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Abstract
The Prisoner’s Dilemma has been a subject of extensive research due to its importance in

understanding the ever-present tension between individual self-interest and social benefit.

A strictly dominant strategy in a Prisoner’s Dilemma (defection), when played by both play-

ers, is mutually harmful. Repetition of the Prisoner’s Dilemma can give rise to cooperation

as an equilibrium, but defection is as well, and this ambiguity is difficult to resolve. The

numerous behavioral experiments investigating the Prisoner’s Dilemma highlight that play-

ers often cooperate, but the level of cooperation varies significantly with the specifics of the

experimental predicament. We present the first computational model of human behavior in

repeated Prisoner’s Dilemma games that unifies the diversity of experimental observations

in a systematic and quantitatively reliable manner. Our model relies on data we integrated

from many experiments, comprising 168,386 individual decisions. The model is composed

of two pieces: the first predicts the first-period action using solely the structural game param-

eters, while the second predicts dynamic actions using both game parameters and history

of play. Our model is successful not merely at fitting the data, but in predicting behavior at

multiple scales in experimental designs not used for calibration, using only information

about the game structure. We demonstrate the power of our approach through a simulation

analysis revealing how to best promote human cooperation.

Introduction
The Prisoner’s Dilemma game has been a subject of extensive research due to its importance in
understanding the ever-present tension between individual self-interest and social benefit [1–
3]. From a theoretical perspective, a strictly dominant strategy (defection), when played by
both players, is mutually harmful: cooperation by both yields significant mutual benefits rela-
tive to defection. For example, local maintenance of shared drinking water systems in rural
communities represents a Prisoner’s Dilemma that can result in a “tragedy of the commons”
[4]. From each community member’s perspective, they are better off if someone else invests in
maintaining the infrastructure. If the majority of the community adopts this strategy, everyone
is worse off because the system breaks down and no longer provides clean water.

In most social dilemma settings, however, interactions are repeated. Thus, for example,
community members must repeatedly make water infrastructure investment decisions.
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Repetition of the Prisoner’s Dilemma, a more realistic model of human interaction than a one-
shot game, can theoretically give rise to cooperation as an equilibrium if players are sufficiently
“patient”; still, defection remains an equilibrium as well, and this ambiguity is difficult to
resolve. In particular, theoretical treatment of repeated Prisoner’s Dilemma games is not
instructive in identifying when cooperation or defection emerges as the predominant outcome.
Given the limitations of theory in explaining repeated cooperation, researchers have turned to
experiments to better understand behavior and the effects of institutional structure on social
outcome by considering different game structures and investigating associated cooperation
proclivities of human subjects [5]. The experiments highlight that humans often cooperate, but
the overall level and temporal evolution of cooperation vary significantly with the specific
design.

We develop a predictive model of dynamic cooperation that reliably forecasts behavior
across heterogeneous game designs, and then analyze this model to tease apart the magnitude
and direction of the effects of game design variables on cooperation. For this purpose we com-
piled data from previously analyzed repeated Prisoner’s Dilemma experiments [6–13]. We cre-
ated standardized measures of the game and individual behavior across these games, and used
machine learning techniques to calibrate and evaluate computational models. Our model is
extremely successful in predicting individual decisions, average cooperation levels, and cooper-
ation dynamics in games not used for model calibration. Moreover, we demonstrate that this
synthetic model can predict the high-level quantitative and qualitative findings of the human
subject experiments.

The long-term goal of this research program is to map the experimental variables onto real-
world policy design factors and use model analyses to inform policies that facilitate cooperation
where the underlying social structure would otherwise lead to a breakdown. For instance, how
can we best design development programs that lead to sufficient voluntary maintenance of
shared water systems? Is it more important to increase the potential benefits of mutual cooper-
ation over mutual defection, or to increase the benefits of mutual cooperation over losing out
by being the sole cooperator?

Data
The data are from human subjects experiments that used real financial incentives and transpar-
ently conveyed the rules of the game to the subjects, which is standard procedure in experimen-
tal economics. Subjects anonymously interact and their decisions to cooperate or defect at each
time period of each interaction are recorded. They receive payoffs proportional to the out-
comes in a specified payoff table similar to Table 1. From the description of the experiments in
the published papers and the publicly available data sets, we were able to build a comprehensive
collection of game structures and individual decisions.

The thirty game structures that we compiled varied substantially across a number of dimen-
sions, aside from player payoffs. In some structures, payoffs were deterministic, whereas others
featured stochastic payoffs (in this case, the expected payoffs constituted the payoff structure).

Table 1. Payoff table. Payoff table where one player plays from the perspective of the columns and the other
from the rows. For this to be a repeated Prisoner’s Dilemma, it must hold that T > R > P > S, and R > (S + T)/2
[14].

C D

C (R,R) (S,T)

D (T,S) (P,P)

doi:10.1371/journal.pone.0155656.t001
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In some structures, players imperfectly observed their counterparts’ past actions. Another key
distinction was whether or not a game had a fixed time horizon, or would terminate indepen-
dently after each iteration with a fixed probability. Finally, while most games were played over
a discrete sequence of iterations, some were in continuous time. We use nine variables to quan-
tify game structure along these salient dimensions. Risk is an indicator of whether there is sto-
chasticity in the payoffs [8, 10]. Error is the probability that the choice a player makes will be
exogenously flipped [13]. Infinite is an indicator of whether interactions are indefinitely
repeated or have a fixed length [7]. δ is the probability that the next period of the current paired
interaction will occur in a infinitely game [11]. We used a formula, E½InteractionLength� ¼ 1

1�d,

to compute δ for finitely repeated interactions; for instance, the finitely repeated interactions in
[10] were all ten periods long so δ = 0.9. Continuous is an indicator of whether interactions are
played in “continuous time,” rather than the standard discrete rounds [12]. R is the reward
received if both players cooperate; P is the punishment received if both defect; T is the tempta-
tion to defect on the other; and S is the payoff for being a sucker by cooperating as the other
defects (Table 1 illustrates the way in which the four payoff values map onto the Prisoner’s
Dilemma bi-matrix representation).

To create standardized payoff measures from the R, S, T, P values, we used two differences
between payoffs associated with important game outcomes, both normalized by the difference
between the temptation to defect and being a sucker when cooperating as the other defects
[15]. r1 is the normalized difference between the reward received if both players cooperate and
the punishment received if both defect, R�P

T�S
. r2 is the normalized difference between the reward

received if both players cooperate and the payoff for being a sucker when cooperating as the
other defects, R�S

T�S
. Because @r1

@R
> 0, @r1

@P
< 0, @r1

@T
< 0, and @r1

@S
> 0, r1 has been used as an index of

the cooperativeness of a Prisoner’s Dilemma [15, 16], while r2 is descriptive of how much better
off a player will be if their opponent cooperates, rather than defects, while they themselves
cooperate. Table 2 summarizes the game structures from the data sets we standardized and
combined.

Fig 1 plots game structures based on their values of the four quantitative game structure var-
iables, r1, r2, δ, and error, illustrating the broad empirical support in our combined data across
the values of these variables, and that there are no simple relationships between these variables
and the proportion of cooperation that can be detected without, at least, controlling for vari-
ables not included in each plot.

Our combined data set can be organized hierarchically (Fig 2). Within each game structure,
there are interactions between pairs of players; these are repetitions of the same “stage-game”
between the same two players. Repeating the game with past behavior as common knowledge
can theoretically increase cooperation by bringing players’ reputational concerns into play.
Within each interaction, there are time periods. Finally, in each time period, both players
simultaneously take a single action.

Our goal was to predict behavioral patterns simultaneously at several levels within this hier-
archy. Specifically, we wish to predict the effects of the game structure on average cooperation
(the highest level in the hierarchy), the temporal dynamics of cooperation as a function of
structure (second lowest level), and individual-level actions (lowest level). The impact of struc-
ture on cooperation has been the primary subject of experimental investigations, with the natu-
ral goal of understanding how to design institutions that promote cooperation. Understanding
both short-term and long-term impacts of institutions, however, necessitates looking at behav-
ior dynamics, rather than simply aggregate levels of cooperation. Indeed, cooperation may well
be high early, but degrade with time, particularly close to the final period of the game, if it is
known [8]. Finally, understanding individual behavior enables us to understand aggregate
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cooperation dynamics in terms of micro decision processes. If our model can successfully pre-
dict behavior at all levels in the hierarchy, we can have confidence in the ability of the resulting
model to generalize experimental findings to new institutional structures, allowing us to
achieve the ultimate goal: a validated computational framework for understanding and design-
ing institutions that promote cooperation.

Model
Our behavioral model has two parts: a “static” component that predicts a player’s first period
action, and a “dynamic” component that predicts a player’s actions in subsequent times of the
same interaction. Both components are logistic regressions mapping a vector of predictor

Table 2. Data summary. Summary of thirty game structures that compose the full combined data set [6–13]. BR 2006 [8] and DB 2005 [7] both also con-
ducted one-shot games; we only describe and use their repeated game data. KSBS 2009 [10] also conducted games with partial information; we only
describe and use their full information data. AM 1993 [6] also conducted games that matched humans with computers; we only describe and use the games
they conducted where humans played other humans. FO 2012 [12] included one-shot games and games with very different protocols for how and when to
make a choice in order to study continuous choices; we only use the “Grid treatment with n = 8 subperiods,” which they say is, “comparable to the 10-stage
repeated games featured in previous laboratory studies.” DO 2009 [9] also conducted randommatching of opponents; we only use their fixed matching
treatments.

Error Delta Infinity Continuous Risk r1 r2 Cooperation Dataset

0.0000 0.900 0 0 0 0.18 0.590 0.60 BR

0.0000 0.900 0 0 1 0.18 0.590 0.35 BR

0.0000 0.900 1 0 0 0.33 0.670 0.56 DO

0.0000 0.900 0 0 1 0.33 0.830 0.31 KS

0.0000 0.900 0 0 0 0.33 0.830 0.57 KS

0.0000 0.500 1 0 0 0.18 0.530 0.10 DF

0.0000 0.750 1 0 0 0.18 0.530 0.20 DF

0.0000 0.500 1 0 0 0.39 0.740 0.18 DF

0.0000 0.750 1 0 0 0.39 0.740 0.59 DF

0.0000 0.750 1 0 0 0.61 0.950 0.76 DF

0.0000 0.500 1 0 0 0.61 0.950 0.35 DF

0.1250 0.875 1 0 0 0.20 0.600 0.34 FR

0.1250 0.875 1 0 0 0.33 0.660 0.49 FR

0.1250 0.875 1 0 0 0.43 0.710 0.59 FR

0.0000 0.875 1 0 0 0.60 0.800 0.74 FR

0.0625 0.875 1 0 0 0.60 0.800 0.78 FR

0.1250 0.875 1 0 0 0.60 0.800 0.57 FR

0.0000 0.900 0 0 0 0.25 0.583 0.43 AM

0.0000 0.875 0 1 0 0.11 0.560 0.27 FO

0.0000 0.875 0 1 0 0.14 0.710 0.33 FO

0.0000 0.875 0 1 0 0.33 0.560 0.54 FO

0.0000 0.875 0 1 0 0.43 0.710 0.62 FO

0.0000 0.500 0 0 0 0.33 0.610 0.12 DB

0.0000 0.750 0 0 0 0.33 0.610 0.24 DB

0.0000 0.750 0 0 0 0.33 0.720 0.25 DB

0.0000 0.500 0 0 0 0.33 0.720 0.13 DB

0.0000 0.500 1 0 0 0.33 0.610 0.23 DB

0.0000 0.750 1 0 0 0.33 0.610 0.35 DB

0.0000 0.750 1 0 0 0.33 0.720 0.36 DB

0.0000 0.500 1 0 0 0.33 0.720 0.31 DB

doi:10.1371/journal.pone.0155656.t002
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variables into the probability of cooperation, with parameters learned through maximum likeli-
hood estimation on training data. The predictor variables for first period play include the game

structure, ~Game, (r1, r2, risk, error, δ, infinite, continuous), and the predictors for all other time
periods (i.e., the dynamic model) include the game structure, the actions of both players from

the previous period, ~Historyt�1 , and the current time period, t. The inclusion of the history of
the interaction is motivated by evidence that most participants in repeated cooperation games
condition their actions on previous play [17]. In mathematical terms, the probability of cooper-
ation, p(Ct), can be expressed as follows:

pðCtÞ ¼
(
t ¼ 1 fstaticð ~GameÞ

t > 1 fdynamicð ~Game; ~Historyt�1 ; tÞ

where f is determined by the logistic regression model (distinct in both cases), calibrated on
behavioral data.

Specifically, we used the following equation for first period cooperation, Ct = 1:

r1 þ r2 þ riskþ error þ dþ r1 � dþ r2 � dþ infinity þ continuous

We used the following equation for cooperation in periods greater than one, Ct > 1:

r1 þ r2 þ riskþ error þ dþ r1 � dþ r2 � dþ infinity þ continuousþ d� infinityþ
my:decisiont�1 þ other:decisiont�1 þ error � other:decisiont�1 þ t

Fig 1. Game structures.Game structures (n = 30) with location based on the payoff variable values (A.), and delta and error values (B.). Colors represent
proportion of cooperation observed in the game structure. Locations have been slightly randomly shifted to improve visualization.

doi:10.1371/journal.pone.0155656.g001
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Both equations use all the structural game features, r1 + r2 + risk + error + δ + r1 × δ + r2 × δ
+ infinity + continuous, and because we hypothesized that δ and the payoff variables may have
difference effects depending on the values of the other, we interacted them. For the dynamic
model, we added an interaction term between δ and infinity to capture the different effect that
δmay have when it actually determines the length of the game probabilistically. In finite
games, δ represents a rational expectation of the length of the game from a first period perspec-
tive. In infinite games, δ represents a rational expectation of the length of the game for all peri-
ods. Therefore, δ is used as a feature in the model of first period play, and for all periods of play
beyond period one there is an interaction term that multiplies the indicator variable for
whether a game is infinite by the value of δ. We interacted error with other.decisiont − 1 because
the greater the value of error, the less sure the player is of the actual decision of the other player
in the previous time period. The model is then a logistic sigmoid function,
sðwTXÞ ¼ 1

1þexpð�wTXÞ, acting on a linear function of these features, X, with a vector of weights,

~w, the length of the feature set. The computational implementation we used was the base R
“stats::glm” function and the caret “train” function [18, 19].

We compare our model’s performance to three alternative logistic regression models:
“static-only,” which just uses the first component of the “full”model; “dynamic-only,” which
just uses the second component; and “baseline,” which uses the observed average level of coop-
eration. Comparing the full model to its components allows us to understand the relative

Fig 2. A hierarchical view of our data. The top level divides the data into 30 game structures. The next level down are the interactions between two players.
Within each interaction, there are T time periods. In repeated games in which termination is stochastic, T ranges up to thirty-eight. Across all interactions and
structures, T is five, on average. Within each time period, player 1 takes actionC1 and player 2 takes actionC2. 168,386 actions were taken across all the
experimental data.

doi:10.1371/journal.pone.0155656.g002
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contributions of the components to its predictive power. We also compare our model to a
state-of-the-art behavioral game theory model designed for forecasting play in out-of-sample
games: functional experience-weighted attraction learning (fEWA) [20]. The actions available
to agent i, which are indexed by j, are assumed to have numerical attractions for each time t,

Aj
iðtÞ, and fEWA updates the attractions based on functions of i’s experience up to time t and

the payoffs of the game (i’s chosen strategy is si(t), i’s opponent’s chosen strategy is s − i(t), i’s

payoffs are piðsjiðtÞ; s�iðtÞÞ, and I yields I(x, y) = 0 if x 6¼ y, and I(x, y) = 1 if x = y).

Aj
iðtÞ ¼

�iðtÞNðt � 1ÞAj
iðt � 1Þ þ ½dijðtÞ þ ð1� dijðtÞÞIðsji; siðtÞÞ�piðsji; s�iðtÞÞ

Nðt � 1Þ�iðtÞ þ 1

Then, attractions are mapped into probabilities of choosing Cooperate or Defect the next
time period with a logistic stochastic response function (see S1 Appendix for model details).

Pj
iðt þ 1Þ ¼ elA

j
i
ðtÞPmi

k¼1 e
lAk

i ðtÞ

In order to use the empirical models of individual behavior to predict interactive outcomes
of new experimental designs, we simulate discrete-time dynamic systems comprised of autono-
mous decision algorithms (agents) that interact with each other. This allows us to simulate the
play of an experiment without any behavioral data from that experiment. Player behavior is
endogenous to the simulation model, which only needs to be initialized with a game structure
specification. There have been a number of studies using simulations to investigate cooperation
games [21–27], and simulations have been used to inform institutional design of strategic inter-
actions more broadly [28–30]. There has been research on cooperative equilibria models for
predicting aggregate cooperation patterns [31, 32], and a significant amount of work on indi-
vidual-level behavioral models [33–40]. Our work diverges from most such research in three
respects: (i) agent behavior is derived solely from individual-level empirical data, and (ii) we
rigorously validate our model’s ability to predict behavior by measuring performance on many
unseen game structures. [27] also derive agent behavior solely from individual-level game data.
However, we utilize data from many more experimental designs and from a different game.

Results

Individual-level performance
Our first investigation evaluates models’ ability to predict individual-level actions. We divide
game structures into training and test groups, estimate the parameters in training game struc-
tures, and then predict actions in held-out game structures, conditioning on the game structure
and the empirically observed actions of the previous period (for periods greater than one). We
repeatedly execute the process, each time slightly changing the split of the data so each game
structure will be in the test data once (Fig 3). The end results are out-of-sample predictions of
all actions in each game structure. To make predictions with the dynamic-only model, which
will have missing values for the lagged action outcomes at period one, we draw cooperate/
defect actions with equal probability (corresponding, approximately, to average cooperation/
defection split over all game structures). When we instead impute “period zero” outcomes as
mutual cooperation the results are qualitatively the same. For this test, we measure the log-like-
lihood of the observed actions in the test data, given model predictions, which is a statistically
proper method for evaluating the quality of probabilistic predictions. We also discretize model
outputs into Cooperate or Defect to measure accuracy, which is the proportion of actions
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where the predicted probability of cooperation was above (below) 0.5 when the observed action
was cooperation (defection).

The dynamic model performs almost as well as the full model in periods greater than one,
but poorly in the first period, indeed, worse than the static model (Table 3). Overall, our rela-
tively simple two-piece model predicts the next action a player will take with 86% accuracy on
average (a remarkably good prediction, given that human behavior is generally quite noisy).
Our model also significantly outperforms all alternatives in terms of the log-likelihood mea-
sure, which is more statistically appropriate in quantifying performance of stochastic forecasts,
but is less intuitive.

Aggregate-level performance
To evaluate the model’s ability to predict behavior in new game structures, we developed the
following procedure (Fig 4). Assign each of the thirty game structures into either training or
test data. With the training data, learn the parameters of the individual-level model. Next, cre-
ate a simulation in which the estimated individual-level model makes joint decisions in a
repeated Prisoner’s Dilemma game, and predict the probabilistic behavior in game structures
assigned to the test data using only the game structure, i.e., using no behavioral data from the

experiment. Finally, compare the predictions, pðynewsim j ~GamenewÞ, to actual observed cooperation

Fig 3. Model validation process for individual-level actions.We assign each of the thirty game structures into either training or test data. With the training
data, we learn the parameters of the individual-level model, and then predict the decisions in game structures assigned to the test data. We repeat this
process thirty times, including a different game structure as the held-out test each time (leave-out-one-cross-validation), until we have predictions for all the
decisions for each of the game structures.

doi:10.1371/journal.pone.0155656.g003
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dynamics, ynewobs , using both squared error and correlation to measure success of the model in
predicting behavior. Repeat this process thirty times, including a different game structure as
the held-out test each time (leave-out-one-cross-validation), until we have a prediction for
each of the game structures as if each prediction were made before any data had been collected
for that experimental design. We also test that the results are robust to the number of folds in
the cross-validation procedure (from thirty down to two), i.e. robust to the number of game
structures used for training.

We compare the performance of the five models’ predictions of average probability of coop-
eration and dynamics of cooperation (Table 3). Our model is slightly worse at predicting over-
all cooperation levels than the static model, but better at predicting dynamics (neither
comparison is significant), and is significantly better than the other models in almost all cases.

Estimating the parameters of the model on a subset of the data and then evaluating the per-
formance of the model on held-out data allows us to measure generalizability. However, ran-
domly dividing the data increases bias of the evaluation of the predictive performance because
the estimated value of the predictive power is conditional on which data were included in the
training or test samples. To reduce this bias, it is common to run multiple rounds of this pro-
cess and then average the resulting values of predictive performance [41]. If we do this n times,
this is called leave-out-one-cross-validation (LOOCV), which has lower bias; however,
LOOCV can have higher variance in the estimates compared to k-fold validation, where k< n
[42]. Fig 5 displays the effect of the number of folds in cross-validation on model performance,
demonstrating that our main results are robust to the value of k.

Every panel in Fig 6 is the full model’s out-of-sample forecast for the average probability of
cooperation at each time, conditional only on the game structure of that experiment. Our mod-
el’s time series of average cooperation is statistically significantly positively correlated (0.76,
p< 0.001) with the observed time series. To better understand Fig 6, observe, for example,
Structure 14: using no data from that game structure, our model predicted the initial (high)

Table 3. Model performance comparison. Best performance for each test is italicized. First four rows are performance on 32,614 predictions of period one
actions and 135,772 predictions of period greater than one actions. Each evaluation is an average for how that model performed with out-of-sample predic-
tions for each game structure. We conduct paired sample t-tests (not assuming equal variances) to determine if the thirty accuracy and likelihood values for
the full model are statistically greater than the values of the next best model. Accuracies for t>1 of the full model (p = 0.03) and the likelihoods for t>1 of the full
model (p < 0.001) are significantly higher than the next best model (dynamic). Accuracies for t = 1 of the full model are greater than the next best model, the
static model (p = 0.07), while the likelihoods for t = 1 of the full model are not significantly greater than the likelihoods of the static model (p = 0.31). Last four
rows are performance on average cooperation level in each structure (n = 30) and time series of average cooperation in each structure (n = 212). Infinitely
repeated interactions with delta set to 0.5 are on average only two periods long and there is not sufficient empirical data to extend out to eight periods so we
extend to seven. Two structures are finitely repeated for two periods and two others are finitely repeated for four periods. We conducted paired sample t-tests
between the full model and competitors, with a null hypothesis that the true difference in means of the 212 squared errors between predicted and real cooper-
ation levels at all times in all game structures is equal to zero, i.e. that the full model and a competitor are statistically indistinguishable in terms of squared
errors on time series predictions. We did the same for the thirty predictions of overall cooperation levels. We reject the null of no difference for all comparisons
except with the static model for both tests and the dynamic model for the time series (see S1 Appendix).

Full Static Dynamic fEWA Baseline

Acc. t = 1 68 62 57 48 48

Acc. t > 1 86 68 85 62 62

LL t = 1 -656 -668 -846 -748 -761

LL t > 1 -1624 -2945 -1726 -3108 -3146

Cor-Time 0.755 0.709 0.713 0.241 -0.697

Cor-Avg. 0.774 0.819 0.721 0.106 -0.724

RMSE-Time 0.149 0.154 0.163 0.213 0.224

RMSE-Avg. 0.126 0.113 0.136 0.194 0.203

doi:10.1371/journal.pone.0155656.t003
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level of cooperation almost exactly and then was perfectly correlated with the empirically
observed mean cooperation level throughout the next seven periods of play. The S1 Appendix
displays the equivalent of Fig 6 for all other models, which are noticeably worse at predicting
the time series.

The dynamic-only model performed nearly as well as the full model on individual-level
period> 1 actions, but worse on both tests of aggregate pattern predictions. By investigating
the coefficients of the estimated individual-level dynamic model, we discover that the actions
taken by a player and her opponent in the previous period are highly predictive of the next
action (Fig 7). The variable with the most predictive power is the player’s own previous action:
if a player cooperated (defected) in the previous period, she is very likely to cooperate (defect)
in the next. There is strong inertia to Prisoner Dilemma behavior, and, therefore, accurate pre-
diction of first period play is crucial for good performance at the aggregate level. fEWA can
incorporate the payoff game structure variables but not the other variables, which prevents
high first period accuracy. The full model is able to predict first period play well with a model
trained only on first periods in the training data, and then use a dynamic model trained on
periods>1 in the training data, allowing for subtly different relationships between game struc-
tures and the evolution of cooperation.

The empirical experiments varied structural game parameters to measure hypothesized dif-
ferences in cooperation levels between structures. As a final validation, we compared the (out-
of-sample) predicted average cooperation levels between our synthetic model of behavior to

Fig 4. Model validation process for aggregate-level patterns.We tested the dynamic-only model by sampling lagged outcomes for ‘period zero’ actions
from a Bernoulli distribution with equal probability of cooperation and defection, which is approximately the mean cooperation rate in the data. A subtle, but
crucial, distinction between this process and the model validation process for individual-level action predictions (Fig 3) is that, here,we only pass game
structures for the test games, rather than the full behavioral data and the game stucture.

doi:10.1371/journal.pone.0155656.g004
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the actual observed behavior in experiments [7, 8, 10–13]. Overall, our model came to the same
qualitative conclusions as the experiments: δ, infinity and particular payoff configurations
increased cooperation, while risk reduced cooperation. We detail each paper’s finding and
illustrate our model’s corresponding finding graphically in Fig 8.

Analysis
After re-learning the computational model with all available data to best explore the full
parameter space, we deployed it to quantify the sensitivity of cooperation to each of the struc-
tural game design parameters. To systematically explore the model, we generated thousands of
collections of input values (specifications of Prisoner’s Dilemma experiments) from the multi-
dimensional distribution covering the feasible ranges of all input values using Latin Hypercube
sampling [43, 44]. The variables are drawn from the following distributions, with the constraint
that r1 < r2 because r1 is always less than r2 in the data: error* Unif(0,0.5); δ* Unif
(0.45,0.95); infinity* Bern(0.5); risk* Bern(0.5); r1 * Unif(0,1); r2 * Unif(0,1). Then we
simulated cooperation dynamics for each experimental input set. This global sampling and
simulation allows subsequent analysis to generate reliable information about the relationships
between model inputs (structural game design parameters) and output (cooperation behavior)
[45, 46].

Based on the results of a partial rank correlation coefficient analysis [45, 47], the six main
game structure variables can be divided into three groups that contain two variables each

Fig 5. How predictive performance varies with data splitting.RMSE (A.) and correlation (B.) for time series forecasts of play in 30 game structures,
varying folds in cross-validation from 30 to 2. The full model consistently has lower prediction error and higher correlation than the baseline model and the
fEWAmodel until there are only two folds. It is, in general, difficult to make accurate predictions when the ratio of observational units to folds is small. In the
case of predicting aggregate and dynamic play, the game structure itself is the observational unit, and we only have thirty, so it’s not surprising that
performance can degrade at two folds depending on the particular random realization of fold assignments.

doi:10.1371/journal.pone.0155656.g005
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Fig 6. Model forecasts.Out-of-sample forecasts of cooperation level over time, for all game structures, conditional only on the
game structure (n = 212).

doi:10.1371/journal.pone.0155656.g006
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within the 95% confidence interval of each other (Fig 9A); we obtain qualitatively equivalent
results with a standardized rank regression coefficient analysis (see S1 Appendix). δ and r2
have very large positive effects on average cooperation levels. As noted above and explained fur-
ther in the S1 Appendix, our δmeasure is applicable to both infinite and finite games as a mea-
sure of the expected length of the game from a first period perspective, and the dynamic model
has an interaction term between δ and infinity that allows the δ effect in periods greater than
one to be different for infinite games. Surprisingly, this interaction term is the least important
predictor variable in the dynamic model (Fig 7), suggesting that the effect of the expected
length of the game from a first period perspective is independent of whether the game is indefi-
nitely repeated.

Infinity and r1 havemoderately large positive effects on cooperation. r1 is generally used as
an index of the cooperativeness of the payoff table so it is surprising that r2 has a significantly
larger impact on cooperation. Our analysis suggests that we can increase the probability of
cooperation more by increasing the difference between the potential outcomes of a player and
her opponent both cooperating (C,C) and only her cooperating (C,D). Increasing the difference
between mutual cooperation (C,C) and mutual defection (D,D) will also increase cooperation,
but less. The third group includes error and risk, which have negative effects on cooperation.

Fig 7. Variable importance scores. Variable importance scores for individual-level dynamic component of full model, i.e.
for predictions of an agents’ probability of cooperation in periods > 1. Variables separated by ‘*’ represent an interaction
between those two variables. These relative importance scores are derived from the absolute values of the t-statistics for
each model parameter, which correspond to the effects of the predictor variables (accounting for variability in the
estimates) on the probability of cooperation, ceteris paribus [19].

doi:10.1371/journal.pone.0155656.g007
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Fig 8. Predicted proportions of cooperation (n = 28).We could not include more than one game structure from two papers
(game structures 3 and 18) that comprised our integrated data set [6, 9], because they were comparing either to one-shot
games or games with artificial opponents. Therefore, in our model’s replication of the qualitative empirical experimental
findings, we could not conduct any replication related to these two papers’ findings. Dal Bo and Frechette found that: delta
increases cooperation, keeping payoffs fixed (A.); and that certain payoffs increase cooperation, while fixing delta (B.).
Bereby-Meyer and Roth found that risk reduces cooperation, where payoffs were framed as gains (C.). Kunreuther et al. found
that risk reduces cooperation, with payoffs framed as losses rather than gains (D.). This is the only finding where we predicted
marginally different cooperation levels when the empirical data indicates a larger gap. Fudenberg Rand and Dreber found that
certain payoffs increase cooperation (E.). Friedman and Oprea found that certain payoffs increase cooperation (F.). Dal Bo
found that delta increases cooperation, fixing payoffs and infinity (G.); having an ‘infinitely’ repeated game increases
cooperation, fixing payoffs and delta (G.); and certain payoffs increase cooperation, fixing infinity and delta (H.). Dal Bo also
found that the cooperation levels decrease more over time within finite games (Fig 6 Structures 23–26), compared to infinite
games (Fig 6 Structures 27–30).

doi:10.1371/journal.pone.0155656.g008

Fig 9. Model simulation analysis. A. is a partial rank correlation coefficient analysis [47] of the effects of the game parameters on average cooperation;
lines are bootstrapped 95% confidence intervals (n = 1,000). Continuous is set to its empirical mode, 0, because we had no within experiment variation on
this. B. shows that first period play strongly affects cooperation levels in periods greater than one. Setting the game structure variables to the mean of the
empirically observed values: if we exogenously set the probability of cooperation during the first period to 0 the simulated proportion of cooperation in
subsequent periods is only 0.18 (‘simulated experiment 1’), and if we set the probability of cooperation during the first period to 1 the simulated proportion of
cooperation in subsequent periods is 0.68 (‘simulated experiment 4’). When the probability of first period cooperation is set to 0, and we use a game structure
that A. suggests should maximize cooperation, the proportion of cooperation is 0.43 (‘simulated experiment 2’); and when the probability of first period
cooperation is set to 1, with the game structure that should minimize cooperation, the cooperation level is 0.35 (‘simulated experiment 3’).

doi:10.1371/journal.pone.0155656.g009
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We empirically discovered that if a player cooperated (defected) in the previous period, she is
very likely to cooperate (defect) in the next (Fig 7). To explore the implications of this finding, we
modified our simulation model so that we could exogenously set the probability of an agent
cooperating in the first period, and found that it strongly affects cooperation levels in subsequent
periods with the game structure set to the empirical mean values (Fig 9B Simulated Experiments
1 and 4). However, a game structure that the sensitivity analysis indicates is very favorable to
cooperation can moderate the negative effect of initial defection (Fig 9B Experiment 2), and, con-
versely, a game structure that the analysis suggests should inhibit cooperation can moderate the
positive effect of initial cooperation (Fig 9B Experiment 3). The history of a particular interaction
and the institutional structure both play important roles in determining cooperation levels.

We further investigated “inertia”—the probability a player will cooperate given that she
cooperated last period—and its relationship to game structure. We compute an average “pre-
dicted inertia” for each of the thirty game structures by predicting the probability of coopera-
tion after cooperating last period in a given game structure with our model, marginalizing out
the effect of the time period and the opponent’s previous decision. To compute an average
“actual inertia” value for each of the thirty game structures we divide the sum of the number of
times all players cooperated after cooperating in the previous period by the total number of
times all players cooperated in the previous period. The thirty predicted and actual inertia val-
ues have a 0.74 correlation, further evidence that the model captures the relevant patterns in
the data. Game structures with longer expected length of interactions from a first-period per-
spective (higher δ), indefinite repetition, and higher r2 payoff values have higher actual inertia
values. δ is the strongest predictor of higher inertia and they are correlated at the 0.71 level.

Conclusion
The Prisoner’s Dilemma game is widely used to understand the tension between social and
individual interests. We develop a computational model that can accurately predict human
behavior in Prisoner’s Dilemma experimental games for a broad range of game structures,
using only separate such structures for calibrating the model. We demonstrate that our
approach can successfully predict behavior at multiple scales, yielding the most rigorously and
broadly validated computational framework to date for designing institutions that promote
cooperation in social dilemma scenarios. In particular, we use our model to identify variables
that have the greatest impact on cooperation.

Our sensitivity analysis demonstrated the importance of higher expected values of interac-
tion length and larger differences between potential C,C and C,D outcomes (Fig 9). It is more
important to increase the benefits of mutual cooperation over losing out by being the sole
cooperator than it is to increase the potential benefits of mutual cooperation relative to mutual
defection. These insights are relevant to improving the underlying structure of new policy pro-
grams and designing new human subjects experiments. This work represents a new approach
to understanding and predicting human interactions that will be increasingly relevant as more
(experimental and observational) behavioral data is collected. With sufficient behavioral data
from a variety of policy structures, our approach can be applied to understand which factors
should be prioritized to improve policy outcomes. The specifics need to be tailored to the cir-
cumstance, but models like ours can serve as a starting point for understanding which struc-
tural factors of a policy are most influential.

Supporting Information
S1 Appendix. Supplementary Information.
(PDF)

Predicting Human Cooperation

PLOS ONE | DOI:10.1371/journal.pone.0155656 May 12, 2016 16 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155656.s001


S2 Appendix. Dataset.
(ZIP)

Acknowledgments
Nay thanks Jonathan Gilligan for discussions that improved this paper. We thank [6], [7], [8],
[9], [10], [11], [12], and [13] for making their data publicly available, and Howard Kunreuther
for comments on this paper.

Author Contributions
Analyzed the data: JJN. Wrote the paper: JJN YV.

References
1. DuW-B, Cao X-B, Zhao L, Hu M-B. Evolutionary games on scale-free networks with a preferential

selection mechanism. Physica A: Statistical Mechanics and its Applications. 2009; 388: 4509–4514.
doi: 10.1016/j.physa.2009.07.012

2. Wang J, Xia C, Wang Y, Ding S, Sun J. Spatial prisoner’s dilemma games with increasing size of the
interaction neighborhood on regular lattices. Chin Sci Bull. 2012; 57: 724–728. doi: 10.1007/s11434-
011-4890-4

3. Xia C-Y, Meng X-K, Wang Z. Heterogeneous coupling between interdependent lattices promotes the
cooperation in the prisoner’s dilemma game. PLoS One. 2015; 10. doi: 10.1371/journal.pone.0129542

4. Hardin G. The tragedy of the commons. Science. 1968; 162: 1243–1248. doi: 10.1126/science.162.
3859.1243 PMID: 5699198

5. Janssen MA, Holahan R, Lee A, Ostrom E. Lab experiments for the study of social-ecological systems.
Science. 2010; 328: 613–617. doi: 10.1126/science.1183532 PMID: 20431012

6. Andreoni J, Miller JH. Rational cooperation in the finitely repeated prisoner’s dilemma: Experimental
evidence. The Economic Journal. 1993; 103: 570–585. doi: 10.2307/2234532

7. Dal Bo P. Cooperation under the shadow of the future: Experimental evidence from infinitely repeated
games. American Economic Review. 2005; 95: 1591–1604. doi: 10.1257/000282805775014434

8. Bereby-Meyer Y, Roth AE. The speed of learning in noisy games: Partial reinforcement and the sustain-
ability of cooperation. American Economic Review. 2006; 96: 1029–1042. Available: http://www.
ingentaconnect.com/content/aea/aer/2006/00000096/00000004/art00006 doi: 10.1257/aer.96.4.1029

9. Duffy J, Ochs J. Cooperative behavior and the frequency of social interaction. Games and Economic
Behavior. 2009; 66: 785–812. doi: 10.1016/j.geb.2008.07.003

10. Kunreuther H, Silvasi G, Bradlow ET, Small D. Bayesian analysis of deterministic and stochastic prison-
er’s dilemma games. Judgment and Decision Making. 2009; 4: 363–384.

11. Dal Bo P, Frechette GR. The evolution of cooperation in infinitely repeated games: Experimental evi-
dence. American Economic Review. 2011; 101: 411–429. doi: 10.1257/aer.101.1.411

12. Friedman D, Oprea R. A continuous dilemma. American Economic Review. 2012; 102: 337–363. Avail-
able: http://www.ingentaconnect.com/content/aea/aer/2012/00000102/00000001/art00011 doi: 10.
1257/aer.102.1.337

13. Fudenberg D, Rand DG, Dreber A. Slow to anger and fast to forgive: Cooperation in an uncertain world.
American Economic Review. 2012; 102: 720–749. doi: 10.1257/aer.102.2.720

14. Axelrod R, Dion D. The further evolution of cooperation. Science. 1988; 242: 1385–1390. doi: 10.1126/
science.242.4884.1385 PMID: 17802133

15. Rapoport A, Chammah AM. Prisoners dilemma: A study in conflict and cooperation. s.l.: University of
Michigan Press; 1965.

16. Roth AE, Keith J. Equilibrium behavior and repeated play of the prisoner’s dilemma. Journal of Mathe-
matical Psychology. 1978; 17: 189–198. doi: 10.1016/0022-2496(78)90030-5

17. Dreber A, Fudenberg D, Rand DG.Who cooperates in repeated games: The role of altruism, inequity
aversion, and demographics. Journal of Economic Behavior & Organization. 2014; 98: 41–55. doi: 10.
1016/j.jebo.2013.12.007

18. R Core Team. R: A language and environment for statistical computing [Internet]. Vienna, Austria: R
Foundation for Statistical Computing; 2015. Available: http://www.R-project.org/

Predicting Human Cooperation

PLOS ONE | DOI:10.1371/journal.pone.0155656 May 12, 2016 17 / 19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0155656.s002
http://dx.doi.org/10.1016/j.physa.2009.07.012
http://dx.doi.org/10.1007/s11434-011-4890-4
http://dx.doi.org/10.1007/s11434-011-4890-4
http://dx.doi.org/10.1371/journal.pone.0129542
http://dx.doi.org/10.1126/science.162.3859.1243
http://dx.doi.org/10.1126/science.162.3859.1243
http://www.ncbi.nlm.nih.gov/pubmed/5699198
http://dx.doi.org/10.1126/science.1183532
http://www.ncbi.nlm.nih.gov/pubmed/20431012
http://dx.doi.org/10.2307/2234532
http://dx.doi.org/10.1257/000282805775014434
http://www.ingentaconnect.com/content/aea/aer/2006/00000096/00000004/art00006
http://www.ingentaconnect.com/content/aea/aer/2006/00000096/00000004/art00006
http://dx.doi.org/10.1257/aer.96.4.1029
http://dx.doi.org/10.1016/j.geb.2008.07.003
http://dx.doi.org/10.1257/aer.101.1.411
http://www.ingentaconnect.com/content/aea/aer/2012/00000102/00000001/art00011
http://dx.doi.org/10.1257/aer.102.1.337
http://dx.doi.org/10.1257/aer.102.1.337
http://dx.doi.org/10.1257/aer.102.2.720
http://dx.doi.org/10.1126/science.242.4884.1385
http://dx.doi.org/10.1126/science.242.4884.1385
http://www.ncbi.nlm.nih.gov/pubmed/17802133
http://dx.doi.org/10.1016/0022-2496(78)90030-5
http://dx.doi.org/10.1016/j.jebo.2013.12.007
http://dx.doi.org/10.1016/j.jebo.2013.12.007
http://www.R-project.org/


19. Kuhn M, Weston S, Williams A, Keefer C, Engelhardt A, Cooper T, et al. Caret: Classification and
regression training [Internet]. 2014. Available: http://cran.r-project.org/web/packages/caret/index.html

20. Ho TH, Camerer CF, Chong J-K. Self-tuning experience weighted attraction learning in games. Journal
of Economic Theory. 2007; 133: 177–198. doi: 10.1016/j.jet.2005.12.008

21. Axelrod RM. The complexity of cooperation: Agent-based models of competition and collaboration.
Princeton University Press; 1997.

22. Deadman PJ. Modelling individual behaviour and group performance in an intelligent agent-based sim-
ulation of the tragedy of the commons. Journal of Environmental Management. 1999; 56: 159–172. doi:
10.1006/jema.1999.0272

23. Jager W, Janssen MA. Using artificial agents to understand laboratory experiments of common-pool
resources with real agents. Complexity and ecosystemmanagement: The theory and practice of multi-
agent systems. 2002; 75–102. Available: http://www.marcojanssen.info/2002_Using_artificial_agents_
to_understand_laboratory_experiments_of_common_pool_resources_with_real%20agents.pdf

24. Janssen MA, Ahn T-K. Learning, signaling, and social preferences in public-good games. Ecology and
society. 2006; 11: 21. Available: http://www.cs.sfu.ca/*lshia/personal/econ/papers/janssenAhn1.pdf

25. Wendel S, Oppenheimer J. An agent-based analysis of context-dependent preferences. Journal of
Economic Psychology. 2010; 31: 269–284. doi: 10.1016/j.joep.2009.08.005

26. Arifovic J, Ledyard J. Individual evolutionary learning, other-regarding preferences, and the voluntary
contributions mechanism. Journal of Public Economics. 2012; 96: 808–823. doi: 10.1016/j.jpubeco.
2012.05.013

27. Wunder M, Suri S, Watts DJ. Empirical agent based models of cooperation in public goods games. Pro-
ceedings of the fourteenth ACM conference on electronic commerce. ACM; 2013. pp. 891–908. Avail-
able: http://dl.acm.org/citation.cfm?id=2482586

28. Andreoni J, Miller JH. Auctions with artificial adaptive agents. Games and Economic Behavior. 1995;
10: 39–64. doi: 10.1006/game.1995.1024

29. Bower J, Bunn DW. Model-based comparisons of pool and bilateral markets for electricity. The Energy
Journal. 2000;Volume 21: 1–29. Available: https://ideas.repec.org/a/aen/journl/2000v21-03-a01.html
doi: 10.5547/ISSN0195-6574-EJ-Vol21-No3-1

30. Marks R. Chapter 27 market design using agent-based models. In: Tesfatsion L and Judd K.L, editor.
Handbook of computational economics. Elsevier; 2006. pp. 1339–1380. Available: http://www.
sciencedirect.com/science/article/pii/S1574002105020277

31. Capraro V. A model of human cooperation in social dilemmas. PLoS ONE. 2013; 8: e72427. doi: 10.
1371/journal.pone.0072427 PMID: 24009679

32. Capraro V, Venanzi M, Polukarov M, Jennings NR. Cooperative equilibria in iterated social dilemmas.
In: Vöcking B, editor. Algorithmic game theory. Springer Berlin Heidelberg; 2013. pp. 146–158. Avail-
able: http://link.springer.com/chapter/10.1007/978-3-642-41392-6_13

33. Roth AE, Erev I. Learning in extensive-form games: Experimental data and simple dynamic models in
the intermediate term. Games and economic behavior. 1995; 8: 164–212. Available: http://www.
sciencedirect.com/science/article/pii/S089982560580020X doi: 10.1016/S0899-8256(05)80020-X

34. Cheung Y-W, Friedman D. Individual learning in normal form games: Some laboratory results. Games
and Economic Behavior. 1997; 19: 46–76. doi: 10.1006/game.1997.0544

35. Erev I, Roth AE. Predicting how people play games: Reinforcement learning in experimental games
with unique, mixed strategy equilibria. American Economic Review. 1998; 88: 848–81. Available:
https://ideas.repec.org/a/aea/aecrev/v88y1998i4p848-81.html

36. McKelvey R, Palfrey T. Playing in the dark: Information, learning, and coordination in repeated games.
California Institute of Technology; 2001.

37. Camerer CF. Behavioral game theory: Experiments in strategic interaction. New York, N.Y.: Princeton,
N.J: Princeton University Press; 2003.

38. Stahl DO, Haruvy E. Aspiration-based and reciprocity-based rules in learning dynamics for symmetric
normal-form games. Journal of Mathematical Psychology. 2002; 46: 531–553. doi: 10.1006/jmps.2001.
1409

39. Hanaki N, Sethi R, Erev I, Peterhansl A. Learning strategies. Journal of Economic Behavior & Organi-
zation. 2005; 56: 523–542. doi: 10.1016/j.jebo.2003.12.004

40. Erev I, Roth AE, Slonim RL, Barron G. Learning and equilibrium as useful approximations: Accuracy of
prediction on randomly selected constant sum games. Economic Theory. 2007; 33: 29–51. doi: 10.
1007/s00199-007-0214-y

Predicting Human Cooperation

PLOS ONE | DOI:10.1371/journal.pone.0155656 May 12, 2016 18 / 19

http://cran.r-project.org/web/packages/caret/index.html
http://dx.doi.org/10.1016/j.jet.2005.12.008
http://dx.doi.org/10.1006/jema.1999.0272
http://www.marcojanssen.info/2002_Using_artificial_agents_to_understand_laboratory_experiments_of_common_pool_resources_with_real%20agents.pdf
http://www.marcojanssen.info/2002_Using_artificial_agents_to_understand_laboratory_experiments_of_common_pool_resources_with_real%20agents.pdf
http://www.cs.sfu.ca/&sim;lshia/personal/econ/papers/janssenAhn1.pdf
http://dx.doi.org/10.1016/j.joep.2009.08.005
http://dx.doi.org/10.1016/j.jpubeco.2012.05.013
http://dx.doi.org/10.1016/j.jpubeco.2012.05.013
http://dl.acm.org/citation.cfm?id=2482586
http://dx.doi.org/10.1006/game.1995.1024
https://ideas.repec.org/a/aen/journl/2000v21-03-a01.html
http://dx.doi.org/10.5547/ISSN0195-6574-EJ-Vol21-No3-1
http://www.sciencedirect.com/science/article/pii/S1574002105020277
http://www.sciencedirect.com/science/article/pii/S1574002105020277
http://dx.doi.org/10.1371/journal.pone.0072427
http://dx.doi.org/10.1371/journal.pone.0072427
http://www.ncbi.nlm.nih.gov/pubmed/24009679
http://link.springer.com/chapter/10.1007/978-3-642-41392-6_13
http://www.sciencedirect.com/science/article/pii/S089982560580020X
http://www.sciencedirect.com/science/article/pii/S089982560580020X
http://dx.doi.org/10.1016/S0899-8256(05)80020-X
http://dx.doi.org/10.1006/game.1997.0544
https://ideas.repec.org/a/aea/aecrev/v88y1998i4p848-81.html
http://dx.doi.org/10.1006/jmps.2001.1409
http://dx.doi.org/10.1006/jmps.2001.1409
http://dx.doi.org/10.1016/j.jebo.2003.12.004
http://dx.doi.org/10.1007/s00199-007-0214-y
http://dx.doi.org/10.1007/s00199-007-0214-y


41. Kim J-H. Estimating classification error rate: Repeated cross-validation, repeated hold-out and boot-
strap. Computational Statistics & Data Analysis. 2009; 53: 3735–3745. doi: 10.1016/j.csda.2009.04.
009

42. James G, Witten D, Hastie T, Tibshirani R. An introduction to statistical learning: With applications in r.
1st ed. 2013. Corr. 4th printing 2014 edition. New York: Springer; 2013.

43. Beachkofski B, Grandhi R. Improved distributed hypercube sampling. 43rd AIAA/ASME/ASCE/AHS/
ASC structures, structural dynamics, and materials conference. American Institute of Aeronautics;
Astronautics; 2002. Available: http://arc.aiaa.org/doi/abs/10.2514/6.2002-1274

44. Carnell R. Lhs latin hypercube samples [Internet]. 2012. Available: http://cran.r-project.org/web/
packages/lhs/index.html

45. Saltelli A, Chan K, Scott EM. Sensitivity analysis. 1 edition. Chichester: Wiley; 2009.

46. Thiele JC, Kurth W, Grimm V. Facilitating parameter estimation and sensitivity analysis of agent-based
models: A cookbook using NetLogo and R. JASSS. 2014; 17: 11. doi: 10.18564/jasss.2503

47. Pujol G, Iooss B, Lemaitre AJ with contributions from P, Gilquin L, Gratiet LL, Touati T, et al. Sensitivity:
Sensitivity analysis [Internet]. 2014. Available: http://cran.r-project.org/web/packages/sensitivity/index.
html

Predicting Human Cooperation

PLOS ONE | DOI:10.1371/journal.pone.0155656 May 12, 2016 19 / 19

http://dx.doi.org/10.1016/j.csda.2009.04.009
http://dx.doi.org/10.1016/j.csda.2009.04.009
http://arc.aiaa.org/doi/abs/10.2514/6.2002-1274
http://cran.r-project.org/web/packages/lhs/index.html
http://cran.r-project.org/web/packages/lhs/index.html
http://dx.doi.org/10.18564/jasss.2503
http://cran.r-project.org/web/packages/sensitivity/index.html
http://cran.r-project.org/web/packages/sensitivity/index.html

