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Abstract

Objective

To compare performance of risk prediction models for forecasting postoperative sepsis and

acute kidney injury.

Design

Retrospective single center cohort study of adult surgical patients admitted between 2000

and 2010.

Patients

50,318 adult patients undergoing major surgery.

Measurements

We evaluated the performance of logistic regression, generalized additive models, naïve

Bayes and support vector machines for forecasting postoperative sepsis and acute kidney

injury. We assessed the impact of feature reduction techniques on predictive performance.

Model performance was determined using the area under the receiver operating character-

istic curve, accuracy, and positive predicted value. The results were reported based on a

70/30 cross validation procedure where the data were randomly split into 70% used for

training the model and the 30% for validation.

Main Results

The areas under the receiver operating characteristic curve for different models ranged

between 0.797 and 0.858 for acute kidney injury and between 0.757 and 0.909 for severe

sepsis. Logistic regression, generalized additive model, and support vector machines had

better performance compared to Naïve Bayes model. Generalized additive models
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additionally accounted for non-linearity of continuous clinical variables as depicted in their

risk patterns plots. Reducing the input feature space with LASSO had minimal effect on pre-

diction performance, while feature extraction using principal component analysis improved

performance of the models.

Conclusions

Generalized additive models and support vector machines had good performance as risk

prediction model for postoperative sepsis and AKI. Feature extraction using principal com-

ponent analysis improved the predictive performance of all models.

Introduction
Postoperative complications are significant sources of morbidity and mortality leading to a
multi-fold increase in costs and adverse long-term consequences [1]. Postoperative sepsis and
acute kidney injury (AKI) are well-recognized risk factors for short and long term morbidity
and mortality after surgery [2–7]. Furthermore, development of AKI during sepsis increases
patient morbidity, predicts higher mortality and has a significant effect on multiple organ func-
tions [8]. There is an increasing interest in predicting the probability of postoperative compli-
cations in order to improve risk stratification prior to surgery and to allow timely use of
preventive therapies during surgery and anesthesia. Assessment of this risk requires timely,
accurate and dynamic synthesis of the large amount of clinical information in the preoperative
period. Current preoperative risk stratification is limited to a physician’s subjective risk assess-
ment or risk scores that often require elaborate data extraction [9, 10]. While the majority of
existing preoperative AKI risk scores are limited to cardiac surgery and have modest accuracy
[11, 12], tools for preoperative risk stratification for severe sepsis are missing.

Multivariate regression models are traditionally used for risk prediction in medical research
due to their ease of result interpretation and analysis but machine learning classifiers have
gained momentum in biomedical research during the past few years with the availability of
electronic health records and more complex medical data. Even though the choice of risk pre-
diction model plays a role in generating robust and accurate risk prediction, data cleaning and
preprocessing are equally important for model performance [13–15]. There is no consensus
about the best choice of mathematical function for predictive models in terms of their perfor-
mance, and studies have shown relative performance comparisons only on a case-by-case basis
[16–25]. Since the dimension of the dataset, including the number and complexity of variables,
is an important determinant of the predictive performance, the optimal choice of techniques
for reducing data dimensionality is equally important [26].

Using all available preoperative clinical and administrative data in a large retrospective
cohort of surgical patients, we studied the effect of data preprocessing, modeling options, and
dimensionality reduction on the prediction performance of the models forecasting the risk of
postoperative AKI and sepsis prior to surgery.

Methods

Source of Data
The study was approved by the UF Institutional Review Board and Privacy Office as exempt
study with waiver for informed consent. Using the University of Florida Health Integrated
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Data Repository as Honest Broker for data de-identification we have created perioperative
dataset (DECLARE) that integrated multiple databases within the health system as previously
described [4]. Using residency zip code, we have link registry data to the United State Census
data [27] to calculate residing neighborhood characteristics and distance from hospital using
sp package in R [28]. We included all inpatient operative procedures requiring at least 24 hours
hospital stay performed between January 1, 2000 and November 30, 2010.

Participants
We included all patients with age greater or equal to 18 years admitted to the hospital for lon-
ger than 24 hours following any type of inpatient operative procedure. We excluded patients
with end-stage renal disease on admission as identified by the previously validated Interna-
tional Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) diagnostic
and procedure codes [29] and those with missing serum creatinine. Final cohort consisted of
50,318 patients.

Outcomes
Main outcomes were postoperative AKI in the first 7 days after surgery and severe sepsis occur-
ring at any time after surgery. We applied the Kidney Disease Improving Global Outcomes
(KDIGO) definition for AKI using serum creatinine changes only without urine output criteria.
KDIGO uses either 0.3 mg/dl increase within 48 hours or 50% increase above reference serum
creatinine [30]. We followed the criteria of the Agency for Healthcare Research and Quality for
the patient safety indicator “Postoperative Sepsis” while organ failure associated with sepsis
was identified by adding ICD-9-CM codes for acute organ dysfunction [31, 32].

Predictor variables
From the linked DECLARE dataset we used 285 demographic, socio-economic, administrative,
clinical, pharmacy and laboratory variables to derive variables for the initial “Preoperative Fea-
tures Dataset” (Fig 1 and Table 1). Patient comorbidity data was derived using up to 50 ICD-
9-CM diagnostic codes recorded in the raw data for each patient. We used the method of Elix-
hauser et al. to calculate multiple binary comorbidity variables with the exception for chronic
kidney disease for which we used updated definitions [29, 33]. Since some comorbidities had
low prevalence in the study population (<2%), we included Charlson comorbidity index as a
composite measure for medical comorbidities [34] in all multivariable analyses. We extracted
medications dispensed on the first admission day using RxNorms data grouped into drug clas-
ses according to the US, Department of Veterans Affairs National Drug File-Reference Termi-
nology [35]. For each patient we considered all potential predictors available in the
preoperative setting and the final predictor subset for multivariate model was selected by
including predictors with statistical significance (P< 0.2) in univariate regression analysis (R
function, univariate_selection).

Sample Size
We included all patients that satisfied our inclusion criteria in the cohort. The reported results
were calculated from validation cohort derived using a 70/30 cross validation procedure. We
estimated that the validation cohort of 15,000 patients allows a maximum width of 95% confi-
dence interval (CI) for area under the curve (AUC) of 0.02 when prevalence of postoperative
complication is 5% and 0.02 when prevalence is 40%.
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Predictive Analytics Process
Fig 1 outlines the experimental design of the predictive analytics process. Following data inte-
gration we performed data preparation steps to improve computational efficiency and robust-
ness of prediction models. Data preprocessing included data cleaning with removal of outliers,
imputation of missing data, and optimization of categorical and nominal variables (Table 1
and Fig 1) [36, 37]. To address the risk of overfitting, data was randomly split into 70% used
for training the model and the 30% for validation for each run [38]. Proportion of AKI and
severe sepsis were similar in each partition by the sampling design. The analytical and writing
plan followed the TRIPOD recommendations [39].

Data Cleaning
For all variables we developed set of automatic rules for the removal of outliers that were con-
sidered unreasonable observations by medical experts. For continuous variables, observations
that fell in the top and bottom 1% of the distribution were considered as outliers. Identified
outliers were removed and then treated as missing values. All missing observations were

Fig 1. Development flow from raw data to model building. Sequence of steps from aggregation of raw data, data preparation and leading to
model building. The R functions used at each stage is represented in bold italics. R functions are available in github repository: https://github.com/
PRISMUF/ML_Algorithm_Postoperative.git. GAM, generalized additive model; SVM, support vector machine; LASSO; least absolute shrinkage
and selection operator; PCA, principal component analysis.

doi:10.1371/journal.pone.0155705.g001
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Table 1. Characteristics of input variables.

Variable Type of
Variable

Data Source Number of
categories

Type of Preprocessing

Demographic variables

Age (years) Continuous Derived Imputation of outliersa; Nonlinear functionb

Gender Binary Raw 2

Race Nominal Raw 5 Optimization of categorical featuresc

Socioeconomic variables

Primary Insurance Nominal Raw 4 Optimization of categorical featuresc

Residency area characteristics

Zip code Nominal Raw 10,000 Transformation through link to Census datad

County Nominal Raw 71 Optimization of categorical featuresc

Rural area Binary Derived 2

Total Population Continuous Derived Obtained using residency zip code with linkage to
US Census datad; Imputation of outliersa

Median Income Continuous Derived Obtained using residency zip code with linkage to
US Census datad; Imputation of outliersa

Total Proportion of African-
Americans

Continuous Derived Obtained using residency zip code with linkage to
US Census datad; Imputation of outliersa

Total Proportion of Hispanic Continuous Derived Obtained using residency zip code with linkage to
US Census datad; Imputation of outliersa

Population Proportion Below
Poverty

Continuous Derived Obtained using residency zip code with linkage to
US Census datad; Imputation of outliersa

Distance from Residency to
Hospital (km)

Continuous Derived Calculated using residency zip code; Imputation of
outliersa

Operative characteristics

Day of admission Nominal Derived 12 Optimization of categorical featuresc

Month of admission Nominal Derived 12 Optimization of categorical featuresc

Weekend admission Binary Derived 2

Attending Surgeon Nominal Raw 520 Optimization of categorical featuresc

Admission Source Nominal Raw 3 Optimization of categorical featuresc

Admission Type Binary Raw 2

Admitting service type Binary Derived 2

Time of surgery from admission
(days)

Continuous Derived Imputation of outliersb

Surgery Type Nominal Derived 12 Optimization of categorical featuresc

Primary surgical procedure Nominal Derived 1555 Forest tree analysis of ICD-9-CM codese

Comorbidities

Charlson's comorbidity index Nominal Derived 18 Optimization of categorical featuresc

Major Diagnosis Category Nominal Raw 28 Optimization of categorical featuresc

Myocardial Infarction Binary Derived 2

Congestive Heart Failure Binary Derived 2

Peripheral Vascular Disease Binary Derived 2

Cerebrovascular Disease Binary Derived 2

Chronic Pulmonary Disease Binary Derived 2

Connective Tissue Disease-
Rheumatic Disease

Binary Derived 2

Diabetes Binary Derived 2

Cancer Binary Derived 2

Liver Disease Binary Derived 2

Chronic kidney disease stage Binary Derived 2

(Continued)
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Table 1. (Continued)

Variable Type of
Variable

Data Source Number of
categories

Type of Preprocessing

Medications

Indicator of receiving
Aminoglycosides on admission day

Binary Derived 2

Indicator of receiving Bicarbonate on
admission day

Binary Derived 2

Indicator of receiving Diuretics on
admission day

Binary Derived 2

Indicator of receiving Steroid on
admission day

Binary Derived 2

Indicator of receiving Vancomycin
on admission day

Binary Derived 2

Indicator of receiving ACE Inhibitors
on admission day

Binary Derived 2

Indicator of receiving NSAIDS on
admission day

Binary Derived 2

Indicator of receiving Aspirin on
admission day

Binary Derived 2

Indicator of receiving Antiemetic on
admission day

Binary Derived 2

Indicator of receiving Betablokers on
admission day

Binary Derived 2

Indicator of receiving statin on
admission day

Binary Derived 2

Indicator of receiving naloxone on
admission day

Binary Derived 2

Indicator of receiving pressors on
admission dayf

Binary Derived 2

Indicator of receiving inotropes on
admission day f

Binary Derived 2

Preoperative laboratory results

Reference serum creatinine Continuous Derived Imputation of outliersb

Reference estimated glomerular
filtration rate

Continuous Calculated from
baseline creatinine

Imputation of outliersb; Nonlinear functionb

MDRD creatinine Continuous Derived Imputation of outliersb

Ratio of reference creatinine to
MDRD Cr

Continuous Derived Imputation of outliersb

Hematocrit Continuous Raw Imputation of outliersb; Nonlinear functionb

Hemoglobin, g/dl Continuous Raw Imputation of outliersb; Nonlinear functionb

Urine protein, mg/dL Nominal Raw 4 Optimization of categorical featuresc

Urinal Hemoglobin, mg/dL Nominal Raw 5 Optimization of categorical featuresc

Urinal Glucose, mg/dL Nominal Raw 5 Optimization of categorical featuresc

No of complete blood count tests Nominal Raw 4 Optimization of categorical featuresc

No of urine tests Nominal Derived 4 Optimization of categorical featuresc

a For continuous variables, observations that fell in the top and bottom 1% of the distribution were removed and imputed being considered as outliers.
b Nonlinear risk function was calculated for continuous functions entered to the model.
c For categorical variables with more than two levels, levels were transformed to a numeric value as detailed in Methods section.
d Using residency zip code, we linked to US Census data to calculate residing neighborhood characteristics and distance from hospital.
e Surgical procedure codes were optimized using forest tree analysis of ICD-9-CM codes as detailed in Methods section.
f Variable entered into model as 'Indicator of receiving pressors or inotropes on admission day".

doi:10.1371/journal.pone.0155705.t001
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imputed before model building using automated algorithm. For nominal variables with missing
entries, a distinct “missing” category was created. For continuous variables, the mean value for
a given variable was used for imputation.

Optimization of Categorical Features
For nominal variables (such as surgeon’s ID) and categorical features with more than two levels
(Table 1), the values in each level (xi) were replaced with the ratio:

log½PðXi ¼ xijE ¼ 1Þ=PðXi ¼ xijE ¼ 0Þ�;
where E = 1 and E = 0 represent a positive and negative outcome respectively as previously
described (R function, data_pre_processing) [3]. The probability P(Xi = x|E = e) was estimated

by # fj : Ej ¼ e; xji ¼ xg=# fj : Ej ¼ eg where, Ej represents outcomeat level j of categorical

variable xi and # fj : Ej ¼ e; xji ¼ xg represents the number of cases with Ej = e and xji ¼ x. In
case of classification trees such substitution gives the optimal splits, in terms of cross-entropy
or Gini index. This transformation of categorical predictors into ordered variable provides bet-
ter performance and a more robust model by reducing the chance of overfitting. However,
when the number of unique values in a categorical variable is very large, the categorical predic-
tor gets grouped into partitions of small size, and hence it will be difficult to obtain statistically
significant results. A grouping scheme is used to obtain a reliable estimate of P(Xi = x|E = e),
such that risk factor categories with fewer than 100 records determined by sensitivity analysis
were grouped together and labeled as "other". This "other" group was further split into several
subgroups where each subgroup contained categories with similar proportions of patients from
different classes [3]. This was achieved by performing k-means clustering on the set of catego-
ries in the "other" group. We set the number of clusters to 5.

Optimization of surgical procedure codes
The types of surgical procedures were determined using the 4-digit primary procedure ICD-
9-CM codes. The exisiting ~ 3000 codes are prefix-based on anatomical location of surgery and
often lack detailed descriptions of surgical approach. Although they are important features for
risk stratification, their high dimensionality renders them challenging for the use in predictive
models. In addition, while for some procedure codes only a few patients were encountered in
the cohort, the estimation of probabilities by counting the number of such patients in each
class would be unreliable. To overcome this issue we combined procedures with small number
of patients into groups of procedures based on their similarity according to the ICD-9-CM
classification using forest tree approach as previously described (R function, data_pre_proces-
sing) [3]. We created a tree where each node n corresponds to a certain group of the procedures
and is described by a sequence of digits (Sn length varies from 2 to 4); and each successor of a
given node has a code generated by adding to Sn one additional digit from the right. For each
leaf node, we assigned a number of patients who had a type of surgical procedure described by
this node’s code, and for each non-leaf node (such nodes represent general classes of proce-
dures) we assigned a number of patients whose type of surgical procedure belongs to this class.
Procedures were aggregated up to the top level of the ICD-9-CM hierarchy (18 basic proce-
dures classes) such that each procedure/group of procedures contained at least 100 patients.
The value of this parameter was selected based on a grid search through the values 50, 100, 150,
250 and 500. We enumerated the obtained set of procedures or groups of procedures and the
enumeration index was taken as a discrete feature in our model. The grouping method reduced
the number of levels in procedures from 1,536 to 187 and improved the proportion of low fre-
quency procedures.
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Predictive Models
We compared four predictive modeling approaches: Naïve Bayes, generalized additive model
(GAM), logistic regression, and support vector machine (SVM) (R function, prediction_mo-
del_function). We choose Naive Bayes as the commonly used type of generative models, a cate-
gory of predictive models that learns the distribution of the input data, and by using this joint
probability predicts the outcome using the Bayes rule [40]. More commonly used category of
discriminative models learn a direct map from the input data to the response labels and was
represented by logistic regression and GAM [40]. Logistic regression is a commonly used
method in medical literature and the predicted risk is either monotonically increasing or
decreasing. On the other hand, GAM are additive regression models that can relax the monoto-
nicity assumption of logistic models and offer advantage of estimating non-linear risk func-
tions for continuous variables. We used GAM to estimate non-linear functions for age,
reference estimated glomerular filtration rate, hematocrit, and hemoglobin. Support vector
machine is one of the widely used advanced machine learning techniques [41].

Generalized Additive Model
We estimated the probability of outcome (E = 1, otherwise E = 0) by using a generalized addi-
tive model:

logit PðE ¼ 1jX ¼ xÞ ¼ aþ
Xm

i¼1

fiðxiÞ; ð1Þ

wherem is the number of risk factors, X = (X1, . . ., Xm) are the risk factors, x = (x1, . . ., xm) are
the values of these factors, fi is a nonlinear risk function associated with the ith risk factor and
α is a free term. Nonlinear risk functions fi were estimated for each feature with cubic splines
via a local scoring algorithm [42]. The degrees of freedom for each spline were estimated by
maximizing restricted likelihood function [43]. Degrees of freedom characterize a curvature of
a spline, with value 1 corresponding to a linear function. Risk predictors with estimated degrees
of freedom close to 1 were not smoothed in the final model; instead the original values of risk
predictors xi were used. Therefore, the final model has the following form as in Eq 2 were �I is a
set of risk predictors with estimated degrees of freedom close to 1 and wi is the linear weight of
the ith risk predictors.

logit PðE ¼ 1 j X ¼ xÞ ¼ a þ
X

i2�I
wi � xi þ

X

i2I
fiðxiÞ ð2Þ

Logistic Regression
Assuming a linear association between the predictor variables and the logit of each outcome
(logarithm of the odds of positive outcome), we applied logistic regression algorithm that uses
a weighted least squares algorithm to construct a regression line as the best fit through the data
points by minimizing the weighted sum of squared distances to the fitted regression line [21].
Logistic regression model for independent predictors from set I is defined as Eq 1, where P
(E = 1|X) is the probability of predicting a positive outcome given X and βi are the coefficients
estimated from data.

PðE ¼ 1 j XÞ ¼ 1

1 þ e
�ðb0þ

X

i2I
bi � xiÞ

ð3Þ
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Naïve Bayes Model
Naïve Bayes is a probabilistic classifier, based on applying Bayes’ theorem, and assumes that
given the class of the outcome vector, the covariates are independent. The probability of event

P(E = 1|X = x) is estimated from PðE ¼ 1Þ �
Ym

i¼1

PðX ¼ xjE ¼ 1Þ. Even though this assumption

is not generally true, it simplifies the model complexity and is often seen to outperform other
sophisticated alternatives [44].

Support Vector Machine
SVM is a discriminative model that performs classification by finding a separating decision
boundary called “hyperplane” in the input feature space [45–47]. If no linear separation is pos-
sible, the SVM algorithm can map the input feature space to a higher dimension using kernel
functions and then can construct an optimal separating hyperplane. Consider a binary classifi-
cation problem with predictors 2{1,−1} and a hyperplane wx−b = 0. A simple SVMmodel can
be represented as minimizing kwk subject to w • xi−b� 1 for class 1 and w • xi−b� 1for class
-1. SVM has excellent generalization performance, however compared to the other basic
regression techniques the computational cost of training the SVMmodel is higher and it can
be as high as O(n3) especially for kernel SVMs.

Performance Enhancement through Data Reduction Techniques
To overcome the high dimensionality of our dataset we tested two data reduction techniques
focused on reducing the size of data. For the first approach, we used the Least Absolute Shrink-
age and Selection Operator (LASSO) technique (R function, lasso_filtering [48]) as a feature
selection technique to select the best subset of features from the initial dataset. For the second
approach, we performed feature extraction with Principal Component Analysis (PCA) tech-
nique (R function PCA_filtering), which creates a set of meta-features that are linear combina-
tion of the original feature set with first component capturing the largest variance, the second
principal component exhibiting the second largest variance, and so on. To avoid overfitting,
only the top five principal components were considered for model building and all the princi-
pal components were uncorrelated. The compressed data can help in speeding up the algo-
rithms (used for prediction models), and in removing redundancy in data, and thereby
improving the model performance.

Internal Validation
The results were reported based on a 70/30 cross validation procedure where the data were ran-
domly split into 70% used for training the model and the 30% for validation. The process was
repeated 50 times to report performance measures and relevant confidence intervals.

Model Performance
We assessed each model’s discrimination using the area under the AUC and model accuracy
by determining the fraction of correct classification and positive predicted value for each
model. We used bootstrap sampling to obtain 95% confidence intervals for these statistics, and
comparisons were made using nonparametric methods. Model calibration was tested using
Hosmer-Lemeshow statistic.
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Results

Participants
Among 50,318 adult patients who underwent major inpatient surgery, 36% (n = 18246) devel-
oped AKI in the first seven postoperative days. The severe sepsis occurred among 5%
(n = 2589) of the cohort (Table 2). The distribution of outcomes and preoperative clinical char-
acteristics did not differ between training and validation cohorts.

Model specification
The data preprocessing significantly improved computational efficiency as measured by the
time required for model building for all types of models (Table 3). Both logistic regression and
GAM demonstrated the largest improvement as the computational time was reduced by one
hundredth in the pre-processing step. As expected the independence assumption of the Naïve
Bayes model undermined the effect of our grouping scheme for data pre-processing thus gain
in computational efficiency was not as large. The inherent computational intensity of the SVM
model prevented this comparison as SVM algorithm took on average 2 to 3 hours for one
simulation.

Model performance
Table 4 compares the predictive performance of different modeling approaches. Both GAM
and logistic regression had improved performance and model fit compared to Naïve Bayes
model with all AUCs above 0.80 and between 0.022 and 0.03 higher for predicting AKI and
severe sepsis, respectively. Although discriminative performance of GAM was not significantly
higher than logistic regression, they were able to account for the non-linearity of continuous
clinical variables. Risk patterns for the plasma hematocrit, hemoglobin and estimated glomeru-
lar filtration rate showed clearly how non-linear models can effectively depict the risk variation
compared to linear models (Fig 2).

Table 4 details the performance enhancement achieved using data reduction techniques.
Using LASSO to reduce the input feature space had minimal effect on prediction performance,
while data reduction using principal component analysis improved the models predictive
power. Models built using the first 5 principal components provided a 3–6% enhancement in
AUC, 2–3% improvement in accuracy and 7–10% improvement in positive predictive values
for GAM and similar trend was observed for logistic regression model, SVM and Naïve Bayes
model. After application of principal component analysis the predictive performance of GAM
and SVMmodels was comparable.

Discussion
Our study demonstrates that application of data preprocessing, choice of predictive modeling
approach and dimensionality reduction techniques affect the risk prediction performance for
two major postoperative complications using routinely available data in electronic health rec-
ords. Data processing techniques had a positive impact on computational efficiency, and data
reduction techniques improved the model predictive capability. Model comparison revealed
GAM and SVM as the best options for building risk prediction models among four approaches
we used since they provided high discrimination while accounting for the non-linearity of con-
tinuous clinical variables.

We developed models that could be applied at point of access to preoperative care, do not
rely on self-reported data and specialized testing and were derived from whole population data
that are routinely collected in preoperative period. Our data set included readily available
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Table 2. Summary of overall cohort. Abbreviations. GFR, Glomerular filtration rate, CBC, complete blood
count.

Overall (N = 50318)

Demographic features

Age, median (25th-75th) 56 (43, 68)

Female Gender, n (%) 24670 (49.0)

Race, n (%)

White 40515 (82.2)

African-American 6183 (12.5)

Hispanic 1534 (3.1)

Other 1064 (2.2)

Primary Insurance Group, n (%)

Medicare 19469 (38.7)

Medicaid 6518 (13.0)

Private 20592 (40.9)

Uninsured 3736 (7.4)

Socio-economic features

Neighborhood characteristics

Rural area, n (%) 16098 (32.1)

Total Population, median (25th-75th) 17085 (10002, 27782)

Median Income, median (25th-75th) 33293 (28451, 40309)

Total Proportion of African-Americans, median (25th-75th) 0.10 (0.04, 0.20)

Total Proportion of Hispanic, median (25th-75th) 0.04 (0.02, 0.06)

Population Proportion Below Poverty, median (25th-75th) 0.13 (0.09, 0.19)

Distance from Residency to Hospital (km), median (25th-75th) 53(26, 118)

County (top 3 categories), n (%)

Alachua 8667 (17.2)

Marion 4807 (9.6)

Lake 2155 (4.3)

Comorbidity features

Charlson's comorbidity index (CCI), median (25th-75th) 1 (0, 2)

Cancer, n (%) 10121 (20.1)

Diabetes, n (%) 8332 (16.6)

Chronic Pulmonary Disease, n (%) 8179 (16.3)

Peripheral Vascular Disease, n (%) 5953 (11.8)

Cerebrovascular Disease, n (%) 4175 (8.3)

Congestive Heart Failure, n (%) 3946 (7.8)

Myocardial Infarction, n (%) 3290 (6.5)

Liver Disease, n (%) 2482 (4.9)

Number of diagnoses, median (25th-75th) 8 (5, 13)

Major Diagnosis Category (top 3 categories), n (%)

Musculoskeletal System and Connective Tissue 9924 (19.7)

Circulatory System 7507 (14.9)

Nervous System 6675 (13.3)

Operative features

Admission
Weekend admission, n (%) 6895 (13.7)

Admission day (top 3 categories), n (%)

Tuesday 10174 (19.8)

(Continued)
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Table 2. (Continued)

Overall (N = 50318)

Wednesday 9065 (17.6)

Monday 8843 (17.2)

Admission month (top 3 categories), n (%)

March 4549 (9.0)

October 4471 (8.9)

January 4449 (8)

Number of operating surgeons, n 520

Number of procedures per operating surgeon, n (%)

First rank 1905 (3.8)

Second rank 1602 (3.2)

Third rank 1532 (3.0)

Admission Source, n(%)

Emergency room 13066 (26.4)

Outpatient setting 29826 (60.1)

Transfer 6699 (13.5)

Emergent surgery status, n (%) 22820 (45.4)

Admission to Surgical service, n (%) 44652 (88.7)

Time of surgery from admission (days), n (%)

0 28613 (56.9)

1–2 11397 (22.6)

> = 3 10308 (20.5)

Surgery Type, n (%)

Neurologic Surgery 8385 (16.7)

Orthopedic Surgery 7472 (14.9)

Cardiothoracic Surgery 6755 (13.5)

Trauma/Burn Surgery 5650 (11.2)

General Gastrointestinal Surgery 4120 (8.2)

Transplant Surgery 2765 (5.5)

Urological Surgery 2640 (5.3)

vVascular Surgery 2601 (5.2)

Gynecologic Surgery 2437 (4.8)

General Oncology Surgery 2188 (4.4)

General Colorectal Surgery 1833 (3.6)

Other Surgeriesa 3472 (6.9)

Surgery procedure type

Primary Procedure codes, n 1555

Primary Procedure (top 3 categories), n (%)

01.59 Other excision or destruction of lesion or tissue of brain 1330 (2.6)

81.54 Total knee replacement 1223 (2.4)

39.51 Clipping of aneurysm 1099 (2.2)

Preoperative and admission day laboratory results

Reference creatinine (mg/dl), median (25th-75th) 0.8 (0.7, 1.03)

Estimated reference GFR (mL/min/1.73 m2), median (25th-75th) 92.3 (71.1, 107.9)

Hemoglobin, g/dL median (25th-75th) 11.7 (10.2, 13.2)

Hematocrit, median (25th-75th) 34.3 (30.1, 38.6)

Dipstik urine protein, mg/dL n (%)

Missing 41948 (83.4)

(Continued)
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variables in electronic health records, many of which are complex variables with multiple val-
ues such as residency ZIP codes, procedure and diagnostic codes and surgeon’s identities.
Inclusion of these non-traditional variables in the model allowed us to capture certain aspects
of health discriminators such as socio-economic status or effect of individual surgeon’s perfor-
mance. The importance of ZIP code as a surrogate of neighborhood socio-economic character-
istics has been recently brought to light by studies demonstrating its powerful association with

Table 2. (Continued)

Overall (N = 50318)

Negative 5502 (10.9)

30 1756 (3.5)

100 753 (1.5)

> = 300 359 (0.7)

Number of CBC tests, n (%)

0 14620 (29.1)

1 27554 (54.8)

2 5912 (11.8)

3 or more 2232 (4.4)

Admission day medications

Admission medication types, n 40

Admission Day Medications (top 3 categories), n (%)

Antiemetic drugs 28783 (57.2)

Beta blockers 11750 (23.4)

Diuretics 5886 (11.7)

Statin 5790 (11.5)

Angiotensin-Converting-Enzyme Inhibitors 5066 (10.1)

Aspirin 3428 (6.8)

Pressors/Inotropes 2864 (5.7)

Bicarbonate 2070 (4.1)

Naloxone 575 (1.1)

Outcomes

KDIGO-AKI 18246 (36%)

Severe sepsis 2589 (5%)

a Other surgeries include ear-nose-throat, ophthalmology, and plastic surgeries.

doi:10.1371/journal.pone.0155705.t002

Table 3. Comparison of time required for model building in seconds.

Acute Kidney Injury Severe Sepsis

Time required for model building (in seconds)

Model Before data preprocessing
or optimization

After data preprocessing or
optimization

Before data preprocessing
or optimization

After data preprocessing or
optimization

Logistic Regression
Model

4640 s 7 s 5530 s 8 s

Generalized Additive
Models

6520 s 48 s 6980 s 73 s

Naïve Bayes Model 26 s 22 s 19 s 24 s

doi:10.1371/journal.pone.0155705.t003
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multiple disease and health behaviors, including obesity, smoking, depression, heart disease
and cancer [49–54]. The effect of the performance of surgeon or anesthesiologist is increasingly
recognized as an important predictive factor of postoperative outcomes yet it remains contro-
versial and is not routinely incorporated in publicly available risk calculators [55–57].

The data cleaning step is focused on improving the quality of data to make them “fit for
use” by users, through reducing errors in the data by removing noise and outliers and improv-
ing their documentation and presentation [58]. Since data error rate of 1–5% can be expected,
detailed and methodological processing of raw data is a crucial step before performing any
analysis to reduce the influence of Type I and Type II errors. The improvement in computa-
tional efficiency that was achieved in our study with data cleaning and preprocessing, empha-
sizes the need for appropriate techniques to process data on a case-by-case basis. Designing
data preparatory steps should be based on a good understanding of the nature of data and the
clinical needs. In this study we developed a data processing methodology based on the distribu-
tion of each variable and its clinical background and relevance. Further, the robustness and
smaller error margin of performance measures for all the models in our study can be partly
credited to the efficient data preparatory steps.

Table 4. Comparison of model performances. Abbreviations. AUC, area under the receiver operating characteristics curve; CI, confidence interval; GAM,
generalized additive model; SVM, support vector machine; LASSO; least absolute shrinkage and selection operator; PPV, positive predicted value. Bootstrap
sampling was used to obtain 95% confidence intervals and comparisons were made using nonparametric methods.

Model Acute Kidney Injury Severe Sepsis

Accuracy (95%
CI)

AUC (95% CI) PPV (95% CI) Accuracy (95%
CI)

AUC (95% CI) PPV (95% CI)

Logistic Regression
Model

0.752
(0.746,0.758)

0.824
(0.818,0.828)b

0.725
(0.714,0.737)

0.773
(0.762,0.781)

0.851
(0.840,0.8560)

0.811
(0.785,0.833)

GAMs 0.756
(0.751,0.761)

0.827
(0.821,0.832)a

0.719
(0.706,0.729)

0.775
(0.766,0.783)

0.852 (0.840,0.863) 0.806
(0.779,0.832)

Naïve Bayes Model 0.744
(0.738,0.749)

0.797
(0.791,0.803)a,b

0.545
(0.534,0.558)

0.805
(0.798,0.811)

0.83
(0.819,0.841)a,b

0.689
(0.659,0.716)

SVM 0.767
(0.757,0.774)

0.819
(0.811,0.828)a,b

0.662
(0.648,0.676)

0.71
(0.689,0.731)

0.762
(0.733,0.782)a,b

0.677
(0.619,0.722)

After feature selection with LASSO

Logistic Regression
Model

0.753
(0.747,0.757)

0.824
(0.818,0.830)b

0.726
(0.714,0.738)

0.772
(0.760,0.780)

0.85 (0.838,0.863)b 0.812
(0.781,0.838)

GAMs 0.757
(0.752,0.762)

0.828
(0.822,0.833)a

0.72
(0.706,0.732)

0.774
(0.766,0.780)

0.851 (0.842,0.862) 0.806
(0.783,0.831)

Naïve Bayes Model 0.744
(0.737,0.750)

0.797
(0.789,0.804)a,b

0.545
(0.533,0.556)

0.806
(0.800,0.813)

0.831
(0.817,0.841)a,b

0.69
(0.659,0.711)

SVM 0.767
(0.759,0.774)

0.82
(0.812,0.829)a,b

0.665
(0.646,0.685)

0.697
(0.684,0.713)

0.757
(0.736,0.779)a,b

0.689
(0.652,0.732)

After feature extraction with 5 principal components

Logistic Regression
Model

0.774
(0.769,0.781)

0.853
(0.849,0.859)a,b

0.758
(0.746,0.767)

0.818
(0.809,0.824)

0.904
(0.895,0.913)a,b

0.854
(0.841,0.880)

GAMs 0.773
(0.768,0.777)

0.858
(0.853,0.862)a,b

0.784
(0.771,0.793)

0.826
(0.819,0.833)

0.909
(0.902,0.917)a,b

0.86
(0.843,0.878)

Naïve Bayes Model 0.741
(0.735,0.747)

0.819
(0.814,0.826)a,b

0.666
(0.651,0.677)

0.805
(0.797,0.815)

0.882
(0.874,0.890)a,b

0.839
(0.822,0.866)

SVM 0.777
(0.767,0.782)

0.857
(0.850,0.862)a,b

0.735
(0.725,0.750)

0.85
(0.737,0.897)

0.877
(0.828,0.904)a,b

0.751
(0.667,0.850)

a p<0.05 for AUC comparison with respect to logistic regression model without any data reduction.
b p<0.05 for AUC comparison with respect to GAMs model without any data reduction.

doi:10.1371/journal.pone.0155705.t004
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Even though we did not observe statistically significant difference among model perfor-
mances, GAM was the preferred model in this study due to its accuracy, relative efficiency
compared to SVM and ability to account for non-linearity of variables. GAM is a data driven
prediction model that has the flexibility to capture non-monotonicity in the predicted risk and
this could be a contributing factor for GAM to gain better results compared to the other predic-
tion models. GAM as a non-linear additive algorithm has generated better fit in comparison to
the other prediction models. Since parameter tuning is critical for SVM further fine tuning of
SVM parameters may potentially improve the current results. Comparison of model perfor-
mance with respect to various prediction models shows a performance saturation trend. Our
results confirm previous findings that data reduction techniques may improve model perfor-
mance with principal component analysis providing the best results for our models [59].

With the availability of electronic health records the increasing use of prediction models uti-
lizing these data can be expected. Such models can be a useful guide for healthcare experts to
identify patients who may benefit the most from interventions that can mitigate such risks. For
patients, these models may provide tools to facilitate informed decision about surgical proce-
dures and risk of complications. To be useful for these purposes, a prediction model must pro-
vide validated, robust and accurate estimates. All the prediction models compared in this study
provided satisfactory performance in accuracy of the individual risk prediction that will require
further external and prospective validation.

Fig 2. Predicted risk functions for the association between (A) acute kidney injury and (B) severe sepsis and continuous
variables. Risk functions were generated frommultivariate generalized additive models and logistic regression models. GAM,
generalized additive model; DoF, degree of freedom; GFR, glomerular filtration rate.

doi:10.1371/journal.pone.0155705.g002
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Conclusions
Using predictive analytics and machine learning approaches we have built robust predictive
models forecasting risk of two major postoperative complications. Generalized additive models
and support vector machines showed superior performance compared to the other models
selected for this study. These models could be applied at point of access to preoperative care,
do not rely on self-reported data and specialized testing and were derived from whole popula-
tion data that are routinely collected in preoperative period. We provide set of data preparatory
steps to ensure performance and computational efficiency. Choice of predictive function and
dimensionality reduction techniques are important to optimize the performance of risk models
and further comparison of different machine learning approaches is warranted. In our analysis,
feature extraction using principal component analysis improved the predictive performance of
all models. External prospective validation of these models is necessary prior to implementa-
tion in real-time clinical workflow for automated and simplified risk stratification in preopera-
tive period.
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