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Abstract
Specular reflection removal is indispensable to many computer vision tasks. However, most

existing methods fail or degrade in complex real scenarios for their individual drawbacks.

Benefiting from the light field imaging technology, this paper proposes a novel and accurate

approach to remove specularity and improve image quality. We first capture images with

specularity by the light field camera (Lytro ILLUM). After accurately estimating the image

depth, a simple and concise threshold strategy is adopted to cluster the specular pixels into

“unsaturated” and “saturated” category. Finally, a color variance analysis of multiple views

and a local color refinement are individually conducted on the two categories to recover dif-

fuse color information. Experimental evaluation by comparison with existed methods based

on our light field dataset together with Stanford light field archive verifies the effectiveness

of our proposed algorithm.

Introduction
Image specular reflection has long been problematic in computer vision tasks [1]. They appear
as surface features, but in fact they are artifacts caused by illumination changes from different
viewing angles [2]. Most algorithms in computer vision such as segmentation [3] (which typi-
cally assumes the intensity changes uniformly or smoothly across a surface), or stereo matching
[4], recognition [5–9], image analysis [10–14]and tracking [15] (they attempt to match images
taken from various conditions, i.e., viewing angle, illumination or distance, so they need a con-
sistent surface of an object in different images) ignore the presence of specular pixels and work
under the assumption of perfect diffuse surfaces. However, a vast majority of materials contain
both diffuse and specular reflections in the real world. As a result, processing images with spec-
ular reflections using these algorithms can lead to significant inaccuracies [1, 16].

In recent years, various techniques try to handle the problem of specular reflections. Based
on the number of input images, these methods could be divided into two main categories: mul-
tiple-image based and single-image based [1]. Multiple-image based approaches involve an
image sequence of the same scene taken either from different viewpoints [16], with different
illumination [17] or utilizing an additional polarizing filter. Nevertheless, obtaining such an
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image sequence is difficult, time-consuming or even impractical [18–23]. Single-image based
approaches require color or texture analysis [23–25]. They achieve acceptable results in some
images, but they are unstable when the analyzed image has complicated textures and extreme
specularities [23].

Benefiting from computational photography [26] and light field (LF) imaging technologies
[27, 28], we propose an accurate and novel framework that uses LF cameras to remove specu-
larity. A handheld LF camera mounts an array of microlens in front of the sensor, which could
record the full 4D rays to describe the scene, so one can refocus the image after a passive sin-
gle–shot capture and shift viewpoints within sub-apertures of the main lens. With a LF camera
to capture multiple views of the scene in a LF image, we could avoid the implementation com-
plexity of conventional multiple-image based specular removal methods. In our algorithm, by
exploiting the LF image to extract perspectives and modify focus, specular pixels could be
detected and classified into “unsaturated” and “saturated” types, then replaced by their diffuse
color via a color variance analysis of multiple views and a local color refinement. Thus, specular
reflections could be substantially eliminated while the color consistency is well maintained in
the rest part of the image. Moreover, the proposed algorithm can handle images which contain
non-chromatic (i.e. R = G = B) and saturated specular pixels. It’s tested on various databases:
the indoor and outdoor LF images taken by our Lytro ILLUM camera and the LF images from
the Stanford light field archive [29]. It’s compared against three competitive methods: Tan
et al. [24], Shen et al. [30] and Yang et al. [23].

The remainder of this paper is organized as follows. Section II introduces a brief review of
the previous work related to highlight removal. Section III presents the basic knowledge of
light field data, physical properties of reflection and dichromatic reflection model. In Section
IV, we elaborate our algorithm in detail. We provide experimental results for real images in
Section V. Lastly, concluded remarks are made in Section VI.

Related work

Multiple-image based highlight removal methods
This category utilizes a sequence of images, taking advantage of the different behaviors which
these two reflections possess under specific conditions. Nayar et al. [31] achieved separation by
incorporating polarization and color to obtain constraints on reflection components of each
scene point, so the algorithm could work for textured surfaces. Unfortunately, obvious errors
occur in the specular component on region boundaries due to chromatic aberration effects and
mis-registration between polarization images. Later, Sato and Ikeuchi [32] examined a series of
color images in a four-dimensional space and constructed a temporal-color space, which could
describe the color change under the illumination densely varying with time. Lin and Shum [33]
also changed the light direction to produce two color photometric images and estimated specu-
lar intensity from a linear model of surface reflectance, but when the surface color is similar to
the illumination color, some specularity would be lost. In addition to that, light sources of the
real world are usually fixed, especially in the outdoor scenes where light is not always controlla-
ble. These approaches have produced good results, but the need for polarization or changing
light direction greatly restricts their applicability.

Consequently, a number of researchers tried to fix the illumination and vary viewpoints to
make the decomposition. Their basic ideas mainly utilize the fact that when viewing from vari-
ous directions, the color of diffuse reflection doesn’t change, but that of specular reflection or a
mixture of the two does. Using multi-view color images, Lee and Bajcsy [34] proposed a spec-
tral differencing algorithm to seek specularities. Later, Lin et al. [16] integrated this work with
multi-baseline stereo to yield good separation; nevertheless, large baseline would lead to severe
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occlusions which might be mislabeled as specularity. Criminisi [35] looked into the Epipolar
plane image (EPI) strips to detect specular pixels, but some artifacts showed up because of
incorrect EPI-strip selection. Furthermore, configuring and adjusting the required cameramay
not be easy.

Single-image based highlight removal methods
In the last few years, considerable effort has been devoted to this category. For multi-colored
images, many single-image based methods involve explicit color segmentation [36, 37] which
is often non-robust for complex textures and specularities, or require user assistance for high-
light detection [2]. Shafer [38], who introduced the dichromatic reflection model, proposed a
method based on a simple knowledge: by spectral projection in color space, points on a single
surface must lie within a parallelogram and be bounded by diffuse and specular colors. Klinker
[37] classified color pixels as matte (diffuse reflection only), highlight (specular and diffuse
reflections) and clipped (highlight that exceeds the camera dynamic range), then produced a
skewed T shape color distribution. However, it may cause serious inaccuracies on textured sur-
faces whose distributions are not T shaped.

Avoiding segmentation, Tan and Ikeuchi [24] iteratively compared the intensity logarithmic
differentiation of the input normalized image and the specular-free (SF) image to determine
whether the normalized image contains only diffuse pixels. Shen et al. [30, 39] introduced a
new modified SF image by adding a constant or pixel-dependent offset for each pixel. These SF
image based methods can attain pleasing results on some images, but they require the input
image has chromatic (R 6¼G 6¼B) surfaces because they heavily rely on color analysis [24]. They
also need the specular component be pure white, or prior knowledge of illumination chroma-
ticity which sometimes is not available. In addition, even the specular components are removed
correctly, the original surface color may not be well preserved and produce dark diffuse images
or noises. Yang et al. [23] proposed a real-time method by applying bilateral filtering to remove
specularity. Although this method works robustly for many textured surfaces, it still cause arti-
facts at non-chromatic areas. Unlike many methods under an iterative framework, Nguyen
et al. [40] provided a non-iterative solution by adopting tensor voting to get the reflectance dis-
tribution of an input image and removing specular and noise pixels as small tensors.

Light field imaging
As an important branch of computational photography, light field imaging has been a fairly
hot research topic in computer vision community, which offers new possibilities for many
computer vision tasks. Modern LF rendering is firstly proposed by Levoy and Hanrahan [27]
and Gortler et al.[28]. Early LF imaging systems use a camera array to capture the full scene,
which is usually heavy and impractical for daily use. Ng [41] inserted a microlens array
between the sensor and main lens, creating a portable plenoptic camera which enables consum-
ers to conduct some basic post-capture applications, such as refocusing and altering view-
points. Despite of its primary capabilities, LF cameras can be applied to various tasks, such as
depth estimation [42, 43], saliency detection [44], matting [45] and super-resolution [46]. In
this paper, we will explain how LF imaging is employed to specularity removal.

Priori Conceptions

Light field structure
As noted in [27], a light field which is defined as radiance along rays in empty space is typically
represented as a 4D function. A number of models have been proposed to describe light fields,
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such as the two-plane parameterization, sphere-sphere and sphere-plane parameterizations. In
our paper, we represent the light field using the popular two-plane model, which records the
intensity of a light ray passing through two parallel planes. For better understanding, it could
be considered as a set of pinhole views from several viewpoints parallel to a common image
plane in 3D space, as illustrated in Fig 1(a). The 2D plane ∏ contains the locations of view-
points, which represents the angular domain and is parametrized by the coordinates (u,v),
while the image plane Λ stands for the spatial domain and is parametrized by the coordinates
(x,y). Hence, a 4D LF can be mapped by:

I : L�P ! R; ðx; y; u; vÞ ! Iðx; y; u; vÞ ð1Þ

By extracting the spatial pixels of the same viewpoints, we obtain multiple pinhole images
where each represents an image captured from a slightly different perspective, as shown in
Fig 1(b).

With a LF image, [41] clearly specifies how to achieve refocusing by shearing. Focusing at
different depths is equivalent to changing the distance between the lens and the film plane, giv-
ing rise to a shearing of the light ray trace on the ray-space. By similar triangles and ray-space
coordinates transforming, we can establish a 4D shear of the light field that enables refocusing
at different depths below:

Iaðx; y; u; vÞ ¼ I0 x þ u 1� 1

a

� �
; y þ v 1� 1

a

� �
; u; v

� �
ð2Þ

where the shear value α is the depth ratio of the synthetic film plane to the actual film plane, I0

Fig 1. (a) Two-plane representation of a LF image. (b) Themultiple pinhole images of a LF image after decoding. This LF image was taken by
[43].

doi:10.1371/journal.pone.0156173.g001
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denotes the input LF image and Iα denotes the sheared LF image by α. In this paper, α is used
to substitute depth of the scene for that they have a positive linear correlation with each other.
Furthermore, when the light field is rearranged to focus at a scene point, all pixels of the same
scene point from available views are obtained.

Physical properties of reflection
To determine and separate two typical types of reflections: diffuse and specular, we first present
a brief account of the formation process and the main differences between these two reflec-
tions. Theoretically, when light strikes an inhomogeneous opaque surface, it first passes
through the interface between the air and the surface medium. Some light will promptly reflect
back into the air producing specular reflection. The rest of light will penetrate through the
body, undergo scattering from the colorant, and eventually be transmitted through the mate-
rial, absorbed by the colorant, or re-emitted through the same interface by which it entered
producing diffuse reflection. Therefore, the observed highlights on glossy surfaces are combi-
nations of these two reflections.

Basically, there are three characteristic differences between diffuse and specular reflections
(Table 1). First, they have different degrees of polarization (the percentage of the light being
polarized), which is often used in separation methods involving polarization [31, 38]. Second,
their intensity distributions follow different models, which are directly applied to describe and
approximate these two components [24]. Third, for most inhomogeneous surfaces, the specu-
lar reflection takes the illumination color because it has the relative spectral power distribution
(SPD) of the illuminant. In contrast, the color of the diffuse reflection is equal to the surface
color since the SPD of the diffuse reflection is altered by the object’s body SPD (resulted from
interactions with colorant particles) [37, 38]. This is the most common basis in reflection sepa-
ration algorithms. Caused by the fundamental characteristics above, the two reflections also
hold some other distinct properties, such as view-point dependence, color and geometric distri-
bution, also shown in Table 1.

Dichromatic reflection model
The dichromatic reflection model [38] is a simple reflectance model to determine the linear
combinations of diffuse and specular reflection components from a standard color image. The
total radiance L of inhomogeneous objects is the sum of two independent terms: the radiance
Ld of the light reflected from the surface body and the radiance Ls of the light reflected at the
interface:

Lðl; l; v; nÞ ¼ Ldðl; l; v; nÞ þ Lsðl; l; v; nÞ ð3Þ
where λ is the light wavelength, l and v are the light source and camera viewpoint directions

Table 1. Differences of diffuse and specular reflections.

Polarization Intensity Distribution Model SPD View-point
Dependence

Color Geometric
Distribution

Diffuse
Reflection

unpolarized Lambert's Law the object's
body SPD

independent the color of the
object's surface

isotropic

Specular
Reflection

highly
polarized

the Torrance-Sparrow reflection
model or the Beckmann-Spizzichino

reflection model

the
illumination's

SPD

dependent the color of the
illumination

concentrated in a
compact lobe

doi:10.1371/journal.pone.0156173.t001
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respectively, and n is the surface normal. Each component is decomposed into two parts:

Lðl; l; v; nÞ ¼ wdðl; v; nÞcdðlÞ þ wsðl; v; nÞcsðlÞ ð4Þ
The magnitude term w is a geometric scale factor which only depends on geometry shapes,
while the composition term c is a relative SPD which only depends on wavelength.

Note that the diffuse magnitude wd only depends on n and l, whereas the specular magni-
tude ws also changes with the camera viewpoint, resulting in the color intensity view angle
dependent. For the sake of simplicity, we drop the l and n terms and project the scene by a digi-
tal camera. Therefore, a pixel p of the image is written as:

LðpÞ ¼ wdðpÞcdðpÞ þ wsðpÞcsðpÞ ð5Þ
where B and G indicate the color of the diffuse and specular reflection in the RGB channel.

Proposed Method
As illustrated in Fig 2, our algorithm consists of four parts as depth estimation, specularity
detection, specularity removal and local refinement.

Light field image depth estimation
To achieve refocusing, a robust and accurate depth map of the LF image is required. Here we
utilize the dense depth estimation algorithm by integrating both defocus and correspondence
cues [42]. We firstly exploit the 4D epipolar image (EPI) derived from the LF data and make
shears to operate refocusing. Then we present a simple contrast-based approach to compute
the responses of two cues. With both local estimated cues, we combine them with a confidence
measure and compute a global depth estimation using MRFs to get the final results.

Defocus cue: Depth from defocus has been actively investigated either through using several
images exposures or a complicated device to capture the data in one exposure [47]. Employing
a LF camera allows us to reduce the image acquisition requirements and record multiple angu-
lar information of the scene for estimating depth from defocus. Defocus measures the sharp-
ness, or contrast within a patch. If a patch on a textured surface is refocused at the correct
depth, it commonly provides the strongest contrast. A contrast-based measure is adopted here
to find the optimal α with the highest contrast at each pixel. By taking the sheared EPI, the
average value of pixel {x, y} is calculated:

�I aðx; yÞ ¼
1

Nðu;vÞ

X
ðu0 ;v0ÞIaðx; y; u

0; v0Þ ð6Þ

where �I aðx; yÞ is the sheared image, N(u, v) is the number of angular pixels (u, v). By considering
the spatial variance, the defocus cue is defined as:

Daðx; yÞ ¼
1

jWDj
X

ðx0 ;y0Þ2WD
jD�I aðx0; y0Þj ð7Þ

whereWD is the window size of the current pixel and Δ is the spatial Laplacian operator using
the full patch. Accordingly, we obtain a defocus response for every pixel in the image at each α.

Correspondence cue: LF cameras provide multiple views within the sub-apertures of the
mainlens. Nevertheless, traditional multiple-view correspondence algorithms [16] require large
baselines, so they are not suitable for short baseline settings of the LF camera [42]. Inspired by
these traditional algorithms, we still aggregate the matching cost as correspondence cue over a
window to estimate depth as well as allow for the characteristics of LF images. For a certain
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Fig 2. The framework of our algorithm.

doi:10.1371/journal.pone.0156173.g002
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shear α, the matching cost for each spatial pixel is computed as the angular variance:

saðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nðu;vÞ

X
ðu0 ;v0ÞðIaðx; y; u

0; v0Þ � �I aðx; yÞÞ2
s

ð8Þ

In an ideal case, if the matching cost for a spatial pixel p at α0 is zero, it means all the angular
pixels corresponding to p stand for viewpoints that converge on a single point on the scene, so
α0 corresponds to the optimal depth. However, due to noises, occlusions and specularities, it’s
rather hard to find the ideal depth, so we search for the minima of the cost. For robustness, the
variance is averaged in a small windowWC:

Caðx; yÞ ¼
1

jWCj
X

ðx0 ;y0Þ2WC
saðx0; y0Þ ð9Þ

For each pixel, both defocus and correspondence cues are obtained at different shear values.
We maximize the spatial contrast for defocus and minimize the angular variance for corre-
spondence across shears to find their optimal shear values a�D and a

�
C :

a�Dðx; yÞ ¼ arg max
a

Daðx; yÞ

a�Cðx; yÞ ¼ arg max
a

Caðx; yÞ
ð10Þ

Since the two cues may not reach their optimal values at the same α, their confidence are
measured using Peak Ratio:

Dconf ðx; yÞ ¼ Da�D
ðx; yÞ=Da��D

ðx; yÞ
Cconf ðx; yÞ ¼ Ca��

D
ðx; yÞ=Ca�

D
ðx; yÞ ð11Þ

where α�� is the next optimal α of defocus or correspondence cue. It produces higher confi-
dence when the optimal α is significantly higher or lower than others, implying the estimation
is more precise.

Defocus cue operates better at occlusions, repeating patterns and noise, so it produces con-
sistent but blurry depth maps. Meanwhile, correspondence cue performs more robustly at
bright or dark features of the image and preserves more defined depth results at edges, but is
inconsistent in noisy regions. Fortunately, confidence measures enable us to combine the reli-
able region from each cue and acquire a globally optimized depth α�.

Specularity detection
Specularity detection is essential to our algorithm. Specular pixels only account for a small per-
centage for most natural images, operating removal process on all pixels wastes massive time
and storage. From observation, a glossy surface often exhibits color with higher intensities than
a diffuse surface of the same color. In some extreme cases, the color and intensity of illumina-
tion dominate the appearance of highlights. If the light source color is uniform in every chan-
nel, the highlight pixels may tend to look white. Since many state-of-the-art specularity
removal methods [24, 30] assume white illumination, they regard non-chromatic areas to be
highlight and fail to separate specular and diffuse components in these areas.

As mentioned before, the color and intensity of highlight (specular) scene points differ
largely when viewpoint changes. However, because the short baseline of LF cameras leads to a
relatively smaller viewpoint change, points at strong or large highlight areas may change
slightly in color and intensity. We propose a simple threshold strategy to efficiently detect and
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classify specular points into “unsaturated” and “saturated” types: a saturated scene point dis-
plays highlight in all (u, v) views, while an unsaturated point presents various combinations of
diffuse and specular color in different views. This strategy works like this: In the central-view
image, a pixel p whose intensity is higher than a given threshold hthres is labelled as “specular
candidate”. hthres can be adjusted within [0,255] according to the lowest intensity of specular
pixels. Then, the pixels of the same candidate under all views are located by refocusing to its
estimated depth and their variance are assessed. If the variance exceeds a given threshold
varthres, p is accepted as “unsaturated”. Otherwise, p is “saturated” or it reflects non-chromatic
diffuse color. In implementation, we set 0.002 for varthres and 150 for hthres. Fig 3 shows an
example of specularity detection.

Specularity removal
This section deals with “unsaturated” specular pixels to recover their original diffuse color. The
depth map that was generated before is applied to refocus and create multiple views. For an
“unsaturated” pixel {x, y} in the central view, we remap the original LF image I0 at its depth α�

(x, y) to obtain the same scene points in all (u, v) views according to Eq 1. Then, conduct color
analysis within u, v of each x, y: we use k-means clustering to classify them into two clusters in

Fig 3. Specularity detection. (a) displays a LF image with the specular area (red patch) zoomed in (b). (c) shows
specular candidates only take a tiny proportion of image. The detection results on the red patch are shown in (d).

doi:10.1371/journal.pone.0156173.g003
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HSI color space and record their centroids. We denote the cluster whose centroid has a higher
intensity as diffuse+specular set with the centroid colorM1, and the other cluster as diffuse only
set with the centroid colorM2. Based on the dichromatic reflection model, if the magnitude wd

and ws are set to 1, the two centroids are written as:

M1 ¼ Bþ G

M2 ¼ B
ð12Þ

where B and G represent the color of diffuse and specular components. With knownM1 and
M2, G could be determined by simply subtracting the two equations.

We also offer a confidence metric to measure the accuracy for each unsaturated pixel.
Assuming that higher confidence occurs at the pixel with higherM1 intensity and larger two-
centroid distance, the metric is constructed as:

conf ¼ expð� b0

jM1j
� b1

jM1 �M2j
þ b2

R
Þ ð13Þ

where R is the average intra-cluster distance, β0, β1, β2 are constant parameters. In our imple-
mentation, both β0, β1 are set to 0.5, β2 is set to 1.

For each pixel labeled as “unsaturated”, we subtract the specular term G to restore their orig-
inal diffuse color. By looking through a small window around x, y, u, v, we compute a weighted
G by favouring higher confidence and smaller difference between I0(x, y, u, v) and its neigh-
bor’sM1. The specular component is removed by:

Idðx; y; u; vÞ ¼ Iðx; y; u; vÞ � hw� jM1ðx0; y0Þ �M2ðx0; y0Þji
w ¼ expf�g=ðConf ðx0; y0Þ � jIðx; y; u; vÞ �M1ðx0; y0ÞjÞg

ð14Þ

where x0,y0 are within the search window around x, y, u, v, and h.i represents the expected
value. We use a 15 × 15 window and 1 for γ in implementation.

Local refinement
Due to the small baseline, a scene point at specular regions which is saturated in all viewpoints
is common. Angularly saturated pixels exhibit the strongest intensity of the light source color
and totally lose their diffuse terms. Removing specularities in the former step only takes effect
on unsaturated pixels, so it may create highlight holes in the middle of the specular area where
saturated pixels always occur. To remove specularities entirely, we apply a local color refine-
ment to fill these holes and gain a final diffuse image. We assume that the color and texture of a
point vary smoothly in its local area, which holds true for most specular images. Consequently,
the color information of saturated pixels could be remedied with the color information of its
neighbors.

We implement this by using K nearest neighbors. For a particular saturated pixel, we find
k nearest points that are non-specular around it and assign weight to constrain the nearer
neighbors contribute more to the average than more distant ones. Then, the corresponding
pixels of the saturated point {x, y} in all (u, v) views are replaced by averaging its neighbors
{xi, yi |i = 1, . . . k}.

Irðx; y; u; vÞ ¼
X

i¼1;...k

1

wi

I0ðxi; yi; u; vÞ; iffx; yg is saturated;

I0ðx; y; u; vÞ; others:

8<
: ð15Þ

where wi = 2i. In our study, k is set to 4 to achieve steady and reliable results.
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Experiments & Comparisons
To validate the effectiveness of our proposed approach, we test it on multiple images with
multi-color and highly textured surfaces captured by Lytro ILLUM, together with the LF
images which are captured by a commercial Canon Digital camera fixed on a moving Lego
Mindstorms gantry from the Stanford light field archive. For Lytro ILLUM, indoor scenarios
are taken under controlled illumination condition (incandescents) and outdoor scenarios are
under uncontrolled wild environment (sunlight). The camera parameters: exposure: ISO: auto,
focal length: 9.5–77.8 mm (30–250 mm equivalent), lens aperture: Constant f/2.0. Considering
views on the borders of the main lens do not capture light as much as the views on the center,
only the central 7 × 7 views are used to construct the LF image.

We compare our work against three currently popular single-image based algorithms: Tan
et al. [24], Shen et al. 30] and Yang et al. [23]. Their source code is freely available on the
authors’ websites [48–50]. We only make comparisons with the single-image based algorithms
because the existing multiple-image based techniques require images taken under various con-
ditions or have large baselines, making it impracticable to compare with them in the same set-
ting. To acquire a single image input, the original LF data is refocused to the specular area.
Then the diffuse output is generated under the authors’ default settings. We also refocus our
refined LF image at the same depth for comparison.

Qualitative analysis
Recovering the LF diffuse image. Fig 4 illustrates one indoor and one outdoor example of

our proposed method. The displayed images are the 4D LF images which contains cropped

Fig 4. Two processing examples of the proposedmethod. The first and third rows (from left to right)
display the LF input image, LF image after recovering unsaturated pixels, LF image after recovering saturated
pixels, and the estimated depth of the central view. The specular area is marked by a red patch. The second
and fourth rows show the zoom-in specular areas of the upper corresponding LF images, and specular
components.

doi:10.1371/journal.pone.0156173.g004
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microlens-images, except that the depth map is from the central pinhole image. By zooming in
the specular area on the hat and the leaf, we easily observe that unsaturated and saturated pixels
are correctly restored to their original diffuse color in two steps. The close-up patch of specular
component is also provided. Note that the color of specular components have been enhanced
for easier visibility throughout this paper.

Diffuse results for Lytro ILLUM images. In Fig 5, the indoor and outdoor objects have
glossy surfaces which are marked by red rectangles. Our approach correctly weakens the specu-
lar intensity, successfully recovers diffuse color, and well preserves the consistency of other
regions, while Shen, Tan and Yang can cause obvious mistakes, particularly at white and tex-
tured areas. In detail, Shen’s method creates black holes on the non-chromatic area (the eyes in
Toy1 and nose in Toy2) and the highlight in Plant1 is not removed completely yet. Besides, the
color of diffuse areas slightly differs to the original image (the hat in Toy1, the face in Toy2).
Anyway, it produces good results on five images. About the color information, Tan’s results are
significantly darker than the original images and bring easy-to-see errors, e.g. losing color

Fig 5. Diffuse results for Lytro ILLUM images. The first row shows the refocused original images and their
corresponding zoom-in specular areas. The second and third rows are diffuse and specular images of our
proposed method. The other three rows are the diffuse images of Shen et.al. [30], Tan et.al. [24] and Yang et.
al. [23].

doi:10.1371/journal.pone.0156173.g005
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consistency, losing texture information and creating inexistent edges. Yang produces compara-
tive results in Plant2 and Box, but gives rise to black holes in Toy1 and Toy2 and inconsistent
color in Plant1. Non-specular areas have been ruined to different degrees in these methods,
which largely reduce image quality. The results show our algorithm outperforms them.

Diffuse results for Stanford light field archive images. Fig 6 illustrates three challenging
images from the Stanford light field archive. The first image is a Lego Technic truck which has
very complex geometry. Our proposed method properly reduces the highlight on the wheels
without damaging its geometry and brightness. The second image is a chess board with pieces,
which have specular reflections of various intensities. Compared to our diffuse result, Tan loses
almost all the information of the image while Shen and Yang destroy the color constancy of
background. The last is a chunk of amethyst with interesting specularities and some translu-
cency. After the processing steps for unsaturated and saturated pixels, strong highlights in red
and green rectangles are removed acceptably. However, the rest methods fail at it.

Quantitative analysis
Subjective evaluation metrics. To evaluate our approach in a quantized way, we invite 50

volunteers from different gender and age to score the specular removal results of all methods.
Given an image with specular items, human’s brain can automatically fix the specular parts
and illustrate the diffuse version of this image. Since it’s rather individual dependent, for each
image, we omit the highest/lowest score and average scores to decrease subjective bias. For
every image, the volunteers are required to rate two indexes: SA and IQ. SA is for specularity

Fig 6. Experiments of the Stanford light field archive.

doi:10.1371/journal.pone.0156173.g006
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accuracy, which is graded based on the accuracy of specular components separated by each
method compared with the one he has in mind. IN is for image naturalness because preserving
naturalness is essential for highlight removal methods to achieve pleasing perceptual quality.
Both the two scores are ranging from 0~100, where 0~20 means very poor, 20~40 means poor,
40~60 means fair, 60~80 means good and 80–100 means very good. The greater value of the
score, the better quality of the image. The average scores are shown in Table 2, clearly our algo-
rithm is superior to the other three methods in most specular images.

Objective evaluation metrics. The volunteers are also asked to mark the areas where high-
lights occur. We average the manually marked regions and regard them as the highlight area
ground truth to provide an objective evaluation. Note that this manually marked regions
doesn’t contain the highlight intensity information, so we change the specular component
image of each scene to a binary image under the control of the same threshold. Then the basic
measures used in evaluating classification results: precision, recall and F-measure (harmonic
mean of precision and recall compared to ground truth) are calculated to test the accuracy of
highlight detection, as shown in Tables 3, 4 and 5. From our observation, people tend to draw

Table 2. The scores of the specular removal results.

Toy1 Toy2 Box Plant1 Plant2 Lego truck Chess Amethyst

SA IN SA IN SA IN SA IN SA IN SA IN SA IN SA IN

Proposed method 80.1 85.3 82.1 87.1 82.2 79.6 85.5 89.6 88.7 90.7 69.0 78.3 81.4 74.4 82.5 80.1

Shen et al. 68.4 72.5 60.7 69.5 83.4 75.4 57.8 66.2 81.4 85.2 64.5 69.2 77.4 51.9 47.8 59.4

Tan et al. 53.2 45.0 47.5 37.5 59.8 51.2 55.2 40.1 50.6 47.5 35.3 32.7 15.3 10.3 27.2 20.4

Yang et al. 73.4 69.3 65.2 59.8 86.7 82.3 72.3 69.6 67.4 77.0 60.2 59.4 33.0 36.6 56.0 63.3

doi:10.1371/journal.pone.0156173.t002

Table 3. The precision of the specular removal results.

Toy1 Toy2 Box Plant1 Plant2 Lego truck Chess Amethyst

Proposed method 0.9634 0.8570 0.8121 0.8681 0.7862 0.3152 0.7137 0.8311

Shen et al. 0.0548 0.7198 0.9952 0.0381 0.8293 0.1257 0.0230 0.0664

Tan et al. 0.0402 0.0823 0.4067 0.0073 0.0425 0.0528 0.0496 0.0759

Yang et al. 0.0656 0.2488 0.8832 0.0303 0.0691 0.0643 0.0263 0.0699

doi:10.1371/journal.pone.0156173.t003

Table 4. The recall of the specular removal results.

Toy1 Toy2 Box Plant1 Plant2 Lego truck Chess Amethyst

Proposed method 0.5313 0.2024 0.3121 0.3379 0.3274 0.3042 0.6522 0.5155

Shen et al. 0.1573 0.2625 0.2046 0.0070 0.1173 0.4857 0.3780 0.4809

Tan et al. 0.9676 0.7911 0.3734 0.1103 0.5158 0.7771 0.9873 0.6572

Yang et al. 0.2940 0.4354 0.2643 0.0752 0.1914 0.5139 0.2364 0.6336

doi:10.1371/journal.pone.0156173.t004

Table 5. The F-measure of the specular removal results.

Toy1 Toy2 Box Plant1 Plant2 Lego truck Chess Amethyst

Proposed method 0.6849 0.3275 0.4509 0.4865 0.4623 0.3096 0.6816 0.6363

Shen et al. 0.0813 0.3847 0.3394 0.0118 0.2055 0.1997 0.0434 0.1167

Tan et al. 0.0772 0.1491 0.3893 0.0137 0.0785 0.0989 0.0945 0.1361

Yang et al. 0.1073 0.3167 0.4068 0.0432 0.1015 0.1143 0.0473 0.1259

doi:10.1371/journal.pone.0156173.t005
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lines around the relatively stronger and larger highlight areas, and overlook weak and small
ones. Our algorithm has a higher precision than other methods among most images while the
recall of ours is actually common. The F-measure, which take the performance of both preci-
sion and recall into consideration, demonstrates the effectiveness of our method. The precision
of other techniques is much lower because non-chromatic (white or gray) areas which they
regard as highlights are possibly not included in the manually marked highlights. In addition,
Tan achieves a considerably high recall, but it suffers from a poor precision, because it includes
most true highlight pixels at the expense of even more detected false highlights.

Conclusions
We have presented a novel and accurate specular reflection removal methodology based on
light field imaging, which extensively exploits the spatial and angular information of the 4D LF
together with the characteristics of diffuse and specular reflections. In our methodology, the
diffuse image is first recovered by removing the specular effects on “unsaturated” pixels, and
then refined locally on “saturated” pixels. The classification and recovering steps on two types
of specular pixels makes our approach applicable to various surfaces with more complex and
stronger highlights. We have experimented on multiple real world LF images from our Lytro
ILLUM and the Stanford light field archive with both qualitative and quantitative analysis. The
results demonstrate that our algorithm achieve excellent performance, especially in non-chro-
matic and textured areas, while properly preserving color constancy on non-specular areas.
Still, our method does not work well at mirrors or extremely specular surfaces. Achieving
higher accuracy of specularity detection and improving robustness of a larger area of highlight
are left as future works.
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