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Abstract
This study used the dynamic conditional correlations (DCC) method to identify the linkage

effects of Chinese stock market, and further detected the influence of network linkage

effects on magnitude of security returns across different industries. Applying two physics-

derived techniques, the minimum spanning tree and the hierarchical tree, we analyzed the

stock interdependence within the network of the China Securities Index (CSI) industry index

basket. We observed that that obvious linkage effects existed among stock networks. CII

and CCE, CAG and ITH as well as COU, CHA and REI were confirmed as the core nodes in

the three different networks respectively. We also investigated the stability of linkage effects

by estimating the mean correlations and mean distances, as well as the normalized tree

length of these indices. In addition, using the GMMmodel approach, we found inter-node

influence within the stock network had a pronounced effect on stock returns. Our results

generally suggested that there appeared to be greater clustering effect among the indexes

belonging to related industrial sectors than those of diverse sectors, and network comove-

ment was significantly affected by impactive financial events in the reality. Besides, stocks

that were more central within the network of stock market usually had higher returns for

compensation because they endured greater exposure to correlation risk.

Introduction
In recent years, the application of complex network analysis to financial issues which kept
increasing in popularity has attracted much interest from researchers both in physics and eco-
nomics [1–4]. In particular, many scholars focus their studies on the stock networks for the ris-
ing significance of stock market comovements as a consequence of intensive economic
globalization [5, 6]. The physics-derived data mining method, namely minimum spanning tree
(MST) analysis which allows for unveiling clustering behavior within financial markets in a
quite elucidative manner has been a standard technique to extract networks from correlation
matrices in the realm of econophysics [7]. As a result, numerous investigations have been per-
formed on recognition of the topological structure and statistical features of stock markets
adopting the MST methodology on account of its robustness and simplicity [8, 9]. For example,
researches exploring international stock market indices [10], EU stock market indices [11], as
well as researches on individual stocks in national stock market of England, Germany, Turkey,
Brazil and China [12–19].
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Nevertheless, the aforementioned investigations generally obtain competing MST results
due to the diversification of correlation coefficient matrices construction method. A vast body
of empirical literature on stock market networks adopted the rolling correlation coefficient
(RC) process to obtain correlation coefficient matrices [14–16], whereas it is currently univer-
sally acknowledged that the RC technique does not perform well for the case of financial high
frequency data analysis. On one hand, using rolling window technique to construct stock net-
works may obtain multifarious results due to researchers’ specific option of parameters, namely
the length and drift of the estimation window, thus undermining the objectivity and reason-
ability of the research conclusions to some extent [20]. On the other hand, given that the stock
market comovements usually exhibit increased volatility virtually, the correlation coefficient
estimate would be exposed to contortion caused by data heteroskedasticity and encounter
severe upward bias, thereby resulting in misleading findings. In this study, we contribute to the
extant literature by applying the cDCCMV-GARCHmodel suggested by Engle [21] to calcu-
late dynamic conditional correlations, which not only considerably overcome the chaos in
selecting parameters of the estimation window directly by offering full-sample correlation esti-
mates, but are also anticipated to obtain higher robustness with respect to the heteroskedasti-
city matter[22,23].

Furthermore, massive research efforts of stock market network have been exerted to the
topological structure and statistical feature of the network itself, while there have few studies
associated with the intrinsic exploratory problems such as the effects of peculiar network topo-
logical properties on stock returns to date [24]. The absence of a verifiable relationship between
stock market risk and accompanied returns generates problems for dominant asset pricing
model analyses. Specifically, a strand of literature argues that interdependence among stock
returns may partly originate from aggregate risk, which raises a noticeable question concerning
whether future security returns could be interpreted by the dynamic market correlations [25,
26]. There is a need for further research by discussing the linkage effects between stock market
network topological metrics to unveil how the underlying co-movement across local stocks
affect their market performance, and to clarify whether stocks with larger centrality in the net-
work usually acquire higher returns as they suffer from greater exposure to systematic risk.

It is apparent that research has traditionally concentrated on major developed economies
while there have been few studies associated with the stock market network of emerging econo-
mies to date, and most attention is centered on the interdependence of the stock market across
geographical borders but not through industry classifications. Hence, assessment of the
comovement between industry indices in the context of Chinese stock market can fill the exist-
ing gap in the literature on financial network. Concerned about all the aforementioned reasons,
we aim to use the CSI industry indices to obtain the classification taxonomy of Chinese stock
market and then propose a network approach by combining dynamic conditional correlation,
the MST method and the hierarchical tree analysis for elucidating the topological natures and
connection structures of stock networks. Subsequently, we further investigate the stability of
linkage effects among stocks’ network, by calculating the mean correlations and mean dis-
tances, as well as the normalized tree length of these indices. Afterwards, we estimate stocks’
network centrality to investigate whether the findings of industries are also appropriate for
stocks, i.e. whether individual stocks in more central network locations are inclined to have
higher returns.

The remainder of the paper is organized as follows. Section 2 and Section 3 discuss the
empirical data and applied methodology. We then represent the main empirical results and
analyses in Section 4, subsequently Section 5 summarizes and concludes the paper.
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Data Set
We unveil the underlying relationship of Chinese stock market interactions using three-tier
China Securities Index (CSI) industry index data in S1 Text. The experimental data set utilized
to build the networks includes daily closing prices offered by the WIND information database
for indices at different levels which covers the following three time intervals respectively: Janu-
ary 04, 2002 to July 01, 2015 (one-tier industry), January 05, 2009 to July 01, 2015 (two-tier
industry) and January 05, 2009 to June25, 2015 (three-tier industry). The indexes set examines
the enormous market performance of China’s A-shares cosmos, including over 1200 stocks
with complete data disclosure and traded on both Shenzhen and Shanghai exchanges, and is
viewed as an authentic indicator able to outline the dynamic features of clusters in China’s
stock market, and to provide helpful portfolio analysis instrument for investors. Moreover, the
construction of CSI industry indices not only fully consult the worldwide common classifica-
tion taxonomy standard, but also gives adequate consideration to distinctive characteristics of
China’s economic circumstances. It includes progressively refined three-tier CSI Industry indi-
ces, and there are ten sub-indices in the one-tier industry index which reflect the following spe-
cific sectors: finance, industry, basic materials, energy, utilities, consumer goods, capital,
information technology, telecommunications and health. In consequence, the CSI industry
indices are sufficiently qualified as the representative of China’s stock market index.

In addition, an issue that needs to be addressed is that unlike an extensive literature which
rectifies the option of rolling window parameters arbitrarily in terms of the significance of
empirical results, the selection of samples in this study completely relies on the official data
provided by the WIND information database, thus being more credible and realistic. The
three-tier industry indices in our research and the respective symbols are presented in Table 1.

Method

Network construction
Minimum spanning tree. In this paper, we utilize Kruskal’s algorithm to construct a min-

imum spanning tree (MST) to examine the extent and evolution of interdependence among
CSI industry indices. A brief description of MST construction is proposed by Mantegna [27]:

Step 1. Regard each index as node and linkage effect as edge in a network. Consider each node
as an isolated branch, and sort the edges by their weights which denote the degree of linkage
effects among indices.

Step 2. Pass through the network once and search an edge with the minimum weight and
ensure no closed loop is created. This edge is added to the minimum spanning tree set if all
the requirements are met. Otherwise, continue to traverse the network to seek a next edge
with the minimum weight.

Step 3. Recursively repeats the former steps, until n-1 edges have been identified (if the network
has n nodes, the minimum spanning tree should have n−1 edges since there are no closed
loops in MST). Then, the searching process terminates and the network’s minimum spanning
tree is obtained by selecting the most important correlations between the index returns.

Subdominant ultra-metric space method. Ultra-metric space method is used to describe
the hierarchical structure of complex systems. Assuming there is a collection in which dis-
tances between any two elements can be defined, we can attain several ultra-metric spaces by
dividing the collection. Let X be a collection, if all x, y, z in d: M × M! R meet the following
conditions,
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1. d(x, y)�0

2. d(x, y) = 0,x = y

3. d(x, y) = d(y, x) (symmetry)

4. d(x, z)�max{d(x,y),d(y,z)} (triangle inequality)

we call this metric space an ultra-metric space.
Subdominant ultra-metric space is a special form of the ultra-metric space, which was

defined by Bayod et al. as follows: l (X, d) is a metric space and S is a collection whose elements
are ultra-metric and all meet the condition: for each x, y 2 X and p 2 S, p (x, y)� d (x, y). Tak-
ing supS as the supremum of elements in S, then (X, supS) is called a subdominant ultra-metric
space relative to the metric space (X, d).

Calculation method. As proposed by Engle [21], we utilize the DCC-MV-GARCHmodel
to figure out dynamic conditional correlation coefficients and distances among indexes. We

Table 1. Three-tier CSI Industry indices and respective symbols.

One-tier Industry index Code One-tier Industry index name Code

CSI 300 Financials Index CFI CSI 300 Materials Index CMI

CSI 300 Telecommunication Services Index CTS CSI 300 Information Technology Index CIT

CSI 300 Consumer Discretionary Index CCE CSI 300 Utilities Index CUI

CSI 300 Health Care Index CHC CSI 300 Energy Index CEI

CSI300Consumer Staples Index CCS CSI 300 Industrials Index CII

Two-tier industry index Code Two-tier industry index name Code

300 Retail RET 300 IT Software ITF

CSI 300 Banks Index CBI 300 Auto and Component ACP

300 Pharma & Biotech PBT CSI 300 Materials CMA

300 IT Hardware ITH CSI 300 Real Estate Index CRE

300 Food & Beverage FBA 300 Utilities UTL

300 Media MEA 300 Diversified financials DFI

300 Insurance INS 300 Capital Goods CAG

300 Energy ENG CSI 300 Trans CTR

300 Durables& Apparel DAP

Three-tier Industry Index Code Three-tier Industry Index Code

300 Multi Retail MRA 300 Household Durables HOD

300 Textiles & Apparel TEP 300 Trading Companies TRC

300 Beverages BEA 300 Food FOD

300 Specialty Retail SPR 300 Electric ELR

300 Pharm PHA CSI 300 Real Estate Index REI

300 Chemicals CHA 300 Metals & Mining MEM

300 Commercial Banks COB 300 Capital Markets CAM

300 Marine MAN 300 Airlines AIR

300 Media MEA 300 Auto Components AUC

300 Insurance INS 300 Defense DES

300 Electrical Equip ELE 300 Trans-infrastructure TRF

300 Oil & Gas & Coal OGC 300 Machinery MAI

300 Construction Materials COM 300 Construction COU

300 Computers COT 300 Water Utilities WAU

doi:10.1371/journal.pone.0156784.t001
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define the return of stock i on date t as follows:

SiðtÞ ¼ lnPiðtÞ� lnPiðt� 1Þ ð1Þ

where Pi(t) denotes the closing price of stock i on date t.
To calculate the dynamic conditional correlations, we have to estimate the residuals exerting

no autocorrelation for every stock returns series. The mean formulation for each series is
obtained from an ARFIMAX model estimated in two stages with a general form as following:

St ¼
X5
w¼1

bwDUw þ zt ð2Þ

ð1�
Xp

i¼1

fiL
iÞð1�LÞd zt ¼ ð1þ

Xq

j¼1

yjL
jÞεt ð3Þ

Where in the first estimation stage, DUw denote dummy variables trapping potential day-
of-the-week effects, βw denote the corresponding regression coefficients, zt represent the error
terms. In the second estimation stage, first of all, we set the value of difference parameter d as 0
and the maximum of p and q to be 8. Herein, φi and θj denote ARMAX model coefficients, L is
the lag operator, εt represent the residuals. We assume each residual obtained from the former
procedure as:

rt=Ot�1 � Nð0;HtÞ ð4Þ

Ht � GtCtGt ð5Þ

Where Ht is a decomposed conditional variance–covariance matrix, and Gt is a diagonal
matrix of time-varying standard deviations from univariate GARCHmodels. The general
Gaussian–GARCH constraints, i.e. non-negativity and stationarity were exerted. Ct is the time-
varying conditional correlation matrix with the elements on the diagonal equal to unity:

Ct ¼ diagfQtg�1Q tdiagfQtg�1 ð6Þ

Qt ¼
 
1�

XP
p¼1

ap �
XQ
q¼1

bq

!
�Q þ

XP
p¼1

apðst � ps
T
t � pÞ þ

XQ
q¼1

bqQt � q ð7Þ

where st are standardized residuals, �Q is the matrix of unconditional correlation of st. The esti-
mation of parameters αp and βq are performed by quasi-maximum likelihood based on adding
up the quasi-likelihood functions of subsets of assets. Then the correlation coefficient between
index i and j is obtained from the following formula:

rt;i;j ¼
qt;i;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiqt;i;iqt;j;j

p ; i; j ¼ 1; 2; . . . ; n; i 6¼ j ð8Þ

Nevertheless, the estimation of DCC within a single system is expected to generate biased
results. Accordingly, we employ the individual bivariate DCC approach by Hafner and Rezni-
kova [28] to calculate all of the bivariate DCCs and subsequently obtain the N×N correlation
matrices CDCCt. After all the procedures, we transform the correlation coefficients to distance
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metrics between each pair of CSI industry indices as in Mategna [27]:

dt

ij
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1�rt

ij
Þ

q
ð9Þ

The formula fulfills the requirements of distance. The N×N distance matrix is used to deter-
mine the minimum spanning tree (MST) which is constructed using Kruskal’s algorithm and
presented in section 3.1.

Furthermore, we also calculate the rolling correlation coefficients and distances among
indexes to verify the merits of networks constructed based on rolling correlation coefficient
(RC) technique and DCC approach. The rolling correlation coefficient between index i and j is
defined as:

rt0
ij
¼

hSt
i
St
j
i�hSt

i
ihSt

j
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½hSt
i

2i�hSt
i
i2�½hSt

j

2i�hSt
j
i2�

q ð10Þ

where the notation h� � �i indicates a time average over the trading days included in the return
vectors Si. Likewise, we transform the rolling correlation coefficients to distance between two
indexes, given by:

dt0
ij
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1�rt0

ij
Þ

q
ð11Þ

Centrality
Centrality represents the position of points in a network [29]. Accordingly, we can utilize the
centrality estimation to identify the core nodes in stock network. In this study, we propose an
explicit analysis on the time-varying MST using three different quantitative definitions of cen-
trality as follows:

Degree centrality is defined as the number of adjacent edges involved with a given node
[26]. This estimate can be written in terms of:

DðiÞ ¼ 1

N� 1

X
i 6¼j

gt ij ð12Þ

where g represents the connections between node i and j. To illustrate, a higher degree central-
ity value is associated with a greater number of links for a stock.

Betweenness centrality is defined as the number of geodesics (shortest paths) going through
a vertex or an edge, which is a measure of one node’s importance as an intermediate element
between other nodes in the network [30]. It is obtained from the following formula:

BðkÞ ¼
X
i;j

nijðkÞ
mij

ð13Þ

Where nij(k) represents the number of shortest geodesic paths traversing k between nodes i
and j, whilemij denotes the aggregate number of shortest geodesic paths between node i and j.

Closeness centrality gauges how many steps is required to access every other vertex from a
given vertex whose value is high for strongly connected central nodes and vice versa[30]. This
measure has been defined as follows (we define closeness centrality to be the inverse of the total
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distance so that higher values indicate greater centrality herein):

CðiÞ ¼ 1XN

j¼1
dði; jÞ

ð14Þ

where d(i, j) indicates the minimum path distance between node i and j. Generally, stock pos-
sesses larger value of centrality is also accompanied with greater linkage effect exerting on
other stocks in the network.

Network topological properties
We adopt several evaluative criteria to capture the topological and statistical natures of stock
networks. We calculate the mean of correlation coefficients, the mean of distances, as well as
the normalized tree length to exploit the interdependence relations and dynamic linkage effects
in the analyzed stock networks. The mean correlation coefficients are defined as follows:

�r ¼ 1

NðN� 1Þ
X
i6¼j

rt
ij ¼

2

NðN�1Þ
X
i<j

rt
ij ð15Þ

The mean of distances in distance matrix can be written as:

�d ¼ 1

NðN�1Þ
X
i6¼j

dt
ij ¼

2

NðN�1Þ
X
i<j

dt
ij ð16Þ

The normalized tree length (NTL) is proposed by [31], which is utilized to analyze the link-
age effects among different currencies, and is obtained from the following formula:

NLTðtÞ ¼ 1

N�1

X
dij2D

dt
ij ð17Þ

where is the set of edges in MST.

Results and Discussions

Overall network structure analysis
In this section, we have investigated non-linear comovements that arise with the stock indexes
based on dynamic conditional correlations (DCC) of the daily CSI industry indices during
three different time intervals. We have used two approaches, namely the MST and HT method
as a means to trace and analyze the statistical features, hierarchical properties and dynamical
linkages among Chinese stock market over the abovementioned study periods. The MSTs of
indices in the stock market based on DCC finds a subset of the edges forming a tree that
includes every vertex, where the total weight of all the edges in the tree is minimized. After
obtaining the stocks minimum spanning tree, we can map the subdominant ultra-metric space
into corresponding hierarchical trees, and thereby understanding the structure distribution
and engaged linkages within the national stock clusters further. The horizon and vertical axes
represent the worldwide industry code and the ultrametric distance at which the two industries
are combined respectively. Finally, we have taken the MSTs of one-tier CSI industry indices
based on rolling correlation coefficient (RC) technique for examples to verify the limitations of
RC technique for case of high frequency financial data. The main conclusions of the topological
properties of the stock networks consist of the following:

(1) From Fig 1 which depicts the structural information of one-tier C SI industry indices, we
can capture several important features. We observe two clusters with CII and CCE at their
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centers respectively, which consistently match with their general production activities or their
strong connections. The former is made up of a set of indexes that are strongly correlated with
each other, namely CII, CMI, CUI, CEI, CFI and CTS. CII maintains a predominant position
with greater degree than the other nodes. This cluster is denominated as the “Industrials” clus-
ter for a majority of industries of the six indexes are classed as the secondary sector. Further-
more, the latter is composed of CCE, CIT, CHC and CCS such that CCE at its core. Of interest
in this group is that all industries of the internal indexes are identified as consumer-exposed,
hence we name it as the “Consumers” cluster exactly. One can see that the indices in the recent
Chinese market’s MST are distinctly assembled in line with their industry categories, with the
most probable interpretation for this phenomenon being that the frequent economic activities
and economic interactions between related industries in the real economy system, thus leading
to more tightly connected indices and more intense comovements among them in the stock
market, which reflect in the decreasing average path length of the MST. This discovery provides
a strong practical evidence for the connection between the structural linkages and the real
national stock markets.

The HT obtained starting from the MST described in Fig 1 is illustrated in Fig 2. In this fig-
ure, one can see that the distance between CII and CMI is the smallest of the sample, indicating
a strong relationship between these two industries. Not surprisingly, given the importance of
its social role, the CUI is the next to join. CII, CMI, CUI, CEI, and CFI are very close and make
up the cluster, meanwhile CHC, CIT, and CCS have been at the same level, implying an intense
connection of these industries, as can also be seen in Fig 1A.CTS has been at a high layer in this
period and distant from other industries, indicating that its linkage with others is extremely
weak. Interestingly, CCE is isolated from the “Consumers” cluster and closely interrelates with
the hub of “Industrials” cluster i.e. CII, which may be mostly ascribed to the magnitude dis-
crepancy of linkage effects between the two indexes and within the “Consumers” cluster.

In order to illustrate the robustness of the network interdependence results related to one-
tier CSI industry indices, we propose three kinds of ‘Centrality’, namely, the degree centrality,
betweenness centrality and closeness centrality as implementable criterions for selecting the

Fig 1. Minimum spanning tree of one-tier CSI industry indices. (2002/1/6-2015/7/1).

doi:10.1371/journal.pone.0156784.g001
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intrinsic key vertex. In particular, a larger centrality value is related to a more influential posi-
tion for a stock index within the system. The time-varying highest centrality measures and the
corresponding indices based on the MST displayed in Fig 1 are plotted in Fig 3. Considering
the numerical variation tendency of all kinds of centrality values, CCE and CII maintain an
overwhelming advantage for almost all the time, showing that they keep highly correlated to
other indices and exerting pronounced influences on other elements from dynamic perspec-
tive. In consequence, they are virtually the unquestionable most essential vertices in the stock
network during all the time period, which provides more compelling evidence in support of the
applicability of the aforementioned analyses and pinpoints the key roles of the two industry
indices. In addition, it is observed that the highest degree centrality periodically floated up and
down around the range (3, 8), and the highest betweenness fluctuated within a narrow band
(between 24 and 34), while the highest closeness centrality value consistently manifest a mod-
erate decreasing pattern during the time interval.

(2) As previously mentioned, CII and CCE has long been at the central location in China’s
stock market in the MST of one-tier CSI industry indices (hereafter referred to as “one-tier
MST”), while in the other two networks, things are different. For instance, as portrayed in Fig
4, two obvious stock clusters are observed, namely the “Capital Goods” cluster and the “Inter-
net” cluster with CAG and ITH as the central nodes respectively. Compared to the stock clus-
ters with CCE and CII at their centers in Fig 1, it is obvious that the industry attributes of the
two central nodes have changed substantially in the latter case. The former consists of multiple
indexes directly from industries composed of Retail, Durable & Apparel, Auto & Component,
Materials, Real Estate, Utilities, Diversified Financials and Trans, and indirectly from industries
including Bank, Insurance and Energy. However, the latter is composed of numerous indices
all related to Information Technology, although there are two indices having diverse classifica-
tions namely Pharma & Biotech and Food & Beverage, which demonstrates observably strong

Fig 2. Hierarchical tree of one-tier CSI industry indices. (2002/1/6-2015/7/1).

doi:10.1371/journal.pone.0156784.g002
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industrial features. In a word, CAG and ITH are confirmed as two dominating indices in the
Chinese equity market and maintain significant roles in the MST. Specifically, compared to the
stock clusters in Fig 1 whose degrees of central nodes (CCE and CII) are 4 and 5, respectively,
apparent changes occurred in the Chinese stock market during the second time interval. The
degrees of CAG and ITH in two-tier MST are 7 and 4, respectively, providing strong proof of
tighter interdependence among stock network. Additionally, it is interesting to discover that
these clusters are still homogeneous in regard to the economic relations of the industries as is
the case in Fig 1.Generally, companies endowed with the same category are highly related to
each other in comparison to companies of different categories, providing a strong evidence
that stocks can be clustered in accordance with their industrial categories taxonomy due to the
close interdependence among economic agents in the nationwide arena.

Fig 3. Time-varying highest centrality measures and the corresponding indices in the one-tier MST.
(2002/1/6-2015/7/1).

doi:10.1371/journal.pone.0156784.g003
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The HT which corresponds to Fig 4 is shown in Fig 5. Given that the magnitude of distances
among group of industries denote an adverse correlation degrees, we can rank them as follows:
the first cluster, the more prominent and strongly connected cluster, is the cluster of CAG,
CMA,CTR,UTL, DAP, ACP, RET, and ENG with the smallest distances between them; subse-
quently, PBT, FBA, ITH, MEA and ITF of the “Internet” group with greater distance between
them, suggesting a weaker linkage effect among them. Intense relation of the “capital” group
are mostly ascribed to the economic liaisons namely the trading connection among these
industries.

The time-varying highest centrality measures and the corresponding indices based on the
MST displayed in Fig 4 are illustrated in Fig 6.The graphs consistently show the fact that the
CAG vertice takes the highest centrality values for almost all the time (sometimes the ITH).
Hence, it, no doubt, plays the most important role in the stock network during the study
period, thereby representing more assertive evidence for the high robustness of the aforemen-
tioned exploratory findings underlying comovements across local stocks related to two-tier CSI
industry indices. In addition, it is observed that the highest degree centrality periodically
floated up and down around the range (4, 11), similarly, the highest betweenness and closeness
centrality values fluctuated within the bands (71,114) and (0.03, 0.07) respectively.

Fig 4. Minimum spanning tree of two-tier CSI industry indices. (2009/1/6-2015/7/1).

doi:10.1371/journal.pone.0156784.g004
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(3)From Fig 7 which demonstrates the structure information of three-tier CSI industry indi-
ces, we can discover several features which are widely divergent from the former cases as fol-
lows. Three remarkable stock industry index clusters are observed in this time interval, namely
the “Construction” cluster, the “Household” cluster and the “Property related” cluster with
COU, CHA and REI at their centers respectively. As one can see, significant changes have
taken place in the industry attributes of the central stock indices in three-tier MST when com-
pared with the former cases. The first group is denominated as the “Construction” cluster for
the reason that all industries of the indexes are recognized as members associated with con-
struction trades, except for INS, which suggests the importance of building industry in the
entire national stage. The second group comprises multiple indexes directly from industries
composed of Media, Food, Specialty Retail, Electrical Equip, Pharm and Multi Retail, and indi-
rectly from industries including Computers, Airlines, Beverages and Household Durables. The
last group consisted REI, CAM, TRC, MEM, TEP and COB, all of which originate from indus-
tries related to the real estate business. It worth noting that both COU and REI maintain cen-
tral positions in the network structure, which is in parallel to the critically essential roles of
infrastructure construction and real estate in the Chinese society, thus underpinning their
importance in the MST. The degrees of COU, CHA and REI are 6, 7 and 4 respectively which
is diverse from the aforementioned two MSTs, indicating that the three-tier stock network got
more dispersed on the whole but stocks connect more tightly while the comovements among
them are more intense on smaller scales than the rest, which is manifested intuitively in Figs 1,
4 and 7. Interestingly, stock market indexes’ synchronization to their industry attributes is also
observed in this section. To elaborate, there appears to be tighter connections and more observ-
ably strong clustering among the indexes situated in the same industry category. That is to say,
stocks are inclined to connect with their peers within relevant industries, as is the case in afore-
mentioned MSTs.

Fig 5. Hierarchical tree of two-tier CSI industry indices. (2009/1/6-2015/7/1).

doi:10.1371/journal.pone.0156784.g005
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Fig 6. Time-varying highest centrality measures and the corresponding indices in the two-tier MST. (2009/1/6-2015/7/1).

doi:10.1371/journal.pone.0156784.g006
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The HT of the subdominant ultra-metric associated to the MST is shown in Fig 8. The exis-
tence of three clusters are clearly identified. With respect to the correlation degrees, the “Con-
struction” group maintains the first place, as OGC, REI, TRC, COM, MAI and COU have still
been at the same level, implying a close proximity of these industries. Next follow the “House-
hold” group which is composed of CHA, AIR and ELE, with CHA playing a central role in this
local network, indicating a strong linkage among them. And in third place are SPR, PHA,

Fig 7. Minimum spanning tree of three-tier CSI industry indices. (2009/1/6-2015/6/25).

doi:10.1371/journal.pone.0156784.g007

Fig 8. Hierarchical tree of three-tier CSI industry indices. (2009/1/6-2015/6/25).

doi:10.1371/journal.pone.0156784.g008
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FOD, MEA, COT and MRA which show greater distance between their nodes than the first
two groups. INS and WAU have been at a high layer in this period and distant from other
industries, indicating that their linkages with others are especially weak.

The time-varying highest centrality measures and the corresponding indices based on the
MST displayed in Fig 7 are demonstrated in Fig 9. According to the new case, it is noteworthy
that the unique winner does not exist associated with the numerical centrality values. To spec-
ify, the COU, CHA and REI vertices (listed in their pecking order) take the top three places in
terms of the centrality values of all kinds, which effectively clarifies their essential positions
among all the elements in the stock network and, as well, supplies strong evidence for the credi-
bility of the aforementioned conclusions concerning the linkage effects between stock market.
More precisely, it is observed that the highest degree centrality values periodically floated up

Fig 9. Time-varying highest centrality measures and the corresponding indices in the three-tier MST.
(2009/1/6-2015/6/25).

doi:10.1371/journal.pone.0156784.g009
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and down around the range (5, 11), likewise, the highest betweenness and closeness centrality
values fluctuated within the bands (210,300) and (0.015,0.028) respectively.

(4) Furthermore, we construct networks based on the rolling correlation coefficients to dig
into the differences between RC technique and DCC approach. Confined by space, we hereon
take the one-tier CSI industry indices as a representative to plot topological pictures of sample
indexes. Fig 10A. presents the MST-RC of three-tier CSI industry indices for the entire period
as an overall picture. Fig 10B. and 10C illustrate the MST-RCs of three-tier CSI industry indices
on October 2008, as an example of the period during US financial crises at different time win-
dows (T = 6 months and T = 12 months, respectively).

Fig 4A is similar to Fig 1, but following differences have been observed. (i) It can be seen
that the branch clusterization with CII and CCE at their centers respectively remained, but the
tree structure changed since CEI is directly connected with CII. (ii) There is a significant incre-
ment on the linkage effects among the stock market, which is reflected in the reduced distance
of links of two central nodes. With respect to the stock cluster with CCE at the center, its dis-
tances with the linked indices are 0.82, 0.92, 0.95, and 1.02, respectively in Fig 1, while in Fig
4A the corresponding distances decrease to 0.42, 0.53, 0.57, and 0.63, respectively. In the case
of the stock cluster with CII at the center, its distances with the original linked indices (exclude
CEI) are 1.02, 0.94, 0.82, 0.81, and 0.72, respectively in Fig 1, while in Fig 10A the correspond-
ing distances decrease to 0.63, 0.54, 0.45, 0.43, and 0.36, respectively. In other words, indices
connect more tightly while the comovements among them are more intense in the stock mar-
ket network based on RC technique, which provides evidence of upward bias caused by data
heteroskedasticity of rolling correlation coefficient estimate.

In order to illustrate the robustness of the results related to rolling coefficients, we plot the
MST-RCs of one-tier CSI industry indices on October 2008, as a representative of the period
during US financial crises at two time windows (Fig 10B and 10C). It can be clearly seen that,
the worldwide spread of American subprime crisis undoubtedly contributes to an increase of
the linkage effect of CFI. Besides, one interesting observation is noteworthy that with different
choices of time window length, the MST structure has changed to some extent as well, which is
a more assertive evidence for the higher robustness of results based on DCC than that based on
rolling window method.

In conclusion, we interpreted the topology properties of the Chinese stock market adopting
the minimum spanning tree analysis and hierarchical tree structure technique based on DCC
estimation. It excludes the possibility of heteroskedasticity bias (correlations incline to be
biased when volatility increases) and retains the ability to capture short term dynamics of the
network structure, which is more applicable for the observation of daily changes in the tempo-
ral condition of the stock market. Although the structure natures are diverse from each other,
the three analyses consistently yield findings in line with the status quo of the real economy in
China during the study periods. Besides, the results for MSTs based on DCC estimation tend to
be homogeneous which indicates that the central vertices are not random and are less sensitive
to the subjective choice of estimation window, and the central vertices generally conforms to
the expected results according to practical reasoning, which contradicts to the previous studies
employing the rolling correlation coefficient (RC) process method [10, 11]. They provide evi-
dent proof of network clusters’ homogeneous tendency in regard to the economic communica-
tions of the industries in reality. In other words, a stock index is clustered on basis of the
features of the sectors to which it belongs, thus building the interconnection between intuitive
network topology structure information and virtual economic situation of financial markets.
There appears to be greater clustering effect among the indexes belonging to related industrial
sectors than those of diverse sectors. To specify, the one-tier industry indices can be divided
into the “Industrials” cluster and the “Consumers” cluster, the two-tier industry indices can be
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Fig 10. MST-RC of one-tier CSI industry indices. (a) shows the MST-RC of one-tier CSI industry indices
during the whole study period (2002/1/6-2015/7/1). (b) shows the MST-RC of one-tier CSI industry indices on
October 2008 (Window length = 6 months). (c) shows the MST-RC of one-tier CSI industry indices on
October 2008 (Window length = 12 months).

doi:10.1371/journal.pone.0156784.g010
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divided into the “Capital Goods” cluster and the “Internet” cluster, and the three-tier industry
indices can be divided into the “Construction” cluster, the “Household” cluster and the “Prop-
erty related” cluster. It may greatly ascribe to the investors’ similar behavior modes applied to
securities with relevant industry characteristics. In particular, CII and CCE, CAG and ITH as
well as COU, CHA and REI have long been the central nodes in the networks they belong to,
all of whose corresponding industries occupy significant positions in China’s development pro-
cess of the three study sub-periods. The calculation of time-varying highest “centrality” tested
the robustness of our results.

Dynamic evolution analysis of network’s stability
To further dig into the stability of linkage effects, we utilize the network properties equations to
obtain the mean correlation coefficient and mean distance, as well as the normalized tree length
of these indices as indicators to illustrate the time series natures of connectivity structure infor-
mation in a dynamic network. In particular, the normalized tree length and mean distance
mean correlation coefficient are defined as the mean of the distances in the MST and Distance
Matrices respectively, with higher values representing a tighter coupling effect among the indi-
ces and vice versa. Simultaneously, the mean correlation coefficient refers to the mean of coeffi-
cients in correlation matrix and is also related to the interdependence within the system.
Conversely, the higher the value of the mean correlation coefficient is, the tighter the intercon-
nections among the indices.

Fig 11 presents the dynamics of mean correlation coefficient between all industry indices
throughout the entire study periods with respect to the Chinese stock market. It is noteworthy
that the mean correlation coefficient associated with the three stock networks periodically
floated up and down in normal times but dramatically increased as reactions to U.S. debt-ceil-
ing crisis (late 2008 to mid-2009) and European debt crisis (early 2011 to mid-2012), although
with some delay, which arises a noticeable question concerning whether the dynamic market
inter-correlations could be interpreted by the impact of international financial crises. In the
case of European debt crisis, the mean correlation coefficient sharply rose and declined passing
through the time interval. In the case of U.S. subprime crisis, the mean correlation coefficient
climbed up to higher position in comparison with the European debt crisis, indicating a stron-
ger interdependence relationship among stock indices. Between the two time breakpoints, the
mean correlation coefficient remains anchored to a relatively lowered level. It undoubtedly ver-
ifies the conjecture that the numerical mean correlation coefficient variation may partly origi-
nate from the contagion effect of influential financial crises.

Figs 12 and 13 presented the mean distance and normalized tree length among all industry
indices with respect to the Chinese stock market. Interestingly, we observed that the mean dis-
tance and the normalized tree length tend to follow similar fluctuation pattern. Specifically,
both mean distance and normalized tree length demonstrate special movements around U.S.
subprime crisis and European debt crisis, as often as is typically found for mean correlation
coefficient. The mean distance of three stock networks periodically dipping and heaving
around the range (0.3, 0.8), (0.7, 0.9) and (0.75, 0.95), meanwhile the normalized tree length of
them fluctuated in the interval of (0.3, 0.7), (0.5, 0.75) and (0.6, 0.85), respectively. In the case
of the European debt crisis, the mean distance and the normalized tree length rapidly steeply
ascended at the outset, and then gradually declined afterwards. In the case of U.S. subprime cri-
sis, they decreased to relatively lower level compared with European debt crisis, manifesting a
tighter interdependence among stock network. After the events, both the normalized tree
length and mean distance slowly rebounded subsequently. In this respect, we reasonably con-
clude that the normalized tree length and mean distance can capture the tendency of financial
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crisis despite always having a delayed informative cue, which is in parallel to the prior findings,
which argues that the inter-nodal comovements in stock market are significantly affected by
influential financial events in the reality [32].

In conclusion, the linkage effects among equity markets in the study region consistently
manifest an increasing pattern along with the outbreak of global financial turmoil and subse-
quently revert to normal status in ordinary times. This result also provides powerful evidence
for the finding of Flavin et al. (2008), which states that the linkages between equity markets
appear to be instable [32].

Network effects on stock returns
To further investigate the effects of network structure natures on virtual stock returns, we uti-
lize the closeness centrality equations to obtain the inter-industry closeness as an indicator to
illustrate the connectivity structure of a dynamic network. We select stocks’ closeness centrali-
ties as the indicator for dynamic stock market network linkages for the reason that a larger
closeness centrality value is related to a more structurally influential position for a stock index
within the system since a vertex of high closeness centrality can easily reach or be reached by
others, so that they can represent the degrees of stocks’ inherent correlation risks [33]. Subse-
quently, we explore in depth the relations between stock’s centrality and its corresponding
future returns to verify the conjecture that the stock with the tightest linkage to its network has
the largest expected return among the nodes. In order to tackle this issue, we adopt the general-
ized method of moments (GMM) model proposed by Blundell and Bond (1998), which allows

Fig 11. Dynamicmean correlation coefficients. (a) shows the one-tier MST (2002/1/6-2015/7/1). (b) shows the two-tier MST
(2009/1/6-2015/7/1). (c) shows the three-tier MST (2009/1/6-2015/6/25).

doi:10.1371/journal.pone.0156784.g011
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for the endogeneity of explanatory variables [34]. It provides the linear specification of the
return of stock with the following formula:

riðtÞ ¼ aþ bCiðtÞ þ griðt� 1Þ þ lrshðtÞ þ εiðtÞ ð18Þ

Where the ri(t) is the return of indice i in date t, α is the constant, Ci(t) denotes the centrality
for industry i in the stock networks in date t, rsh(t) is the return ratio of the Shanghai and Shen-
zhen Stock Market in date t, and εi(t) is all other influential factors.

The regression results of three stock market networks are presented in Table 2. In the case
of the stock market network of one-tier CSI industry indices, the regression model is valid and
accurate, as the results of Sargen test, AR(1) test, AR(2) test and R2 are 1.000, 0.0124, 0.3184
and 0.8731 respectively, which excludes the possibility of autocorrelation and poor fitness.
Interestingly, both the indice’s centrality value and return ratio of the Shanghai and Shenzhen
stock market exert significant positive effect on the indice’s expected return, whereas the effect
of its previous return is less significant. Moreover, the coefficient for the variable centrality is
0.1853, indicating that a one-unit increase in an index’s closeness across indices results in a
nearly 19-percentage-point increase in the stock’s expected returns, when other factors remain
constant. This result indicates that a stock’s future returns increase as the connections between
the stock and other stocks increase.

Next, we turn to the estimation of the expected return associated to the centrality factor
with respect to the two-tier CSI industry indices. The regression model is valid and with good
accurace, as the results of Sargen test, AR(1) test, AR(2) test and R2 are 1.000, 0.0001, 0.9432

Fig 12. Dynamicmean distances. (a) shows the one-tier MST (2002/1/6-2015/7/1). (b) shows the two-tier MST (2009/1/6-
2015/7/1). (c) shows the three-tier MST (2009/1/6-2015/6/25).

doi:10.1371/journal.pone.0156784.g012
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and 0.8526 respectively, which excludes the possibility of autocorrelation and poor fitness. Fur-
thermore, the centrality of a stock has a significant effect on the stock’s expected returns in net-
works; thus, the inter-connections between stocks or the positions of stocks in networks
determine stock returns. Compared with the prior regression, no substantial changes have

Fig 13. Dynamic normalized tree length. (a) shows the one-tier MST (2002/1/6-2015/7/1). (b) shows the two-tier MST
(2009/1/6-2015/7/1). (c) shows the three-tier MST (2009/1/6-2015/6/25).

doi:10.1371/journal.pone.0156784.g013

Table 2. Dynamic GMM-regression results.

Variable One-tier network Two-tier network Three-tier network

Constant -0.3146** -0.1125* -0.0065*

Closeness Centrality 0.1853** 0.1037** 0.0664***

Return (−1) 0.3605* 0.0429** 0.1163**

Returnsh 0.6374*** 0.8835*** 0.5268***

No. of obs. 25820 21046 34580

No. of indices 10 17 28

Sargen test 1.0000 1.0000 1.0000

AR(1) test 0.0124 0.0001 0.0000

AR(2) test 0.3184 0.9432 0.2127

R2 0.8731 0.8526 0.8574

The Sargan test refers to the two-step estimation results. AR (1) and AR (2) are the tests of first and second order autocorrelation in the residuals.

*, **, *** indicate significance at the 10%, 5% and 1% levels, respectively.

doi:10.1371/journal.pone.0156784.t002
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taken place in both the sign and significance of regression coefficients in this step, manifesting
that the stock’s centrality has stable forecasting ability on its future return and simultaneously
the positive regression coefficient denotes a positive centrality price of risk.

Finally, we examine the predictive ability of stock inter-connections with regard to stock
returns of the three-tier CSI industry indices. The regression model is valid and accurate, as the
results of Sargen test, AR(1) test, AR(2) test and R2 are 1.000, 0.0000, 0.2127 and 0.8574 respec-
tively, which excludes the possibility of autocorrelation and poor fitness. It should be noted
that one indice’s centrality value and return ratio of Shanghai and Shenzhen stock market have
significant positive effects on an index’s expected return, whereas, the effects of its previous
return is less significant. In addition, the coefficient for the variable centrality is 0.0664, sug-
gesting that when other factors are held constant, a one-unit upward change in an index’s cen-
trality will account for almost 7-percentage-point unit augment in the stock’s expected returns.

In conclusion, expected returns consistently manifest an increasing pattern along with the
centrality value of the entire stock market networks, which strong demonstrates the results’
robustness. This high stability apparently advances the applicability of regression results in pol-
icy making for the Chinese market as they tend to exhibit wide range reliability. According to
the aforementioned findings, equity returns are significantly affected by the inter-nodal influ-
ence and the relation between node centrality and market return is pronouncedly positive. It
undoubtedly provides powerful evidence that central or ‘exogenous’ stock that is highly corre-
lated to other stocks and projects substantial influences on the propagation of fundamental
shocks in the economy, will pronouncedly gain higher expected return. Consistent with the
theoretical prediction, we find support of a positive centrality price of risk. In this respect, we
reasonably conclude that centrality helps to motivate the value premium as a causality risk pre-
mium: the expected return of value stocks in excess of growth stocks is a centrality premium to
some extent.

Conclusion
The focal points of this study are to synthetically analyze comovements of Chinese equity mar-
ket using the MST and hierarchical tree method, to further capture the time-varying stock net-
work characteristics across different industries by estimating mean correlations and mean
distances, as well as the normalized tree length of these indices in three stock networks during
the study periods, and to examine the effects of network linkages on stock returns.

An important contribution in the network analyses is that we find indices of similar indus-
try nature flock together, which provides evidence of the stock market indexes clustering
behaviors’ synchronization to their industry properties, and confirms network as the portrait
of the real economic circumstance theoretically and empirically. That is, there appears to be
greater clustering effect among the indexes belonging to related industrial sectors than those of
diverse sectors. The evidence implies that the Chinese equity market develops homogeneous
clusters on the strength of the industry.

Moreover, the dynamic evolution investigation of network structure suggests that the net-
work is relatively stable over the time. In particular, CII and CCE, CAG and ITH as well as
COU, CHA and REI have long been the central nodes and are highly correlated to other indices
in the three sub-networks, respectively, which may mostly ascribe to the important position of
the corresponding industries in China’s development process. In this sense, they play critically
essential roles in the stock networks and may consistently project substantial influences on the
propagation of fundamental shocks in the economy. As a consequence, regulators and inves-
tors should keep in mind that the central nodes in stock network deserve particular attention
as the ever-burning lamps of vast universe of equity market, no matter from the perspective of
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financial risk supervision or pursuit for earnings. Nevertheless, prominent changes have taken
place in the network during two exceptional periods, i.e. the U.S. subprime crisis and European
debt crisis. It is obviously noticed that the network’s interdependence relationship strength-
ened substantially, which suggests that the network comovements variation may partly origi-
nate from the contagion effect of influential financial crises in reality.

In addition, this research sheds light on the asset pricing mechanism of stock market.
Though stock market networks have been extensively explored, we have extended this line of
study to the effects of network topological properties on stock returns. Our regression results
indicate that the dynamic correlation between centrality and stock market returns is consis-
tently positive over time, thereby representing evidence that stock future returns are signifi-
cantly affected by the extent of the interdependence for that stock in the concerned equity
markets. In essence, the closeness for stock represents the degree of its inherent correlation risk
[33]. To specify, the stock with most connections to its network obtains the largest expected
return among the central nodes, while the stock most influenced by its ‘hub’ obtains larger risk
premium among periphery nodes. From the perspective of psychological factors, stock market
investors usually tend to present characteristics of risk aversion, and this tendency even magni-
fies during the periods of the financial crises. Consequently, it is reasonable to expect that
investors require high returns for those assets posited at the center of the network structure as
a premium for the magnified contagion risk. In this way, network co-movement plays a criti-
cally important role determining the asset pricing mechanism and deserves a positive risk
price.

The findings are enlightening since few prior researches have focused on the network topo-
logic metrics in the financial domain. From an economic perspective, our empirical estimation
of comovements, linkages and stock returns conveys a host of inferences, i.e. the influence of
one given node towards other indices, the risk attributes, the intrinsic return potential, thereby
providing profound insights as to construct diversified portfolio or make risk management in
terms of their topological location information in equity networks. For instance, investors can
curb repetition of highly related assets when making portfolio allocations, and they can focus
on the trends of the industry indices correspond to their holding assets when making invest-
ment decisions. In this way, the proposed method provides insightful implications that facili-
tate investors and regulators in analyzing stocks based on the co-moving industries and
highlights that they should pay close attention to the “hub” nodes rather than monitor every
node within the system.
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