
RESEARCH ARTICLE

Automatic Recognition of Element Classes
and Boundaries in the Birdsong with Variable
Sequences
Takuya Koumura1,2, Kazuo Okanoya1,3*

1 Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo,
Japan, 2 Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan, 3 Cognition and
Behavior Joint Laboratory, RIKEN Brain Science Institute, Saitama, Japan

* cokanoya@mail.ecc.u-tokyo.ac.jp

Abstract
Researches on sequential vocalization often require analysis of vocalizations in long contin-

uous sounds. In such studies as developmental ones or studies across generations in

which days or months of vocalizations must be analyzed, methods for automatic recognition

would be strongly desired. Although methods for automatic speech recognition for applica-

tion purposes have been intensively studied, blindly applying them for biological purposes

may not be an optimal solution. This is because, unlike human speech recognition, analysis

of sequential vocalizations often requires accurate extraction of timing information. In the

present study we propose automated systems suitable for recognizing birdsong, one of the

most intensively investigated sequential vocalizations, focusing on the three properties of

the birdsong. First, a song is a sequence of vocal elements, called notes, which can be

grouped into categories. Second, temporal structure of birdsong is precisely controlled,

meaning that temporal information is important in song analysis. Finally, notes are produced

according to certain probabilistic rules, which may facilitate the accurate song recognition.

We divided the procedure of song recognition into three sub-steps: local classification,

boundary detection, and global sequencing, each of which corresponds to each of the three

properties of birdsong. We compared the performances of several different ways to arrange

these three steps. As results, we demonstrated a hybrid model of a deep convolutional neu-

ral network and a hidden Markov model was effective. We propose suitable arrangements

of methods according to whether accurate boundary detection is needed. Also we designed

the new measure to jointly evaluate the accuracy of note classification and boundary detec-

tion. Our methods should be applicable, with small modification and tuning, to the songs in

other species that hold the three properties of the sequential vocalization.
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Introduction
Sequential vocalizations, in which voices are produced sequentially, have been a target of wide
variety of researches. This is not only because they include human spoken language, but also
because they serve as excellent models for precise motor control, learning, and auditory
perception.

Birdsong is one of the most complex and precisely controlled sequential vocalizations, and
has been widely and intensively studied [1–3]. Birdsong, as well as most of other sequential
vocalizations, has several distinct properties. First, usually a song is a sequence of discrete vocal
elements (called notes) [4]. Thus, by grouping similar notes into a single class, it is possible to
convert songs into symbol sequences of note classes. Notes in a single class are considered to be
generated by the same set of commands in motor neurons, which leads to the similar patterns
of muscle activation to the similar acoustic outputs [5–8]. It is also known that auditory stimuli
of notes in the same class invoke similar activation patterns in the auditory brain areas [9]. Sec-
ond, temporal structure of the song is precisely controlled. Neural activities that are time-
locked to a particular timing in a particular note class have been found during song production
and perception [10–13]. Other studies have shown that temporal patterns of birdsong are con-
structed upon multiple levels of variability from local to global ones [14–16]. Thus, in analyzing
birdsong it is important to accurately extract timing information such as note onsets and off-
sets. Finally, notes are sequenced not randomly but according to a certain probabilistic rule.
Usually rules for note sequencing are unique to individuals and acquired by learning [17–21].
This rule for note sequence production is called song syntax. Taken together, in analyzing bird-
song it is important to group notes into classes, extract timing information, and consider song
syntax.

In behavioral and physiological studies on animal vocalization it is not a rare case when
vocalizations in several days (or months) are to be analyzed [22,23]. For example a Bengalese
finch, one of the model species for sequential vocalization, typically sings for ten minutes to
one hour totally in a day, consisting of 5–30 thousand notes (depending on individuals), result-
ing in tens of hours of songs including hundreds of thousand notes in several days to be ana-
lyzed. Therefore for efficient analysis of vocalizations an accurate and robust automatic
recognizer is strongly desired.

As stated above, in many cases of studies on sequential vocalizations such as birdsong, it is
important to extract temporal information as well as its contents. This is one big difference and
difficulty in recognizing sequential vocalizations for biological research compared to ordinary
human speech recognition for application purposes, in which usually the priority is to convert
sound data into text sequences and thus word or phoneme boundaries are not very much
important [24,25]. On the contrary, vocalizations in non-human animals usually consist of
smaller number of element classes and their combination patterns compared to human spoken
language, which makes recognition easier in terms of pattern complexity. Therefore developing
automatic recognizers of sequential vocalizations specialized for biological purposes, not just
blindly using the methods for human speech recognition, is important for further research on
animal vocalization.

Several previous studies have performed automatic recognition of birdsong, using dynamic
time warping (DTW) [26–28], a hidden Markov model (HMM) [27], or a support vector
machine (SVM) [29]. In machine learning in general, it is crucial to construct good representa-
tions of the data that separate data classes well in the feature space. In the previous studies,
sound spectra [26–28], mel-frequency cepstral coefficients (MFCC) [27], a small set of acoustic
features [30], and a large number of features including spectra, cepstra, and their changes [29]
have been used to describe properties of songs. However, there is no good reason to use MFCC

Automatic Recognition of Birdsong

PLOS ONE | DOI:10.1371/journal.pone.0159188 July 21, 2016 2 / 24



in birdsong recognition because it has been designed for human speech. Also, it is not known
whether the specific features used in the previous studies are suitable for vocalizations of other
species as well. Although a SVM can automatically select good features from a large set of fea-
tures, the problem of considering the initial feature set still remains. The desirable methods are
ones that can automatically extract good features from data without manually engineering a set
of features.

In the present study, to fulfill the three requirements stated above, we employed a hybrid
model of a multi-layered neural network and an HMM, with which high performances have
been achieved in human speech recognition [25]. A multi-layered neural network is known to
have a capacity to find good representations of data by machine learning [31], making it possible
to achieve robust note classification. Specifically we used deep convolutional neural network
(DCNN) to handle long continuous sounds [32–34]. An HMM is good at handling variable
sequences produced according to probabilistic syntax rules. Note boundaries were detected
either with an HMM or by thresholding of amplitude and duration of note and silent intervals.
Performances of the recognizers were evaluated by cross-validation with three types of error
rates designed to capture accuracy of note classification, boundary detection, and both of them.

Results

Data sets
In total songs in 13 birds were recorded. All notes in recorded songs were manually located
and classified with the help of machine learning techniques (see materials and methods). Songs
in two birds which had more than 1% of manually unrecognizable notes were discarded. The
fractions of unrecognizable notes in the discarded birds were 1.44% and 1.52%. Songs in the
remaining 11 birds were used for the following evaluation. The average ± standard deviation of
the total song duration in 11 birds was 40.7 ± 18.4 minutes. The number of total notes and the
number of note classes was 17930.9 ± 8941.8 and 8.1 ± 3.9, respectively. Songs in each bird
were individually processed because songs were largely different among birds.

The entire data sets were randomly divided into three for three-fold cross-validation. In
machine learning in general, the larger the training data set the more generalization ability is
obtained. It has been also the case in the previous study on birdsong recognition [29]. In the
current study we compared the recognition results trained on two and eight minutes of training
data randomly selected from the non-validation data set (2 / 3 of the whole data). The number
of notes in two and eight minutes of training data was 862.5 ± 60.8 and 3474.2 ± 241.6,
respectively.

Three steps in birdsong recognition
In this study we divided the automatic recognition of birdsong into three sub-problems, each
of which corresponds to one of the three properties of birdsong stated in the introduction sec-
tion. First, notes must be correctly located in the continuous sound recordings by detecting
note boundaries (note onsets and offsets). We call this step “boundary detection”. Second, each
note must be classified into a given number of classes (or the class for silence). We call this step
“local classification”. The combination of boundary detection and local classification is equiva-
lent to object spotting or semantic segmentation in two-dimensional object recognition
[35,36]. Finally, outputs of the local classification are sequenced according to given song syn-
tax. We call this step “global sequencing”. In the global sequencing step misclassifications of
the local classifier were corrected by top-down information of the song syntax. The local classi-
fication and the global sequencing step can be seen as a bottom-up path and a top-down path
in the song recognition, respectively. In the current study, to efficiently perform global
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sequencing, what was done in the local classification step was actually soft classification. In
other words, scores that represented the probability of the note classes were assigned to the
local inputs. Then, the scores obtained in the local classification step were used in the following
global sequencing step to determine output note sequences (Fig 1).

Fig 1. Three arrangements of methods for birdsong recognition. Flow diagrams for the three arrangements compared in this study. (a) BD! LC!GS
arrangement. The colored letters A, B, and C indicate the note classes, and the white regions indicate the detected inter-note silent intervals. (b) LC! BD &
GS arrangement. The white letter S indicates the silent intervals. (c) LC & GS! BD & GS arrangement.

doi:10.1371/journal.pone.0159188.g001
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To accomplish the song recognition, several ways of combining or arranging these steps
are possible. In this study, we compared three different arrangements (Fig 1). In the first
arrangement, boundary detection, local classification, and global sequencing were sequentially
conducted (Fig 1a). In the second arrangement, local classification was conducted before
simultaneously conducting boundary detection and global sequencing (Fig 1b). In the last
arrangement, local classification and global sequencing were simultaneously conducted before
the simultaneous boundary detection and (another) global sequencing (Fig 1c). The last
arrangement included global sequencing twice by different algorithms. Hereafter we call these
three arrangements “boundary detection! local classification! global sequencing (BD!
LC! GS)”, “local classification! boundary detection & global sequencing (LC! BD &
GS)”, and “local classification & global sequencing! boundary detection & global sequencing
(LC & GS! BD & GS)”. Note that different ordering of the three steps does not mean same
specific algorithms can be used for the same steps in the different arrangements. For example,
the number of output classes in local classification was approximately three times larger in the
LC! BD & GS and LC & GS! BD & GS arrangements than in BD! LC! GS arrange-
ments because notes should be divided into three parts for accurate boundary detection per-
formed at the same time of global sequencing.

Evaluation
Accuracy of the recognition was evaluated using the following three measures. To evaluate the
accuracy of note classification, the Levenshtein distance between the output label sequence and
the corresponding true label sequence was computed. The Levenshtein distance is the minimum
number of operations of insertion, deletion, and replacement that are needed to convert one
sequence into another. The actual measure used for the evaluation was the total Levenshtein dis-
tance divided by the total number of notes in the true sequences. This measure is equivalent
with word ER in human speech recognition. Thus we call this measure note ER in this paper.

The note ER is designed to measure the difference of two symbol sequences, but does not
have a capacity to capture the difference of note boundaries. The straightforward measure for
jointly evaluating the accuracy of note classes and boundaries might be the total length of the
time points in which the recognizer assigned different classes from those in the true sequences.
However, such a measure cannot penalize the case in which two successive notes with identical
classes were incorrectly recognized as one long note. Another measure might be the sum of the
distances from the note onsets in the output sequences to the onsets of the nearest notes with
the same classes in the true sequences plus the distances between the offsets. This measure fails
if some note classes in one sequence do not exist in another. In this study, we devised the new
measure for jointly evaluating the note classes and boundaries without any specific constraints
(Fig 2). First, for each true note interval, an output note with the same class and with the lon-
gest overlap with the true one, if any, was matched. The overlapped sections in the matched
intervals were regarded as the correctly recognized note intervals. Next, for each silent interval
in the true sequence, the correctly recognized silent intervals were defined as the sections in
which no classes were assigned in recognition. Finally, the total length of the correctly recog-
nized note and silent intervals was divided by the total length of the input sequences, and sub-
tracted from one. Hereafter we call this measure as the note & timing ER because this measure
captures both classification and timing errors.

Note& timing ER ¼ 1� total length of the correctly recognized intervals
total length of the input sequences
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Finally, to evaluate the accuracy of timing recognition, note & timing ER was computed for
the true and output sequences ignoring note classes, focusing only on the timing information.
In this paper this measure is called timing ER.

Although these three error rates, note ER, timing ER, and note & timing ER, are well-
defined and sound measures to capture the corresponding accuracies, these errors are not very
much straightforward or intuitive. Thus, we also computed other measures called identification
ER and duration ER (S1 Fig, S1 Table). These measures are based on the notes in true and out-
put sequences that are nearest to each other. Thus, although sometimes the nearest notes can-
not be defined, these measures are straightforward and easy to understand.

Song recognition in the BD! LC!GS arrangement
In the BD! LC! GS arrangement (Fig 1a), first, note boundaries were located as the inter-
vals with amplitude and duration larger than certain thresholds (BD step; Fig 3). Then sound

Fig 2. Note & timing error rate. An example of an input, a true sequence, output sequences, and correctly recognized intervals that would
be obtained in computing note & timing error rate. (a) An example spectrogram and the true labels and boundaries. Note classes are
indicated by letters. (b) An example recognition output (upper), and the correctly recognized intervals (lower). In the correctly recognized
intervals, colored bars indicate the correctly recognized note intervals, longest overlaps with the true label intervals. Gray bars indicate the
correctly recognized silent intervals. The correctly recognized intervals appear to capture the performances properly even in such cases
that a single note is recognized as two (notes B) and two notes are recognized as one (notes C). In both cases either of two overlapping
intervals (the one with a longer overlap) was counted as correctly recognized intervals. There could be a case in which no matched interval
is assigned (note A). (c) Another example showing the recognition outputs and the correctly recognized intervals with lower note & timing
error rate.

doi:10.1371/journal.pone.0159188.g002
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spectrograms were fed into a DCNN to obtain scores for a given number of note classes at
every time point (LC step; Fig 4a). The scores assigned by the DCNN to a time point repre-
sented the probability of the class labels assigned to the local input with the length of 111 ms
centered on the time point. The scores were averaged in each detected note interval. Finally,
the averaged likelihoods and the pre-computed song syntax (Fig 5) were fed into an HMM to
determine the output classes for the note intervals that maximize the total likelihood through-
out the sequences (GS step).

The average note ERs were as low as 1.86% with 2 minutes of training data and 1.57% with
8 minutes of training data (Table 1), ranging from 0.19% to 5.01% (Fig 6a), whereas the average
timing ERs were 4.24% and 4.21% with 2 minutes and 8 minutes of training data, among
which ERs in one bird reached nearly 10% (Fig 6b). These results suggest that note boundaries
are not accurately detected by the BD! LC! GS arrangement. Indeed the recognition result
in the bird with the highest note & timing ERs shows that boundaries between notes with
almost no silence could not be detected by the thresholding method (Fig 7b). Obviously the
note & timing ERs are lower-bounded by the errors of boundary detection, measured with the
timing ERs. In contrast, if boundary detection worked well, the following classification and
sequencing were successful (Fig 7a).

Song recognition in the LC! BD & GS arrangement
In the LC! BD & GS arrangement (Fig 1b), first, sound spectrograms were fed into a DCNN
to obtain scores at every time point as in the BD! LC! GS arrangement. The difference
from the BD! LC! GS arrangement was the number of the output classes in the DCNN
(Fig 4b). Each note was divided into three sub-classes corresponding to the beginning, middle,
and end of the note because performing boundary detection based on the outputs of local clas-
sification requires these three parts to be distinguished from one another. After local classifica-
tion the scores at every time point are fed into an HMM to obtain note boundaries and output
classes that maximize the total likelihood of the sequences. Note that in contrast with the BD
! LC! GS arrangement, the outputs of the DCNN were not averaged across time because
boundary detection was not yet done at the time of the local classification. To accurately detect
note boundaries with an HMM, each note was divided into three parts with the same duration

Fig 3. Boundary detection by thresholding. In the BD! LC!GS arrangement, note boundaries were detected using sound
amplitude and interval duration. From top to bottom: input spectrogram, amplitude envelope (black line) and threshold (orange line), non-
background intervals (orange bars), detected note intervals (blue bars).

doi:10.1371/journal.pone.0159188.g003
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(Fig 8, S3 Fig). Accordingly, the number of output classes in the DCNN was three times the
number of the note classes plus one (silence). Note onsets were defined as the first time points
at which first sub-divisions of the note appeared after the third sub-divisions or the silence.
Note offsets were defined as the last time points of the third sub-divisions.

Examples of the recognition results show that sub-divisions in notes were correctly classified
by the DCNN, resulting in correct sequencing and boundary detection with the HMM (Fig 9),
even in the data poorly recognized with the BD! LC! GS arrangement (Fig 9b). Timing
ERs and note & timing ERs were lower than those in the BD! LC! GS arrangement (for
both types of ERs, Wilcoxon signed-rank test,W = 253, p = 1.43×10−6, adjusted by the factor of
three), suggesting that the LC! BD & GS arrangement is more suitable for recognizing precise
temporal information. Note ERs were not significantly different from those in the BD! LC!
GS arrangement (W = 130, p> 1, adjusted by the factor of three).

Fig 4. Local classification with a deep convolutional neural network. Local classification was conducted with a deep convolutional
neural network. Input, intermediate, and output layers were shown in gray rectangles. The range of the input used for computing a single
time point in the following layer is shown in colored lines. (a) BD! LC!GS arrangement. (b) LC! BD &GS arrangement. (c) LC & GS!
BD & GS arrangement.

doi:10.1371/journal.pone.0159188.g004
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Song recognition in the LC & GS! BD & GS arrangement
The LC & GS! BD & GS arrangement was almost same as the LC! BD & GS arrangement
except for the architecture of the DCNN (Figs 1c and 4c). To include the syntax information
that spanned over more than one notes in the DCNN, additional layer was inserted in the
DCNN, resulting in the width of the input time window widened to 303 ms, roughly covering
three successive notes.

Fig 5. Syntax models used in HMMs. Schematic diagrams of song syntax modeled with a second-order Markov model. In this figure
examples with two note classes (A & B) are shown. (a) A transition diagram in the BD! LC!GS arrangement. The initial state is
indicated by the letter “e”. The transition probabilities of orange arrows were computed from the training data sets. Those of black arrows
were uniformly distributed (ie. all transition probabilities from states “e”, “A”, and “B” are 0.5). Sequence generation is allowed to stop at any
states. (b) In the LC! BD & GS and the LC & GS! BD & GS arrangements, each state in (a) except the initial state was divided into four.
The letter “X” and “Y” denote any note classes or the initial state.

doi:10.1371/journal.pone.0159188.g005
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Examples of the recognition results show that recognition was accurately performed in the
LC & GS! BD & GS arrangement as well as in the LC! BD & GS arrangement (Fig 10). All
types of ERs were lower than those in the BD! LC! GS arrangement (for all types of ERs,
Wilcoxon signed-rank test,W = 253, p = 1.43×10−6, adjusted by the factor of three; Fig 6), and
the note ERs were lower than those in the LC! BD & GS arrangement (W = 247,
p = 2.00×10−5, adjusted by the factor of three; Fig 6a). These results demonstrated the capacity
of a DCNN to capture the syntax information ranging over multiple successive notes. Timing
ERs and note & timing ERs were not significantly different from those in the LC! BD & GS
arrangement (for timing ERs,W = 146; for note & timing ERs,W = 130; for both types of ERs,
p> 1, adjusted by the factor of three).

Summary of the validation errors
Note ERs were the lowest in the LC & GS! BD & GS arrangement. Timing ERs and note &
timing ERs were the highest in the BD! LS! GS arrangement. The larger the training data,
the lower both types of errors were (for note ERs, Wilcoxon signed-rank test,W = 544,
p = 2.39×10−6; for timing ERs,W = 522, p = 1.53×10−5; for note & timing ERs,W = 560,
p = 5.64×10−7; Fig 6), as has been shown in most of other machine learning studies.

Discussion
In the current study we evaluated the three different arrangements to automatically recognize
songs in Bengalese finches, and with two arrangements achieved sufficiently low validation
errors (~ 2%) for practical use in biological studies (Table 1, Fig 6). All arrangements used a
DCNN for local classification and an HMM for global sequencing, demonstrating the effective-
ness of the hybrid use of a DCNN and an HMM for recognizing birdsong as well as human
speech in the previous studies [25,37,38]. To the best of our knowledge this is the first time that
a hybrid DCNN/HMMmodel was applied to automatic recognition of the birdsong.

The note & timing ERs were higher in the BD! LC! GS arrangement than in the other
two arrangements, suggesting that boundary detection should be performed with an HMM
rather than by amplitude and duration thresholding. The note ERs were also higher in the
BD! LC! GS arrangement but were acceptably low for practical use (Table 1). One advan-
tage of the BD! LC! GS arrangement is that by abandoning boundary detection with an
HMM the number of target classes in the DCNN decreases approximately by a factor of three,
making the computation for classification easier and faster. The faster the computation, the
finer the parameters could be tuned, possibly leading to better generalization. Some readers
might think that the problem would get easier with splitting notes into three because three
parts of the notes are usually spectrally different and splitting notes resulted in making inputs
in each category more uniform. Indeed, this may be the case for some classifiers such as SVM,
linear discriminant analysis, and neural networks without hidden layers. However, uniformity
of data within a single category does not affect the performances in multi-layered neural net-
works such as DCNN because these classifiers are highly nonlinear and able to handle

Table 1. Average note ERs, timing ERs, and note and timing ERs.

ERs (%) Note Timing Note & timing

Training data length (minutes) 2 8 2 8 2 8

BD! LC!GS 1.86 1.57 4.24 4.21 4.57 4.42

LC! BD & GS 1.51 1.09 2.07 1.94 2.25 2.06

LC & GS! BD & GS 0.84 0.46 2.04 1.95 2.21 2.06

doi:10.1371/journal.pone.0159188.t001
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Fig 6. Validation errors. (a) Note ERs of the results trained on two and eight minutes of training data sets.
ERs in each bird are shown in open circles. (b) Timing ERs. (c) Note & timing ERs. ***: p < 0.001.

doi:10.1371/journal.pone.0159188.g006
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nonlinear mappings from inputs to outputs. Moreover, slightly better recognition in the LC &
GS! BD & GS step compared to that in LC! BD & GS step revealed the power of a DCNN
in handling data with complex and hierarchical structure. Therefore we propose that either of
the BD! LC! GS or the LC & GS! BD & GS arrangement should be employed according
to the objectives: when accurate note classification is the first priority and the information of
note boundaries were not important, the BD! LC! GS arrangement should be used; when
both accurate note classification and boundary detection are required, the LC & GS! BD &
GS should be used.

The recognition methods investigated in this study should be applicable in all kinds of stud-
ies on animal vocalization with variable sequences that requires accurate element classification
and/or element boundary detection. Essentially these methods do not depend on the particular
features in acoustic data because either a DCNN and an HMM is not specialized to particular
forms of inputs. Especially a DCNN is known to be good at learning good features from data
without manual feature engineering [31,33], and with an HMM syntax information of variable
sequences can be incorporated into recognition process.

Another achievement in this study is designing of the note & timing ER, by which recogni-
tion results of both note classes and note boundaries can be evaluated. This measure can also
be used for evaluating note boundary detection without classification by setting all classes of
notes to identical (ie. grouping all notes into a single class).

Other techniques that could possibly improve the results
There are several techniques on the DCNN that could possibly decrease the validation errors.
One of them is the drop-out technique, in which at each iteration of the training a certain por-
tion of randomly chosen network nodes are turned off [39]. This procedure can be seen as train-
ing multiple networks at the same time and using average outputs of them in the recognition

Fig 7. Recognition results in the BD! LC!GS arrangement. (a) A recognition result in one bird. From upper to lower: an input
spectrogram, amplitude, outputs of local classification, recognized note intervals, true note intervals, and correctly recognized intervals.
Rows in the classification outputs correspond to the note classes. The black areas are putative silent intervals detected in the boundary
detection step. Gray rectangles with letters indicate note intervals and classes. The correctly recognized intervals are indicated by black
bars. (b) A result in another bird with poorer recognition accuracy.

doi:10.1371/journal.pone.0159188.g007
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phase. In the current study outputs of networks trained on three different data sets in the train-
ing data were averaged in recognition. Previous studies on in image recognition have shown
that averaging outputs of multiple networks with different architectures improves generaliza-
tion, although it will take computational time proportional to the number of the networks [40].

Fig 8. Sub-divisions in notes. (a) An example input spectrogram (upper) and the true note intervals (lower). Gray rectangles
with letters indicate note intervals with note classes. (b) Example outputs of a DCNNwithout sub-division in notes (upper) and
the recognized sequence (lower). First three rows in the DCNN outputs correspond to three note classes and the last to the class
for silence. (c) Example outputs with notes divided into two parts. First six rows in the DCNN outputs correspond to three note
classes with two sub-divisions. The last row corresponds to the silence. (d) Example outputs with notes divided into three parts.
First nine rows in the DCNN outputs correspond to the three note classes with three sub-divisions.

doi:10.1371/journal.pone.0159188.g008
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In the current study we described the song syntax in Bengalese finches with a second-
order Markov model in accordance with the previous study [41]. According to the previous
study [42], a first-order Markov model is not sufficient for song syntax in Bengalese finches.
Another study has shown that describing song syntax with a second-, third-, fourth-order

Fig 9. Recognition results in the LC! BD&GS arrangement. (a) A recognition result in one bird. From upper to lower: an input
spectrogram, outputs of local classification, recognized note intervals, true note intervals, and correctly recognized intervals. Rows in the
classification outputs correspond to twelve note classes with three sub-divisions. The bottom row indicates the class for the background
noise. Gray rectangles with letters indicate note intervals and classes. The correctly recognized intervals are indicated by black bars. (b) A
result in another bird.

doi:10.1371/journal.pone.0159188.g009

Fig 10. Recognition results in the LC &GS! BD&GS arrangement. (a) A recognition result in one bird. From upper to lower: an input
spectrogram, outputs of local classification, recognized note intervals, true note intervals, and correctly recognized intervals. Rows in the
classification outputs correspond to twelve note classes with three sub-divisions. The bottom row indicates the class for the background
noise. Gray rectangles with letters indicate note intervals and classes. The correctly recognized intervals are indicated by black bars. (b) A
result in another bird.

doi:10.1371/journal.pone.0159188.g010
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Markov model resulted in qualitatively similar results [41]. The larger the order of the
Markov model, the longer the computational time would be. Thus in the current study we
chose second-order Markov model to describe the song syntax. There are other models that
have been proposed to be suitable in describing song syntax in Bengalese finches such as an
HMM [42], a simplified renewal process [43], and a k-reversed automaton [44]. Song
syntax in canaries is well described by a prediction suffix tree [20]. It might result in
different recognition accuracy if such syntax models are used in the global sequencing step.
A k-reversible model and a prediction suffix tree can be easily implemented in our HMM
framework. The simplified renewal process can be implemented as well if the number of rep-
etition of a single note class is limited. To use a HMM as a syntax model in the global
sequencing step that already uses an HMM for sequencing, a hierarchical HMM could be
considered.

In the current study the 0th order discrete prolate spheroidal sequences (DPSS) was used as
the taper of the short time Fourier transform to compute the sound spectrograms. Using aver-
age spectrum of the multiple tapers could generate more robust spectrograms against back-
ground noise [30,45].

There were a lot of hyper-parameters in the training procedures. Since it is virtually impos-
sible to tune all of those parameters due to the constraint of time for training, the values of
some hyper-parameters were presumably fixed in the current study. Thus, finely tuning such
hyper-parameters by cross-validation within training data sets may improve the results. See the
materials and methods section for the current settings of the hyper-parameters.

Limitations and possible future directions
One obvious limitation of the present study is that pre-determined note classes and boundaries
are required to train the recognizer. Although the length of songs required for training data
sets is very short (~ 2 minutes), the preparation of them might be troublesome if there are tens
of birds to be analyzed. To solve this problem, currently we are trying to establish the methods
for unsupervised training or note clustering with features extracted by generative DCNNs such
as deep generative stochastic networks [46].

Another limitation is that in the current study songs were located manually from the
whole sound recordings. This is because large parts of the recordings were background noise
that is not our current interest and recognizing recordings including hours of background
noise takes a lot of computational time. Our methods are expected to have a capacity to
locate notes in the whole recordings including long background noise, but this capacity
needs to be evaluated properly in the future work. Another possible way to locate songs may
be the similar method as this study assigning a single class to the whole songs and another
class to the between-song silent intervals. Perhaps strict temporal resolution is not
required in this song locating phase, and thus data could be down-sampled to fasten the
computation.

In this study we only recognized songs in Bengalese finches. With small modifications and
tunings, our methods are expected to work well in sequential vocalizations in other species
because most sequential vocalizations have the three properties introduced in this paper: ele-
ment classifiability, importance of timing information, and probabilistic sequencing rules. Cur-
rently we are evaluating similar recognition methods in vocalizations in other species such as
other songbird species, rodents, and gibbons. However, there might be more suitable methods
for songs in rodents that consist of vocal elements with long frequency-modulated sound. Also
similar methods may be applied to recognizing vocalization in human babies to automatically
extract both contextual information and timing information [47].
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Materials and Methods

Ethics Statement
The experimental procedures were approved by the Institutional Animal Care and Use Com-
mittee of the University of Tokyo.

Data acquisition
An adult male Bengalese finch (> 120 days post-hatch) was put into a sound attenuation
chamber. After a habituation period of at least two days to the recording environment, sound
was recorded during 14 hours of light on interval using a microphone (PRO 35, Audio-Tech-
nica Corporation, Japan), an amplifier (MicTube Duo, Alesis, United States), and an audio
interface (OCTA-CAPTURE, Roland, Japan) with 32 kHz sampling rate. Light on and off
intervals (14h and 10h, respectively) were controlled by an LED light. Food and water were
given ad libitum.

Data sets
Songs in 13 birds were recorded. All sequential vocalizations in the recorded sound were man-
ually extracted by visual inspection of the sound spectrogram. Sound spectrograms were com-
puted using short time Fourier transform with a size of 512 and a step of 32 (corresponding to
1 ms), in which frequency band between 1 and 8 kHz was used in all of the following computa-
tions. In computing spectra, the 0th order DPSS with a parameter W = 4 / 512 was used as a
taper [45]. Spectrograms were mean-subtracted and divided by the standard deviation. The
means and the standard deviations were computed in each training data set (defined below). In
other words, this normalization was performed for each fold of the cross-validation.

Notes were located and classified manually with the help of thresholding in acoustic features
and supervised machine learning such as an artificial neural network and linear discriminant
analysis. All boundaries and classes that were automatically located or classified were manually
corrected by visual inspection of the spectrograms. Thus, this procedure is essentially equiva-
lent to manual annotation of all notes. The objectivity of this manual annotation was to some
extent guaranteed by the low cross-validation errors shown in this paper. Non-singing calls
were labeled into one class. Occasionally there were manually unclassifiable notes such as ones
which do not appear to belong to any classes or which have intermediate appearance of more
than one classes. Classes with notes less than 1% of the total number of notes in the songs were
also labeled as unclassifiable as well.

Note sequences, separated by non-singing calls, with more than seven notes and less than
300 ms silence between notes were extracted as songs (S3 Fig). Birds with unclassifiable notes
more than 1% of the total number of notes in the songs were discarded, keeping 11 birds out of
13 recorded. Then to exclude the unclassifiable notes from the data sets each song was seg-
mented at before and after the unclassifiable notes. In spite of the definition of songs in this
study stated above, segmentation at unclassifiable notes could results in shorter note sequences.
Segmented songs with less than three notes were discarded. Segmented songs with more than
15 notes were further segmented so that all sequences contained less than 16 notes because
uneven length of sequences would lead to inefficient computation in terms of memory man-
agement and parallelization. The segmentation of songs into note sequences with less than 16
notes could affect global sequencing with an HMM because emission probabilities of the first
two notes in all sequences were assumed to follow uniform distribution (see below). In other
words, recognition of the first two notes could not take advantage of the syntax information.
To confirm this segmentation did not affect the recognition accuracy, we conducted global
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sequencing with an HMM concatenating the segmented songs in the same training or valida-
tion data sets (S3 Fig).

Note sequences were divided into three groups for three-fold cross-validation. We com-
pared the recognition results trained on two and eight minutes of training data sets randomly
selected from the sequences in non-validation set (2 / 3 of the whole data set). Note that train-
ing data sets were not continuous two or eight minutes of recorded sound, but collections of
note sequences scattered across the whole recordings. Since the total sequence length differed
among birds (ranging from 13.3 and 63.9 minutes), training using whole non-validation set
was not performed. When a need of tuning hyper-parameters arose, the training data set was
further divided into three to perform cross-validation within the training data. The hyper-
parameters were set to the values that minimized the validation error in the cross-validation
within the training data. Songs in each bird were individually processed because songs were
largely different among birds.

Boundary detection by amplitude and duration thresholding
In the BD! LC! GS arrangement, note onsets and offsets were detected by amplitude and
duration thresholding (Fig 3). First, sound intervals with amplitude larger than a certain
threshold were extracted as non-background intervals (orange bars in Fig 3). Amplitude enve-
lope was computed as the sum of the logarithmic amplitude spectrum between the frequency
band of 1 and 8 kHz in each 1 ms time bin of the spectrograms [14]. Then among the extracted
non-background intervals, those with silent intervals shorter than a certain threshold between
them were concatenated. Finally, intervals with duration shorter than a certain threshold were
discarded. The remaining intervals were considered as the note intervals (blue bars in Fig 3).
The three thresholds were determined to minimize the timing ERs among the training data set.
As a result, the optimal threshold for the silent intervals was zero in all conditions in all birds,
meaning that no two intervals were concatenated. Note that this threshold being zero was con-
tingent on the data, but not the necessary condition. The optimal thresholds for sound intervals
are shown in S2 Table.

Amplitude envelope can be computed in another way: full-wave rectification followed by
low-pass filtering and logarithm. We compared these two methods and found that the ampli-
tude envelope computed by sum of the logarithmic amplitude spectrum resulted in better accu-
racy (S2 Fig). Thus, we used this method in the following computation of the BD! LC! GS
arrangement.

Local classification with a deep convolutional network
In all three arrangements, scores for all note classes were computed for spectrograms within a
fixed-length time window with a DCNN [34] (Fig 4). A DCNN serves as a feature extractor and
classifier [31–33]. In the BD! LC! GS and LC! BD & GS arrangements the architecture of
the network was as follows, from input to output: an input layer; three sets of convolutional lay-
ers, cascaded cross channel parametric (CCCP) pooling layers, and max-pooling layers; and two
successive convolutional layers (Fig 4a and 4b). A convolutional layer is written as

Ycij ¼ f bc þ
X

c0;0�i0<hf ;0�j0<wf

Wi0j0Xc0;iþi0;jþj0

0
@

1
A

where Xcij and Ycij denote values in a third-order tensor,Wij denotes values in a weight matrix,
and bc denotes values in a bias vector of the layer. The f denotes the activation function, hf
denotes the filter height, and wf denotes the filter width. In a CDNN c, i, and j are usually called
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channels, rows, and columns. The CCCP pooling layers can be seen as small networks acting as
activation functions in the convolutional layers [48]. They were implemented by convolutional
layers with an 1×1 filter size (hf = wf = 1). The filter size of the first two convolutional layers and
the third convolutional layer were (hf = wf = 5) and (hf = wf = 4), respectively. The filter width of
the fourth convolutional layer was determined by the width of the input time window. In the
BD! LC! GS and the LC! BD & GS arrangements the width of the input time window was
96 (111 ms), resulting in the filter width of the fourth convolutional layer to be wf = 9. This
width was determined so as to roughly cover duration of a single note. The filter height of the
fourth convolutional layer was hf = 11 to cover the whole input height of 112 (from 1 to 8 kHz).
The filter size and the stride size of the max-pooling layers were both 2×2. The number of chan-
nels in the first three convolutional layers and the CCCP pooling layers was c = 16 in each. The
number of channels in the fourth convolutional layer was c = 240. All convolutional layers and
CCCP pooling layers except the last layer had rectified linear activation functions. The last con-
volutional layer had a softmax activation function. Thus this layer was also called a softmax
layer. In the LC & GS! BD & GS arrangement, another convolutional layer was inserted before
the last layer, hoping to capture the syntax information that spanned over more than one note
(Fig 4c). The filter width of the inserted layer was wf = 25, corresponding to the input window
width of 288 (303 ms), roughly covering the duration of three successive notes. The aim of
inserting this layer was to integrate the local single-note information in the fourth convolutional
layer into the global syntax information over three notes. In other words, it tries to implicitly
combine the outputs of local classification and the global syntax in the form of a trigram syntax
model. To ensure proper classification under the fourth convolutional layer, the network with-
out the inserted layer was trained before inserting additional fifth convolutional layer and train-
ing the whole network.

Updating of parameters (weights and biases) was performed by a simple stochastic gradi-
ent descent method with a cross-entropy cost function. The learning rate was determined in
each training data set as follows. First, the initial search of the learning rate was conducted
using 2 / 3 of the training data set for training and the other 1 / 3 for validation. Training was
conducted with various learning rates from 0.001 to 0.04. The initial learning rate was set to
the value that achieved the lowest validation error in one of the first 32 training iterations.
Then the full training was conducted on the 2 / 3 of the training data as long as the validation
error in the other 1 / 3 kept decreasing. When the validation error stopped decreasing, the
learning rate was decreased by half and the training was continued. This procedure was
repeated three times. The training was performed on the three different combinations of the
sub-training and sub-validation data, yielding three parameter sets in each training data set.
Parameter update was performed iteratively for small data set (called mini-batch) selected
randomly from the training data. Data in each mini-batch was selected so that total length in
each mini-batch did not exceed 32 s. In the recognition phase, the outputs of those three net-
works were averaged.

The network weights and biases were initialized according to [49]. The initial weights were
sampled from a Gaussian distribution whose mean was zero and standard deviation was the
square root of two divided by the number of incoming connections to the particular node. All
biases were initialized to zero. The random seed for the initial weights were searched at the
same time with the initial search of the learning rate.

In the case of BD! LC! GS arrangement, the size of the softmax layer was the number of
note classes. In the other two arrangements, to perform the following boundary detection with
an HMM, the size of the softmax layer was three times the number of note classes plus one cor-
responding to silence.
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Boundary detection and global sequencing with a hidden Markov model
In the BD! LC! GS arrangement, the outputs of local classification were combined with the
global syntax information with an HMM [25,37] (Fig 1a). Generally when an HMM are com-
bined with a DCNN, the outputs of the DCNN are considered as the posterior probabilities of
the hidden states [25,50]. In the current study, song syntax was described with a second-order
Markov model [41] (Fig 5a). To describe the syntax of note sequences with a second-order
Markov model, the structure of an HMM was modified so that the transition between hidden
states were mediated by generation of a symbol corresponding to the note class, and that the
outputs of the DCNN were considered as the posterior probabilities of the symbols.

YZ � PðZ j XYÞ;
DCNN output ¼ PðZ j spectrogramÞ;

where X, Y, and Z denote note classes.
The transition probability between hidden states was computed from the training data set

with smoothing by adding a constant value before dividing by the sum.

PðZjXYÞ ¼ P0ðZjXYÞ þ aX
Z0
ðP0ðZ0jXYÞ þ aÞ

where P(Z|XY) and P0(Z|XY) denote smoothed and original transition probability of the note
class Z after notes X and Y, respectively. The α is a smoothing constant, which was determined
by cross-validation within the training data set. The transition probabilities from the initial
state and the next state of the initial state were assumed to be uniformly distributed. The out-
puts of the DCNN were averaged over each sound interval detected by thresholding to obtain
the posterior probability of the hidden states in each interval. The optimal state sequences for
the computed posterior probabilities were estimated by Viterbi algorithm, which were then
converted into the label sequences of the note classes.

In the CL! BD & GS and the CL & GS! BD & GS arrangements, boundary detection
was performed simultaneously with global sequencing (Fig 1b and 1c, and S4 Fig). To accu-
rately detect note boundaries, each note was divided into three parts with the same duration
(Fig 8), and each state was divided into four: first three of which emitted three parts of a note
and last of which emitted the silent interval between notes. These divided sub-states are con-
nected in the left-to-right manner including self-transitions (Fig 5b). The last two sub-states
had the connections to the next state, which correspond to the transition from one note to
another. The transition probabilities in these transitions followed the second-order note transi-
tion probabilities in the training data set with smoothing. The other transition probabilities
(transition probabilities from the initial state, those from the next state of the initial state, and
transition probabilities from a sub-state to the same sub-state or a next sub-state) were
assumed to be uniformly distributed. Specifically, transition probabilities from a state XYi

(i = 1 or 2) were

PðXYijXYiÞ ¼ PðXYiþ 1jXYiÞ ¼ 0:5

where XYi denotes an i-th sub-state. Transition probabilities from a state XY3 were as follows:

PðXY3jXY3Þ ¼ PðXYsjXY3Þ ¼
1

nþ 2

PðYZ1jXY3Þ ¼
n

nþ 2
PðZjXYÞ
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where XY3 and XYs denotes third and fourth sub-states, and n denotes the number of note clas-
ses. Transition probabilities from a state XYs were as follows:

PðXYsjXYsÞ ¼
1

nþ 1

PðYZ1jXYsÞ ¼
n

nþ 1
PðZjXYÞ

Dividing each note into more than two parts was crucial. This is because if no division was
made in a note, the HMM would not be able to distinguish two notes with a very small silent
interval from one long note by mistakenly inserting or skipping short silences (notes A and C
in Fig 8b). If notes were divided into two parts, small misclassifications of two sub-divisions
would cause unwanted onsets and offsets at the positions of the misclassifications. (notes B in
Fig 8c) because in the HMM transitions from the second sub-states to the first sub-states were
allowed. In the case of notes B in Fig 8c, unwanted note boundary was recognized at the transi-
tion from the state AB2 to the state BB1. If notes were divided into three, transitions from the
second sub-states to the first sub-states were not allowed by the left-to-right constraints. Thus,
in the case of note B in Fig 8d, the optimal state sequences were from AB2 to AB3, not to BB1,
even if the outputs of the DCNN at the time were large for the first sub-division in note B.

In general cases of recognition in an HMM with a DCNN, the outputs of the DCNN are
considered as the posterior probability of the hidden states given the acoustic data, P(Z|spectro-
gram). The posterior probability is often converted into the emission probability of the acoustic
data given the hidden states by Bayes' rule [25,50]:

PðspectrogramjZÞ / PðZjspectrogramÞ
PðZÞ

In this study we chose whether to conduct this conversion according to the cross-validation
within the training data sets. When the outputs of the DCNN was not converted into the emis-
sion probability, the emission probability was assumed to equal to P(Z|spectrogram).

Computation
All computations and sound recording were implemented in the custom written java and cuda
program. The source code is available at https://github.com/takuya-koumura/birdsong-
recognition. Training of the DCNN and recognition were conducted using cuDCNN library on
graphic processors (GTX 970 or 980, NVIDIA, United States).

Supporting Information
S1 Fig. Identification errors and duration errors. In the current study, we computed three
types of validation errors: note error rates (ERs), timing ERs, and timing & note ERs. Although
these three error rates are well-defined and sound measures to capture the corresponding accu-
racies, these errors are not very much straightforward or intuitive. Thus, we also computed
other measures called identification ERs, duration ERs of notes, and duration ERs of silent gaps.

Identification ERs was defined by the fraction of incorrectly recognized notes. The incor-
rectly recognized notes were defined by the notes in the true sequences with the nearest notes in
the output sequences to which incorrect classes were assigned, or by the notes in the true
sequences that had two notes in equal distance in the output sequences.

Duration ERs of notes were defined by sum of the duration differences between correctly rec-
ognized notes and those of the nearest notes in the output sequences, divided by the total length
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of the correctly recognized notes. The correctly recognized notes were defined by the remainders
of the incorrectly recognized notes defined above.

Duration ERs of silent gaps were defined as sum of the duration differences between two
silent gaps in the true sequences and the output sequences that were nearest to each other,
divided by the total length of silent gaps in the true sequences.

Confusion matrices and duration ERs for each note class in each bird were shown in S1 Table.
(a) Identification ERs in each arrangements with two and eight minutes of training data. ERs

in each bird are shown in open circles. (b) Duration ERs of notes. (c) Duration ERs of silent gaps.
(EPS)

S2 Fig. Comparison of the two methods for computing amplitude envelope. In the BD!
LC! GS arrangement note boundaries were detected using amplitude envelope. Amplitude
envelope was computed as the sum of the logarithmic amplitude spectrum between the fre-
quency band of 1 and 8 kHz in each 1 ms time bin of the spectrograms. However, amplitude
envelope can be computed in another way: full-wave rectification followed by low-pass filtering
and logarithm. Here we compared the accuracy of boundary detection by these two methods.
The cut-off frequency of the low-pass filter was 200Hz.

Timing ERs were larger in the methods using low-pass filter in all birds. Thus in the current
study we used the method using spectrogram in the BD! LC! GS arrangement. ERs in each
bird are shown in open circles. ���: p< 0.001.
(EPS)

S3 Fig. Song definition and segmentation. (a) Schematic representation of the procedure to
extract note sequences. Gray, white, and black rectangles represents song notes, unclassifiable
notes, and non-singing calls. Horizontal bars represent extracted or segmented note sequences.
(b) Comparison of the validation error rates computed with or without song segmentation.
ERs in each bird are shown in open circles. ns.: not significant.
(EPS)

S4 Fig. Notes and HMM states dividing. An example of computation procedure of the global
sequencing step. From top to bottom: input spectrogram, local classification outputs, HMM
states, and output sequences. Rows in the classification outputs represent three note classes (A,
B, and C) and silence (S). Selected HMM states by Viterbi algorithm were indicated by black
rectangles. The letter “e” in the HMM states denotes the initial states. Notes in output
sequences were represented by gray rectangles.
(EPS)

S1 Table. Confusion matrices and duration errors.
(PDF)

S2 Table. Optimal thresholds for sound intervals in boundary detection.
(PDF)
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