18.0 ± 3.5 a 25.4 ± 1.6 b 25.9 ± 6.6 ab 27.0 ± 3.2 b

Clostridium cluster IV 1.0 ± 0.61 0.9 ± 0.33 1.1 ± 0.33 0.8 ± 0.35

Clostridium subcluster XIVa 7.3 ± 2.06 a 11.8 ± 3.9 a 22.5 ± 6.1 b 21.5 ± 3.4 b

Clostridium cluster XI 6.3 ± 1.4 a 10.9 ± 2.7 b 1.3 ± 0.9 c 2.5 ± 1.3 c

Clostridium cluster XVIII 3.4 ± 1.5 a 1.8 ± 1.1 ab 1.0 ± 0.27 b 2.2 ± 1.1 ab

Others 27.2 ± 8.1 a 30.1 ± 6.3 a 6.1 ± 3.6 b 11.0 ± 11.0b

Each value indicates the percentage of individual predicted bacteria. Values were expressed as mean ± SD. Values not sharing a letter are significantly

different.

doi:10.1371/journal.pone.0159705.t002
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might directly blocked the development of DSS colitis via its inhibitory action on NF-κB
activation.

There are some limitations in this study. First, we did not clearly demonstrate how TN-3
modulates the gut microbiota. Second, there is no direct evidence that the increase expression
of IL-10 produced by Treg cells is critical for the improvement of DSS-induced colitis. In the
future, further examinations are needed to clarify these limitations.

In conclusion, the preventive administration of E.durans TN-3 suppressed the development
of DSS colitis via the induction of IL-10 producing Treg cells by restoring of the diversity of gut
microbiota. These findings suggest that E. durans TN-3 is a new probiotic candidate for the
treatment of IBD.

Supporting Information
S1 Fig. The effect of therapeutic treatment of TN-3 on the development of colitis. BALB/
cAJcl mice were orally inoculated with E. durans TN-3 (10mg/day) at the same time with the
start of 4% DSS treatment. The mice were sacrificed at day12 for the experiments. (A) Changes
in body weight. (B) Disease activity index on day 12. Data are expressed as means ± SD (n = 4
mice/group). n.s.; not significant.
(TIF)
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