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Abstract

The biosynthesis of iron sulfur (Fe-S) clusters in Bacillus subtilis is mediated by a SUF-type
gene cluster, consisting of the cysteine desulfurase SufS, the scaffold protein SufU, and the
putative chaperone complex SufB/SufC/SufD. Here, we present the high-resolution crystal
structure of the SufS homodimer in its product-bound state (i.e., in complex with pyrodoxal-
5’-phosphate, alanine, Cys361-persulfide). By performing hydrogen/deuterium exchange
(H/DX) experiments, we characterized the interaction of SufS with SufU and demonstrate
that SufU induces an opening of the active site pocket of SufS. Recent data indicate that fra-
taxin could be involved in Fe-S cluster biosynthesis by facilitating iron incorporation. H/DX
experiments show that frataxin indeed interacts with the SufS/SufU complex at the active
site. Our findings deepen the current understanding of Fe-S cluster biosynthesis, a complex
yet essential process, in the model organism B. subtilis.

Introduction

Iron sulfur (Fe-S) clusters are amongst the most versatile enzyme cofactors in Nature, as they
are involved in cellular respiration, carbohydrate metabolism, DNA repair and various other
vital functions throughout all kingdoms of life [1-4]. The biosynthesis of Fe-S clusters must be
tightly regulated because of the toxicity of free sulfur and iron. Therefore, the systems for Fe-S
cluster biogenesis are mainly conserved from bacteria to human, although elaborate transport
systems have diverged through evolution [5-7]. Three distinct systems have been described for
prokaryotic cells: i.) the NIF system (nitrogen fixation, [8]), ii.) the ISC system (iron-sulfur
cluster, [9]) and iii.) the SUF system (sulfur mobilization, [10]). While the NIF system is spe-
cific for nitrogenase maturation in azototrophic bacteria, the ISC and/or SUF systems function
in housekeeping in most-if not all-bacteria. In some bacterial species (e.g., Escherichia coli),
both systems are found, while others (e.g., B. subtilis) rely on a single type of Fe-S machinery
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[10]. In eukaryotic cells, Fe-S biosynthesis takes place in the mitochondria in an ISC-like sys-
tem [6] and in plastids in a SUF-like system [11]. In all of these systems, the Fe-S cluster is
formed on a scaffold protein before it is transferred to a target apoprotein [12]. A cysteine
desulfurase acquires sulfur from cysteine in a pyrodoxal-5'-phosphate (PLP)-dependent reac-
tion and then transfers it as persulfide to the scaffold protein [13,14]. In the E. coli SUF and
eukaryotic systems, auxiliary proteins (SufS/SufE and Nfs1/Isd11, respectively) were found to
enhance the activity of the cysteine desulfurase and aid in persulfide transfer [15,16]. The
assembly also relies on electron transport, most likely for the reduction of sulfane (S°) to sulfide
(S*). For this purpose, it was shown that the E. coli ISC system utilizes ferredoxin [17], while
the E. coli SUF system relies on a scaffold protein (SufB) associated with FAD [15] (in the latter
case, however, in vitro experiments suggested a role in reduction of ferric iron rather sulfur)
[18]. The mechanism of iron insertion remains elusive. It has been suggested that the highly
conserved protein frataxin might act as the iron donor, although this role is still under debate.
Structural analysis showed that frataxin assumes an o/f fold in which the N-terminal a-helix
consists of several acidic residues, commonly referred to as the ‘acidic ridge’ [19-23]. Deletion
of frataxin in Saccharomyces cerevisiae results in accumulation of iron in the mitochondria and
drastically decreases biosynthesis of Fe-S clusters [24]. Frataxin can bind iron and interact with
the cysteine desulfurase as well as the Fe-S scaffold protein. These observations led to the sug-
gestion that frataxin could act as an iron chaperone [25]. The latter hypothesis was challenged
by the finding that deletion of the E. coli gene encoding frataxin does not lead to iron accumu-
lation or a decrease in Fe-S clusters as observed in S. cerevisiae, even though E. coli frataxin also
forms a complex with SufS/SufU homologs IscS/IscU [26,27].

In Bacillus subtilis (Bs), a frataxin homolog Fra (formerly YdhG) shares only little sequence
identity with other frataxins. However, structural analysis of BsFra showed a conserved o/
sandwich fold with a cluster of acidic residues on the N-terminal a1 and o2 helices, forming an
“acidic ridge” [28]. BsFra was found to bind two equivalents of iron with a moderate K4 and to
interact with the Thermotoga maritima (Tm) iron-sulfur cluster scaffold protein TmlIsu [28].
Based on deletion mutants, it was suggested that BsFra is a global iron regulator involved in the
distribution of iron in B. subtilis [29]. Previously, the cysteine desulfurase BsSufS and putative
scaffold protein BsSufU were characterized in vivo and in vitro, and it was shown that BsFra
can be utilized as an iron source [28-31]. We recently demonstrated that BsFra interacts with
the ferrochelatase HemH and is crucial for the incorporation of iron into protoporphyrin [32].
However, the role of frataxin in delivery of iron to SufS/SufU is still poorly understood; in par-
ticular, in Fe-S biosynthesis, no interaction between BsFra and the BsSufS/BsSufU complex has
been observed so far. Herein, we demonstrate that BsFra can indeed interact with BsSufS and
BsSufU, as characterized by hydrogen/deuterium exchange (H/DX) experiments. Furthermore,
we present the crystal structure of BsSufS and suggest a model for the protein complex consist-
ing of BsSufS/BsSufU/BsFra.

Material and Methods
Protein expression and purification

Plasmids for heterologous expression were previously prepared [30,33]. The heterologous
expression of fra [29,32], sufU [30] and sufS [31] was carried out in E. coli BL21(DE) cells for
20 h at 22°C in LB (lysogeny broth) medium with 50 pg/mL kanamycin and 0.2 mM IPTG.
Cells were collected and washed in HEPES buffer A (50 mM HEPES, pH 8, 300 mM NaCl, 5
mM imidazole), treated with DNasel, and lysed with a French press. The crude extract was
cleared by centrifugation (17000 rpm, 4°C, 30 min) and the supernatant was filtered (0.25 um).
The target protein was purified by Ni-affinity chromatography on an FPLC system (NGC
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Quest, Biorad) using a gradient of 5-100% HEPES buffer B (50 mM HEPES, pH 8, 300 mM
NaCl, 250 mM imidazole) over 20 min. The elution fractions were concentrated and further
purified by size exclusion chromatography (HiLoad 26/60 Superdex 200, GE Healthcare Life
Sciences) in HEPES buffer C (50 mM HEPES, pH 8, 300 mM NaCl). Fractions containing the
target protein were concentrated, flash frozen in liquid nitrogen and stored at -80°C in HEPES
buffer C supplemented with 10% glycerol.

Crystallization, data collection, and structure determination

Crystallization was performed by the sitting-drop method at 20°C in 0.6-pl drops consisting of
equal parts protein and crystallization solutions. BsSufS crystallized at 20 mg/ml within one
week in 0.1 M HEPES, pH 7.5, 50% (v/v) PEG 400. Prior to data collection, crystals were cryo-
protected in a solution consisting of the well solution supplemented with 20% glycerol and
then flash-frozen in liquid nitrogen. Data were collected under cryogenic conditions at the
European Synchrotron Radiation Facility at Beamline ID29. Data were processed with XDS
[34] and scaled with CCP4-implemented SCALA [35]. The structure was determined by
molecular replacement with PHASER [36], manually built in COOT [37], and refined with
PHENIX [38]. The SufS homolog from Brucella suis (PDB ID 4W91) was employed as a search
model. Figures were prepared with Pymol (www.pymol.org). Coordinates and structure factors
were deposited in the Protein Data Bank with the accession code 5J8Q.

Hydrogen/deuterium exchange experiments

H/DX mass spectrometric analysis of the samples was performed using an automated H/DX
setup (Waters) including a two-arm robotic autosampler (LEAP Technologies), an ACQUITY
UPLC M-Class System and HDX Manager (Waters). For the exchange reaction, BsFra, BsSufU,
BsSufS, BsFra/BsSufU, BsFra/BsSufS, BsFra/BsSufU/BsSufS, and BsSufU/BsSufS (60 uM final
concentration of each component) were individually prepared in H,O buffer (25 mM Tris-Cl,
pH 7.5, 100 mM NaCl) [32] and pre-cooled to 1°C. For each LC-MS run, 7.5 uL of protein solu-
tion was pipetted into a fresh vial on an exchange plate at 25°C and diluted with 61.8 pL of
either H,O buffer (t0 runs) or D,O buffer (exchange runs). After incubation for 15, 30, 60, or
600 s, 55 pL of the reaction solution was transferred to a fresh vial containing 55 pL of quench-
ing solution (400 mM H;PO,/KH,PO,, pH 2.2, pre-dispensed and pre-cooled to 1°C for 10
min before the first run). After quenching, 95 uL of the resulting solution was immediately
injected into the HDX Manager.

Digestion was done online using an Enzymate BEH Pepsin Column (Waters) at 20°C with
water/0.1% formic acid at a flow rate of 100 uL/min. Subsequently peptic peptides were trapped
at 0.5°C using a C18 trap column. Separation of peptides was achieved at 0.5°C utilizinga 1 x
100 mm ACQUITY UPLC BEH C18 1.7 um column (Waters) at a flow rate of 30 pL/min with
the following gradient of solvents A (water/0.1% formic acid) and B (acetonitrile/0.1% formic
acid): Linear increase from 5-35% B within 7 min, followed by a ramp to 85% B within 1 min
and isocratic 85% B for additional 2 min. Finally, the column was washed with 95% B for 1 min
and re-equilibrated with 5% B for 5 min.

During separation of peptides using the chromatographic column, the pepsin column was
washed by injecting 3 x 80 pL 4% acetonitrile and 0.5 M guanidinium chloride. HDMSe was
used for t0 peptide detection and HDMS for exchanged peptides. Lock mass spectra were mea-
sured every 45 s using Glu-fibrinopeptide B as a standard ([M+H]** = 785.8427 m/z). t0 pep-
tide identification was performed using ProteinLynx Global SERVER (Waters) with custom
databases and the setting “no enzyme”. Final assignment of deuterium incorporation was done
with DynamX 3.0 (Waters).
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Microscale thermophoresis

The determination of binding constants was done by microscale thermophoreis using a Mono-
lith NT.115 instrument (NanoTemper). 100 uM BsFra was labeled at 8°C overnight using the
Monolith NT.115 Protein Labeling Kit RED MALEIMID (cysteine-reactive; NanoTemper).
Labeled BsFra was buffer-exchanged into a binding buffer (25 mM Tris-Cl, 100 mM NaCl, 10
mM 2-mercaptoethanol, pH 7.5) and the concentration was adjusted to 0.25 uM. A serial dilu-
tion series of BsSufS, BsSufU, and BsSufS/BsSufU was prepared in the same buffer in a range
from 560 uM to 0.030 uM and then mixed 1:1 with labeled BsFra. The titration was transferred
into NT.115 MST Premium Coated capillaries (NanoTemper). Measurements were performed
at 25°C, 20% LED power and 20% MST power with a heating time of 30 s and cooling time of 5
s. The binding constant for each interaction was calculated from the average of three measure-
ments using the NT Analysis software (NanoTemper).

Cysteine Desulfurase Activity Assay

The activity of BsSufS was measured by the amount of sulfide released during conversion of
cysteine to alanine. Free sulfide was quantified using N,N-dimethyl-p-phenylenediamine sul-
fate (DMPD) and FeCl; as described previously [30,31,39]. We incubated 0.5 uM BsSufS with
10 pM BsSufU and 50 pM BsFra in 25 mM Tris-Cl, pH 7.5, 100 mM NaCl, 5 mM dithiothreitol
(DTT) for 5 min at room temperature. The 200 pL reaction was started by addition of L-cyste-
ine (2 mM) and quenched after 10 min by addition of 25 pL of DMPD (20 mM in 7.2 M HCI)
and 25 pL FeCl; (30 mM in 1.2 M HCI). After 30 min of incubation in the dark, the absorbance
was measured at 670 nm. All reactions were carried out in triplicate.

Fe-S Biosynthesis Assays

The BsSufS-dependent biosynthesis of Fe-S clusters on BsSufU was assayed in an anaerobic
chamber (Coy Laboratories) with forming gas (2% H,/98% N,) as previously described
[30,33]. Briefly, 0.5 uM BsSufS was incubated with 10 pM BsSufU in 25 mM Tris-Cl, pH 7.5,
100 mM NaCl, 5 mM DTT for 5 min at 15°C. Next, 100 pM ammonium iron(II) sulfate was
added to the reaction mixture with or without 50 uM BsFra. The reaction was started by addi-
tion of 2 mM cysteine, and Fe-S cluster formation on BsSufU was monitored by UV-Vis at 465
nm (€45 = 5.8 mM'em™) [40].

Results
Crystal structure of BsSufS in the product-bound state

As no structure of B. subtilis SufS was available at the start of our study, we sought to fill this gap.
BsSufS was thus crystallized and its structure was determined to 1.7 A resolution by molecular
replacement using the B. suis homolog (PDB ID 4W91) [41] as a search model (Table 1). One mole-
cule of SufS was found within the asymmetric unit (AU) and could be built to completeness. The crys-
tal structure of BsSufS is highly similar to that of E. coli SufS (PBD ID 1129) with a root mean square
deviation (r.m.s.d.) of 1.28 A over 407 Co: atoms (S1 Fig). The BsSufS monomer forms a tightly
intertwined homodimer with another monomer across the crystallographic symmetry axis (Fig 1A).
The interface and architecture of the BsSufS homodimer closely resemble those of E. coli SufS [42].
BsSufS assumes a type I fold of the aminotransferase class V family, consisting of an overall
o/ fold that is highly similar to that of E. coli SufS, IscS, NifS, and CsdA [41,43-46]. The
enzyme consists of two domains: A large, N-terminal domain (residues 1-294) and a smaller,
C-terminal domain (residues 295-406). In the N-terminal domain, a 7-stranded, parallel
B-sheet is sandwiched between several o-helices to form a tightly packed core. This domain
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Table 1. Data collection and refinement statistics for BsSufS.

Data collection
Space group P3121
Unit cell
a,b,c(A) 93.2,93.2,130.5
a, B,y (°) 90, 90, 120
Wavelength (A) 0.9790
Resolution (A) 46.60-1.70 (1.76-1.70)*
No. of unique reflections 72121 (6911)
Multiplicity 9.7 (9.4)
Completeness (%) 1.00 (0.97)
Mean I/sigma(l) 18.5(2.7)
Rmerge 0.071 (0.753)
Refinement
No. of unique reflections 72119 (6911)
Rwork/Riree 0.134/0.159 (0.175/0.212)
No. of atoms 3562
Protein 3254
Ligand 15
Water 293
R.m.s. deviations
Angles (°) 1.58
Bonds (A) 0.018
Ramachandran allowed (%) 2.9
Ramachandran outliers (%) 0.2
Average B-factor (A?) 30.2
Protein 29.0
Ligand 26.1
Water 43.8

*Statistics for the highest-resolution shell are shown in parentheses.
Data were collected from a single crystal.

doi:10.1371/journal.pone.0158749.1001

harbors the active site pocket, where the cofactor PLP is bound to Lys224 as an aldimine. Fur-
thermore, residues 253-265 (herein referred to as the ‘B-hook’) form a hairpin-like structure
that latches on to the other monomer. The small, C-terminal domain consists of a 4-stranded,
parallel B-sheet and four a-helices containing the flexible ‘Cys361-loop’ with the nucleophile
Cys361 (Fig 1B). The dimer interface covers much of the active site pocket and protects PLP
and Cys361. We found BsSufS in the product-bound state, with alanine bound near
Cys361-persulfide, suggesting that one reaction cycle had occurred.

BsSufS forms a homodimer in solution

We performed time-resolved H/DX experiments in order to understand the dynamics of
BsSufS in solution. We identified 176 peptides between 5 and 20 amino acids in length, result-
ing in 98.6% sequence coverage and a redundancy of 4.4 (Fig 2). BsSufS was incubated in D,O
buffer for 15, 30, 60, and 600 s, and the exchange of backbone amide hydrogen to deuterium
was measured for each peptide. In good agreement with the expectations from our crystallo-
graphic analysis, the solvent-exposed N- and C-termini of BsSufS exchanged readily, whereas
most of the core structure was strongly protected (compare to Fig 1). Strong protection was
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Fig 1. Crystal Structure of the B. subtilis cysteine desulfurase SufS at 1.7 A. (A) Overall structure of the
BsSufS homodimer. The dimer forms a two-fold symmetry axis which covers the active site pocket. One monomer
is colored light green and the other, cyan. (B) Monomeric BsSufS consists of two domains: The larger, N-terminal
domain harbors the PLP binding pocket and the smaller, C-terminal domain contains the flexible Cys361-loop (on
which the catalytic Cys361 resides). (C) Magnified view of the active site pocket of BsSufS, showing the products
alanine and Cys361-persulfide. Pyrodoxal-5'-phosphate is bound to Lys224 as an aldimine. A 2F,-F. map density
(grey mesh) is shown, contoured at 1.0 r.m.s.d. N-terminus (NT), C-terminus (CT).

doi:10.1371/journal.pone.0158749.g001

observed for BsSufS regions involved in formation of the homodimer interface, validating the
existence of the enzyme as a homodimer in solution [47] (Fig 2B).

BsSufU binds to the BsSufS homodimer

Next, we sought to investigate the interaction interface and conformational dynamics of SufS
and SufU. Therefore, SufS was incubated with SufU in deuterated buffer. Upon completion of
the H/DX reaction and peptic digest, we observed that several peptides of SufS showed a
change in deuterium uptake when compared to their counterparts from H/DX with SufS alone
(see above). Most notably, the C-terminal o-helix of SufS showed a high degree of protection in
the presence of SufU (Fig 3). This observation agrees with recent findings that the C-terminus
of E. coli IscS is required for interaction with IscU [48,49]. In addition, residues 50-63 of SufS
(herein referred to as the ‘a-hinge’) were protected against deuterium incorporation, suggesting
the presence of a second SufU interaction site at the SufS homodimer interface.

We then utilized our H/DX approach to analyze changes in SufU upon binding SufS. We
identified 87 peptides, which covered 93% of the sequence with a redundancy of 6.0 (Fig 4).
The NMR solution structure of apo-SufU (PDB ID 2AZH) reveals a compact, o/ fold. Our H/
DX analysis supports this structure in solution, as medium to low H/D exchange was observed
for the core of SufU, whereas high H/D exchange was observed for an extended loop region
between the N-terminal helix ol and strand B1 (the ‘0/p linker’) as expected for a solvent-
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Fig 2. H/DX heat map of BsSufS. The dynamics of BsSufS were analyzed in solution by incubation in
deuterated buffer. The relative amount of deuterium incorporated after 15 s, indicated by a color code ranging
from blue (low; stable region) to red (high; flexible region), is mapped on the detected peptic peptides of (A)
BsSufS or mapped onto the surface of the BsSufS (B) monomer and (C) homodimer. N-terminus (NT), C-
terminus (CT).

doi:10.1371/journal.pone.0158749.9002

exposed, unstructured region. In the presence of SufS, the ‘o/p-linker’ of SufU is strongly pro-
tected from deuterium uptake, which indicates that SufS interacts with SufU at this location
(Fig 4C). Residues 117-130, which form a loop carrying Cys128 (the ‘Cys128-loop’), are also
protected from deuterium uptake, suggesting a second SufS binding site. Therefore, we con-
clude that the ‘o/p-linker’ and ‘Cys128-loop’ of SufU bind to the C-terminus and ‘a-hinge’ of
SufS, respectively, bringing the active site of SufS and SufU into close proximity. A similar sce-
nario has been proposed for the interaction of IscU and IscS in E. coli [49].

Binding of BsSufU to BsSufS induces conformational changes in both
proteins
Next, we analyzed the H/DX data for changes in the dynamic behavior of SufS in the presence

of SufU. Significantly higher H/D exchange rates were observed for the active site pocket of
SufS when SufU was present, particularly at the ‘Cys361-loop’ and ‘B-hook’ of SufS (Fig 3).
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Fig 3. BsSufU alters the H/D exchange of BsSufS upon binding. Changes in relative fractional deuterium
uptake of BsSufS after incubation with BsSufU for 15 s in DO buffer compared to BsSufS alone were
mapped onto the surface of the BsSufS (A) monomer and (B) homodimer. A decrease (blue) in deuterium
uptake signals protection (i.e., a binding event), whereas an increase (red) signals a structural
rearrangement. Black regions were not detected. Binding of BsSufU to (C) the C-terminus and (D) the o-
hinge of BsSufS as a function of deuterium uptake over time. Color code: BsSufS alone (green), BsSufS +
BsSufU (red), BsSufS + BsFra (blue), and BsSufS + BsSufU/BsFra (violet). N-terminus (NT) and C-terminus
(CT).

doi:10.1371/journal.pone.0158749.g003

These observations strongly suggest that the SufS homodimer opens in the presence of SufU,
allowing the ‘Cys361-loop’ to move freely. This is in agreement with findings in E. coli, where
the ‘Cys361-loop’ of IscS undergoes a major, 14-A movement during transfer of sulfur to IscU
[48,49].

Our data also show that, in the presence of SufS, SufU undergoes significant structural rear-
rangements at the ‘a-helical bundle’ (i.e., helices 02, 03, and 0.5) and ‘B-sheet surface’ (i.e., resi-
dues 32-47). The active site of SufU contains four residues (i.e., Cys41, Asp43, Cys66, and
Cys128) that coordinate a structurally important zinc ion [30,50]. In particular, the
‘Cys41-loop’ showed a significantly increased deuterium uptake. To summarize, the interaction
of BsSufS with BsSufU induces structural rearrangements near the active sites of both proteins,
potentially facilitating persulfide transfer. This notion supports the 40-fold increase in BsSufS
desulfurase activity previously observed upon interaction with BsSufU [30,31,47,50].

BsFra binds to BsSufU and BsSufS

After demonstrating the dynamic behavior and interaction of the BsSufS/BsSufU complex, we
sought to integrate B. subtilis frataxin into the picture. We conducted microscale thermophoresis
(MST) experiments between fluorophore-labelled BsFra and BsSufU, BsSufS, and BsSufS/BsSufU,
and found that while BsFra binds its partners fairly weakly: BsSufU (Kg = 57.4 + 13.8 uM), BsSufS
(Kg=50.6 + 17.4 uM) and the BsSufS/BsSufU complex (K4 = 32.5 + 3.6 uM) (Fig 5). In contrast,
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Fig 4. BsSufS alters the H/D exchange of BsSufU upon binding. (A) Detected peptic peptides of BsSufU
with the relative fractional uptake after 15 s of incubation in deuterated buffer. (B) Changes in the relative
fractional deuterium uptake of BsSufU after incubation with BsSufS for 15 s in D,O buffer compared to
BsSufU alone were mapped onto the surface of BsSufU (PDB ID 2AZH). The heat map represents the
differences in deuterium uptake compared to BsSufU alone. A decrease (blue) in deuterium uptake signals
protection (i.e., a binding event), whereas an increase (red) signals a structural rearrangement. Black regions
were not detected. Binding of BsSufU to (C) the a/B-linker and (D) the Cys128-loop of BsSufS as a function of
deuterium uptake over time. Color code: BsSufU alone (red), BsSufU + BsSufS (green), BsSufU + BsFra
(blue), and BsSufU + BsSufS/BsFra (violet). N-terminus (NT) and C-terminus (CT).

doi:10.1371/journal.pone.0158749.g004

the interaction of BsSufS with BsSufU (K4 = 2.63 uM) [31] and BsFra with BsHemH (Ky =
1.63 uM) [32] were found to be significantly tighter. Nevertheless, our affinity measurement for

1 " Fra* + SufS
05 K,=50.6 £ 17.4 uM
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Fig 5. Characterization of the affinity of BsFra for BsSufS, BsSufU, and BsSufS/BsSufU using
microscale thermophoresis. MST binding curve from the interaction of fluorophore-labeled BsFra with (A)
BsSufS, (B) BsSufS/BsSufU, and (C) BsSufU. A Hill model was applied for Ky determination. Fra* indicates
fluorophore-tagged frataxin.

doi:10.1371/journal.pone.0158749.g005
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BsFra with BsSufS/BsSufU is of the same order of magnitude as that for the homologous E. coli
system comprised of CyaY and IscS (K4 = 18.5 uM) [51].

To further characterize the interaction of BsFra with its partners we applied H/DX experi-
ments. Analysis of BsFra alone yielded 61 unique peptides with 98% sequence coverage and a
redundancy of 4.7 (Fig 6). Human, S. cerevisiae, and E. coli frataxin (PDB ID 354M, 2GA5, and
2EFF, respectively) assume an o/f fold in which two o-helices are stacked against a 6-stranded
B-sheet, with the N-terminal o-helix harboring several acidic residues (the ‘acidic ridge’) [21].
BsFra (PDB ID 20C6) has an additional short, N-terminal helix (herein referred to as
‘o1-helix’) followed by the helix carrying the ‘acidic ridge’ (compare S2 Fig). The ‘o.1-helix’
shows medium to high deuterium uptake in BsFra, suggesting that in solution it can move
freely. Furthermore, a helix connecting 4 to p5 (the ‘EDDI-helix’) is present in BsFra but not
homologous frataxin structures [19-21]. A high rate of H/D exchange was observed for this
‘EDDI-helix’, especially for residues E75, D76, D77, and 178.

We repeated the H/DX experiments of BsFra in the presence of BsSufU (83 Fig), BsSufS (54
Fig), and the BsSufS/BsSufU complex (Fig 7). These measurements were compared with those of
BsFra alone for differences in deuterium uptake. In the presence of BsSufU, we observed a decrease
of H/D exchange in B-strands 1 and 2 of BsFra (residues 37-46, herein referred to as the KWN-
loop’), which harbor residues K40, W41, and N42 (Fig 7C). As we found that the same residues
were protected in the reaction of BsFra and BsSufU, we conclude that BsFra binds to BsSufU at the
‘KWN-loop’ area. The involvement of the ‘KWN-loop’ in the interaction with BsSufU is in agree-
ment with previous studies in which mutations of in this region disrupted the interaction [52-55].
In the presence of both BsSufU and BsSufS, BsFra was additionally to the KWN loop protected
from H/D uptake at the ‘acidic ridge’ (residues 9-25) (Fig 7 and S4 Fig), suggesting an interaction
with BsSufS. This is in accordance with previously published work on E. coli IscS/CyaY [51,56].
Furthermore, BsSufS induces an increased rate of deuterium uptake at the N-terminal ‘a1-helix’ of
BsFra (Fig 7). We propose that, upon binding of BsFra to BsSufS, the ‘a1-helix’ undergoes a struc-
tural rearrangement. Interestingly, BsFra was protected from deuterium uptake at the C-terminus
and ‘EDDI helix’ (residues 74-85) compared to the protein alone. However, this was found in the
BsFra/BsSufS and BsFra/BsSufU reactions (Fig 7, S3 Fig and S4 Fig), suggesting that the either pro-
tein can stabilize these highly dynamic areas (compare Fig 6). Taken together, the results indicate
that BsFra binds to BsSufS and BsSufU as well as to the BsSufS/BsSufU complex. A similar binding
of frataxin to a cysteine desulfurase/scaffold protein complex was described in E. coli [51,56].

Binding of BsFra to BsSufU/BsSufS induces conformational changes in
all three proteins

Next, we tested whether the binding of BsFra would alter the interaction of BsSufS with BsSufU.
We analyzed the H/DX data of the BsFra/BsSufU/BsSufS interaction and compared it to that of
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Fig 6. Peptic peptides of BsFra detected from H/DX measurements. The relative amount of deuterium
incorporated after 15 s, indicated by a color code ranging from blue (low; stable region) to red (high; flexible
region), is mapped on the detected peptic peptides of BsFra.

doi:10.1371/journal.pone.0158749.9g006
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Fig 7. H/DX analysis of BsFra upon binding BsSufU/BsSufS. (A) Changes in the relative fractional
deuterium uptake of BsFra after incubation with BsSufS/BsSufU for 15 s in D,O buffer compared to BsFra
alone were mapped onto the surface of BsFra (PDB ID 20C6). The heat map represents the differences in
deuterium uptake compared to BsFra alone. A decrease (blue) in deuterium uptake signals protection (i.e., a
binding event), whereas an increase (red) signals a structural rearrangement. Black regions were not
detected. Binding of BsSufS/BsSufS to (B) the ‘acidic ridge’ and (C) the KWN-loop of BsFra as a function of
deuterium uptake over time. Color code: BsFra alone (blue), BsFra + BsSufS (green), BsFra + BsSufU (red),
and BsFra + BsSufU/BsSufS (violet). N-terminus (NT) and C-terminus (CT).

doi:10.1371/journal.pone.0158749.g007

the BsSufS/BsSufU complex and proteins alone (see above). The scaffold protein BsSufU
showed decreased deuterium uptake at the C-terminal helix (‘a5-helix’), indicating binding to
BsFra (Fig 8 and S3 Fig). The cysteine desulfurase BsSufS showed protection from H/D
exchange at the ‘Cys361-loop’ and the ‘B-hook’ when BsFra was present (Fig 8), also indicating
a binding event. Several positively charged residues are located in this region (e.g., R356, H359,
H360, and K367) and may bind the negatively charged residues of the ‘acidic ridge’ of BsFra
(see above). In contrast to the reaction of BsSufS/BsSufU with BsFra, no increase in deuterium
uptake was observed at the active site pocket of BsSufS when BsFra was present (compare Fig 8
to Fig 3). The BsSufU binding site on BsSufS (see above) was still observable, supporting the
idea of simultaneous binding.

We propose that BsFra binds via the ‘acidic ridge’ to the positively charged ‘Cys361-loop’
and ‘B-hook’ of BsSufS. BsFra may act as a clamp at the BsSufS homodimer interface, locking
the ‘Cys361-loop’ and ‘B-hook’ and thus preventing the opening of the BsSufS active site
pocket. Furthermore, BsFra binds via its ‘KWN-loop’ to the ‘B-sheet surface’ of BsSufU. A simi-
lar binding site was suggested for E. coli IscS/CyaY [51,56].

To test whether the binding of BsFra to the BsSufS/BsSufU complex alters the activity of
BsSufS we conducted cysteine desulfurase activity assays in vitro. We found that BsSufU greatly
enhances the activity of BsSufS, in agreement with previous reports [30,33]. The introduction
of BsFra, however, does not appear to affect the activation of BsSufS by BsSufU (Fig 9). This is
in agreement with the E. coli IscS/CyaY interaction, where conversion of cysteine to alanine by
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doi:10.1371/journal.pone.0158749.9008
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Fig 9. Sulfur transfer and Fe-S cluster biosynthesis assays of BsSufS and BsSufU in the presence of
BsFra. (A) The specific activity of BsSufS was measured in vitro by the release of sulfide from cysteine. The
activity of BsSufS (green) is unaffected by BsFra (cyan), but is greatly increased by the presence of BsSufU
(red). The addition of BsFra to BsSufS/BsSufU does not affect the activity of BsSufS. (B) In vitro biogenesis of
Fe-S clusters by BsSufS/BsSufU over time (red). Addition of BsFra (blue) results in a very slight increase in
cluster yield.

doi:10.1371/journal.pone.0158749.g009

IscS is not affected by CyaY [56]. We next analyzed whether frataxin has an effect on the for-
mation of Fe-S clusters in vitro. In an assay described by Albrecht and colleagues [30], we incu-
bated BsSufS and BsSufU in the presence of ferrous iron and cysteine and monitored the
formation of Fe-S clusters by UV-Vis spectroscopy. When BsFra was present in the reaction
mixture the initial rate of formation was unaffected, although we observed a very minor
increase in the yield of Fe-S clusters formed on BsSufU. Such a subtle change could indicate
that either BsFra does not efficiently donate iron to BsSufU under assay conditions or that its
presence is redundant under the supplied concentration of iron. Additionally, other, unidenti-
fied components may be required for efficient transfer.

Discussion

Bacillus subtilis has five paralogous cysteine desulfurase genes, namely nifS [57], yrvO [58], nifZ
[59] and ycbU [60]. However, only the product of the sufS gene is involved in biosynthesis of Fe-S
clusters. Until now, no structural information was available on the B. subtilis cysteine desulfurase.
We were able to determine the crystal structure of the BsSufS dimer to 1.7 A resolution, revealing
high structural homology to its E. coli counterpart. To better understand the conformational
dynamics of SufS and its interaction with SufU and Fra, we conducted H/DX experiments with
proteins from the Gram-positive model organism B. subtilis. Many insights into the SUF system
were previously obtained from studies on E. coli, in which the SUF system only acts as a backup
under stress conditions [7]. The ISC system mediates the major “housekeeping” functions for Fe-S
cluster biosynthesis in E. coli [9]. In B. subtilis, we find similarities to both E. coli ISC and SUF sys-
tems [30,31,33]. We applied hydrogen/deuterium exchange experiments on BsSufS in order to
investigate structural dynamics upon its interaction with the putative iron delivery protein BsFra
and the scaffold protein BsSufU. H/DX detects the exchange of hydrogen on the backbone amides
with deuterium in the solvent, where the exchange rate of highly dynamic or surface-exposed
areas is rapid compared to residues that are buried in the protein core or otherwise protected.
Investigation of BsSufS confirmed the homodimer interface in solution and suggested that the
enzyme is tightly packed. Nevertheless, the strength of H/DX lies in its ability to detect changes in
residues following a binding event. We showed that the C-terminal region and ‘a-hinge’ of BsSufS
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binding sites of BsSufU (PDB ID 2AZH, shown in salmon), BsFra (PDB ID 20C6, shown in sky blue) and the BsSufS
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and those by BsSufU in red). (B) Proposed binding of BsFra and BsSufU to BsSufS. The binding of BsSufU to BsSufS brings
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BsSufS does not affect the transfer of persulfide from BsSufS to BsSufU, it brings the putative iron binding site into close
proximity to the SufS/SufU active site.

doi:10.1371/journal.pone.0158749.9010

interact with the long ‘a/p-linker’ and ‘Cys128-loop’ of BsSufU (Fig 10). This interaction is accom-
panied by an opening of the BsSufS dimer interface and rearrangement of the ‘Cys361-loop’.
BsSufU, on the other hand, showed H/D exchange in the loop carrying Cys41 and Asp43. BsSufU
fits on the BsSufS interaction site, which brings the ‘Cys361-loop’ of BsSufS and the ‘Cys41-loop’
of BsSufU into close proximity for persulfide transfer.

The E. coli SufS/SufE interaction was previously characterized by H/DX [61] and the crystal
structure of the homologous E. coli CsdA/CsdE enzyme complex was solved recently [41]. In
both cases, SufE/CsdE binds near the active site of SufS/CsdA to accept the sulfur as persulfide,
which is then passed on to the scaffold protein complex SufBC,D of the E. coli SUF system. E.
coli SufB has been shown to act as a scaffold and carries an FAD binding site that is possibly
important for the reduction of Fe** to Fe** in the generation of Fe-S clusters [18]. In B. subtilis,
the roles of SufB, SufC, and SufD are still unclear. BsSufB, though conserved, lacks the Fe-S
cluster and FAD binding sites, suggesting an important role which differs from that of its E.
coli homolog. We hypothesize that the BsSufBCD enzyme complex is involved in later steps of
Fe-S cluster maturation, similar to the E. coli HscA/HscB proteins of the ISC system [62-64].
Taken together, our data suggest that binding of BsSufU to BsSufS activates the latter for trans-
fer of sulfur from persulfide to the active site of BsSufU.

In the present study, we further established an interaction between BsSufS/BsSufU and the
B. subtilis frataxin homolog BsFra. Previous biochemical characterization showed that BsFra
can bind ferric and ferrous iron, and plays a role in Fe-S cluster biosynthesis and transfer to a
target protein [28,29]. The frataxin family has been extensively studied in E. coli, S. cerevisiae,
and H. sapiens. Generally, this family consists of a conserved o/ sandwich fold and harbors
several acidic residues at the N-terminal o-helix and the first B-sheet (S2 Fig). In vitro enzyme
assays measuring the rate at which Fe-S clusters form on the scaffold protein in the presence of
a cysteine desulfurase and frataxin highlights a discrepancy: While frataxin inhibits cluster for-
mation in the E. coli system [51,56], it enhances the rate of cluster formation in the yeast system
[65]. It was shown that the cysteine desulfurase determines whether frataxin acts as an
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inhibitor or activator [66]. It was further shown that a single point mutation on the scaffold
protein renders E. coli as frataxin-dependent and S. cerevisiae as frataxin-independent [67-69].
We conducted analogous assays with BsFra and found that, in contrast to E. coli and S. cerevi-
siae homologs, it did not appear to alter the initial rate of cluster formation, but resulted in a
very minor increase in cluster yield. The cluster formed on BsSufU is highly labile and most
likely degrades to an uncharacterized species upon isolation of holo-BsSufU [30,50]. That we
were unable to isolate holo-BsSufU may suggest that our current model for Fe-S biosynthesis
includes only the minimal number of participants.

We performed H/DX experiments to analyze the interaction of BsSufS and BsSufU with
BsFra. We observed binding of BsFra to BsSufU and BsSufS, which did not change in the pres-
ence of BsSufU/BsSufS and therefore indicates formation of a BsFra/BsSufU/BsSufS complex in
solution. The binding epitope of BsFra associates with the ‘Cys361-loop’” and ‘B-hook’ motifs of
BsSufS (Fig 10). The interaction points between BsFra and BsSufU are the ‘KWN-loop” and ‘B-
sheet surface’, respectively. The short ‘al-helix” of BsFra appears to rearrange upon binding
BsSufS, forming an extended a1-0:2 helix hybrid, which then fits in the groove of BsSufS/
BsSufU. This interaction brings the putative iron binding site of BsFra into close proximity to
the active site of BsSufU, and it is reasonable to propose that iron incorporation is mediated by
the ‘acidic ridge’ of BsFra. Previous SAXS measurements of E. coli IscS/IscU/CyaY revealed a
similar binding mode [51], and characterization of the interaction of frataxin with the ferroche-
latase established that BsFra binds with its acidic residues in a similar fashion to the iron accep-
tor BsHemH [32]. In B. subtilis, it is well established that frataxin is involved in incorporating
iron into the nascent Fe-S cluster in vivo [33], but whether frataxin also serves as an intracellu-
lar iron carrier remains elusive.

We determined that BsSufU binds BsSufS and further showed how BsFra binds to the
BsSufU/BsSufS complex as well as the individual proteins. In accordance with what is known
about E. coli IscS/IscU/CyaY [51,56], the interaction of BsSufU/BsSufS is tight compared to
that of BsFra with the complex. We assume that the interaction of BsFra to the complex is tran-
sient and that BsFra competes with additional participants of the Fe-S biogenesis pathway, as is
known for E. coli IscS/Fdx [17]. The results presented here represent a single snapshot in a
highly dynamic assembly process whose parts have not been fully identified.

The biogenesis of Fe-S clusters is a multistep process consisting of sulfur abstraction from
cysteine, persulfide transfer, iron delivery and incorporation, and reductive generation of the
Fe-S cluster, followed by transfer onto a target protein. Further studies will be necessary to
identify any additional participants and determine how the biosynthetic steps are organized. In
particular, the identity of the electron donor for Fe-S cluster biogenesis in vivo is unknown,
and the role of SufB/SufC/SufD is yet to be determined.

The authors declare no financial conflict of interest.

Supporting Information

S1 Fig. Overlay of BsSufS with E. coli Cysteine Desulfurases. The structure of a B. subtilis
SufS monomer (green) is superimposed with: (A) E. coli CsdA monomer (cyan; PDB ID
4LW2) with an r.m.s.d. of 3.30 A over 401 Co. atoms; (B) E. coli SufS monomer (yellow; PDB
ID 1129) with an r.m.s.d. of 1.28 A over 407 Co atoms; and (C) E. coli IscS monomer (magenta;
PDB ID 3LVL) with an r.m.s.d. of 5.55 A over 389 Co. atoms

(TIFF)

S2 Fig. Comparison of frataxin homologs. Frataxin usually consists of two c-helices and one
6-stranded B-sheet. Two additional helices appear in BsFra.
(TIFF)
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S3 Fig. Analysis of the BsFra/BsSufU interaction by H/DX. Differences in H/D uptake of the
interaction complex compared to each individual protein are mapped onto the structures of
(A) BsFra (PDB ID 20C6) and (B) BsSufU (PDB ID 2AZH). The relative amount of deuterium
incorporated is indicated by a color code ranging from blue (low; stable region) to red (high;
flexible region). Black regions were not detected. N-terminal (NT) and C-terminal (CT).
(TIFF)

S4 Fig. Analysis of the BsFra/BsSufS interaction by H/DX. Differences in H/D uptake of the
interaction complex compared to each protein alone are mapped onto the structures of (A)
BsFra (PDB ID 20C6), (B) the BsSufS monomer, and (C) the BsSufS homodimer. The relative
amount of deuterium incorporated is indicated by a color code ranging from blue (low; stable
region) to red (high; flexible region). Black regions were not detected. N-terminal (NT) and C-
terminal (CT).

(TIFF)
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