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Abstract
This article examines the impact of Cattaneo-Christov heat flux in flows of viscoelastic flu-

ids. Flow is generated by a linear stretching sheet. Influence of thermal relaxation time in

the considered heat flux is seen. Mathematical formulation is presented for the boundary

layer approach. Suitable transformations lead to a nonlinear differential system. Convergent

series solutions of velocity and temperature are achieved. Impacts of various influential

parameters on the velocity and temperature are sketched and discussed. Numerical com-

putations are also performed for the skin friction coefficient and heat transfer rate. Our find-

ings reveal that the temperature profile has an inverse relationship with the thermal

relaxation parameter and the Prandtl number. Further the temperature profile and thermal

boundary layer thickness are lower for Cattaneo-Christov heat flux model in comparison to

the classical Fourier’s law of heat conduction.

Introduction
Mechanism of heat transfer occurs when there is a difference of temperature between the bod-
ies or between the various parts of the same body. Such mechanism has widespread industrial
and technological applications like cooling of nuclear reactors, cooling of electronic devices,
energy production, power generation and many others [1–3]. Fourier [4] was the first who
developed the classical law of heat conduction. This well known law has been the basis to study
the heat transfer mechanism since it appeared in the literature. But one of the major limitation
of this model is that it leads to a parabolic energy equation which means that an initial distur-
bance would instantly experienced by the system under consideration. This fact is referred in
literature as “Paradox of heat conduction”. To overcome this limitation, Cattaneo [5] modified
this law by adding a relaxation time term. Then Christov [6] further modified the Cattaneo
model [5] by replacing the ordinary derivative with the Oldroyd's upper-convected derivative
in order to maintain the frame-indifferent generalization. He developed a single energy equa-
tion for the governing problem. This model is known as the Cattaneo-Christov heat flux
model. Ciarletta and Straughan [7] explored the uniqueness and structural stability of solutions
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for energy equation using Cattaneo-Christov theory. Straughan [8] used the Cattaneo-Christov
heat flux model for the thermal convection in a horizontal layer of viscous fluid. Straughan [9,
10] also examined the models of acoustic waves and Gene-culture shock waves using the heat
flux by Cattaneo-Christov theory. Han et al. [11] analyzed the flow of Maxwell liquid past a lin-
early stretching surface through the Cattaneo-Christov heat flux model. Mustafa [12]
employed the Cattaneo-Christov theory in stretched flow and heat transfer of Maxwell liquid.
He developed both analytic and numeric solutions of the governing problems. Recently Khan
et al. [13] performed a numerical study to examine the thermal relaxation in the flow of Max-
well liquid by an exponentially stretching surface.

The analysis of boundary-layer flow past a stretching surface is significant in various indus-
trial and technological processes. Examples of such practical applications are wire drawing,
extrusion of plastic sheets, hot rolling, paper production, glass fiber etc. There are many fluids in
our daily life usage like shampoos, certain oils, sugar solution, tomato paste, mud, apple sauce,
chyme, personal care products and several others which do not satisfy the classical Newton's law
of viscosity. Such fluids fall in the class of non-Newtonian fluids. All the non-Newtonian fluids
through their distinct features cannot be explained by using a single constitutive relationship.
This fact of non-Newtonian fluids are quite distinct than that of viscous fluids. In the past various
models have been developed to characterize the properties of non-Newtonian fluids. Amongst
these the simplest subclasses of differential type fluids are the elastico-viscous and second grade
[14–20]. Further the study of gas-liquid two-phase flow is widely encountered in several indus-
trial processes like natural gas networks, lubrication, spray processes, nuclear reactor cooling etc.
Thus Gao et al. [21] performed a multivariate weighted complex network analysis to explore the
nonlinear dynamic behavior in two-phase flow. Gao et al. [22] also reported the multi-frequency
complex network to study the uncovering oil-water flow structure. Recently Gao et al. [23] exam-
ined the slug to churn flow transition by considering the multivariate pseudoWigner distribution
and multivariate multiscale entropy.

This communication presents a comparative study for Cattaneo-Christov heat flux model in
boundary layer flow by considering the two classes of viscoelastic fluids. Constitutive relations for
second grade and elastico-viscous fluids are considered. Most of the studies in the literature are
explained through the classical Fourier’s law of heat conduction. There is not a single study in the
literature that present the characteristics of Cattaneo-Christov heat flux in boundary layer flow of
viscoelastic fluids. Hence the purpose here is to employ the Cattaneo-Christov heat flux model in
the boundary layer flow of viscoelastic fluids. To the best of the author's knowledge, no such con-
sideration has been discussed in the literature yet. Similarity approach is adopted to convert the
partial differential system into the set of nonlinear ordinary differential system. The governing
nonlinear system is solved through the homotopy analysis method (HAM) [24–32]. Impacts of
various influential parameters on the velocity and temperature are studied and examined.

Formulation
We consider the steady two-dimensional (2D) flows of viscoelastic fluids over a linear stretch-
ing surface. Flow models for second grade and elastico-viscous fluids are considered. The Car-
tesian coordinate system is adopted in such a way that the x—axis is taken along the stretching
surface and y—axis is orthogonal to it. Let Uw(x) = ax denotes the surface stretching velocity
along the x—direction. The heat transfer process is studied through the Cattaneo-Christov
heat flux theory. The governing two-dimensional (2D) boundary-layer flows in two cases of
fluids are under consideration
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Note that (u,v) are the fluid velocities in horizontal and vertical directions respectively, v = μ
/ ρ the kinematic viscosity, μ the dynamic viscosity, ρ the density, cp the specific heat, k0 = −α1 /
ρ the elastic parameter, T the temperature and q the heat flux. Here k0 > 0 is for elastico-vis-
cous fluid, k0 < 0 corresponds to a second grade fluid and k0 = 0 is for Newtonian fluid.
According to the Cattaneo-Christov heat flux model [3], one can write
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where λ is the relaxation time of heat flux and k the thermal conductivity. For λ = 0, Eq (4) is
reduced to the classical Fourier's law of heat conduction. Omitting q from Eqs (3) and (4), the
energy equation becomes
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The subjected boundary conditions are

u ¼ UwðxÞ ¼ ax; v ¼ 0; T ¼ Tw at y ¼ 0; ð6Þ

u ! 0; T ! T1 as y ! 1; ð7Þ

in which α = k / ρcp is the thermal diffusivity, Tw the constant surface temperature, T1 the
ambient fluid temperature and a the positive constant. Using

u ¼ axf 0ðZÞ; v ¼ �ðanÞ1=2f ðZÞ;
yðZÞ ¼ ðT � T1Þ=ðTw � T1Þ; Z ¼ a

n

� �1=2
y:

ð8Þ

Now Eq (1) is satisfied and Eqs (2) and (5)–(7) lead to the following forms

f 000 þ ff 00 � ðf 0Þ2 � k�1ð2f 0f 000 � ðf 00Þ2 � ff ivÞ ¼ 0; ð9Þ

1

Pr
y00 þ f y0 � gðff 0y0 þ f 2y00Þ ¼ 0; ð10Þ

f ¼ 0; f 0 ¼ 1; y ¼ 1 at Z ¼ 0; ð11Þ

f 0 ! 0; y ! 0 as Z ! 1: ð12Þ

In the above expressions k�1 is the viscoelastic parameter, Pr the Prandtl number and γ the
thermal relaxation parameter. It is noticed that k�1 > 0 for elastico-viscous fluid and k�1 < 0 for
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the second grade fluid. These parameters have values

k�1 ¼ � k0a
n
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a
; g ¼ la: ð13Þ

The expression of the skin friction coefficient is
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Skin friction coefficient through dimensionless scale is

Re1=2x Cf ¼ ð1� 3k�1Þ f 00ð0Þ; ð15Þ

in which Rex = Uwx/v represents the local Reynolds number.

Homotopic Solutions
The appropriate initial approximations (f0,θ0), linear operators (Lf,Lθ) and deformation prob-
lems at zeroth andm th orders are

f0ðZÞ ¼ 1� expð�ZÞ; y0ðZÞ ¼ expð�ZÞ; ð16Þ

Lf ¼
d3f
dZ3

� df
dZ

; Ly ¼
d2y
dZ2

� y; ð17Þ

Lf ½B1 þ B2expðZÞ þ B3expð�ZÞ� ¼ 0; Ly½B4expðZÞ þ B5expð�ZÞ� ¼ 0; ð18Þ

ð1� ÞÞLf ½f̂ ðZ; ÞÞ � f0ðZÞ� ¼ ÞℏfNf ½f̂ ðZ; ÞÞ�; ð19Þ
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1

Pr
@2ŷ
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Here Þ2[0,1] is the embedding parameter, ℏf and ℏθ the non-zero auxiliary parameters and
Nf and Nθ the nonlinear operators. The expressions of general solutions (fm,θm) of the Eqs (24)
and (25) through the special solutions ðf �m; y�

mÞ are presented as follows:
fmðZÞ ¼ f �mðZÞ þ B1 þ B2expðZÞ þ B3expð�ZÞ; ð30Þ

ymðZÞ ¼ y�mðZÞ þ B4expðZÞ þ B5expð�ZÞ; ð31Þ

in which the constants Bj (j = 1−5) subject to the boundary conditions Eq (26) are defined by
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; B1 ¼ �B3 � f �mð0Þ; B5 ¼ �y�
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Convergence Analysis
No doubt the approximate homotopic solutions contain the non-zero auxiliary parameters ℏf
and ℏθ. Such non-zero auxiliary parameters are important in accelerating the convergence of
obtained homotopic solutions. The proper values of such parameters are important to get the
convergent approximate homotopic solutions. To get the appropriate values of ℏf and ℏθ, the
ℏ—curves are plotted at 14th order of homotopic deformations. Figs 1 and 2 clearly indicate

Fig 1. The ℏ—curves for f(η) and θ(η) in elastico-viscous fluid when k�1 ¼ 0:2; γ = 0.3 and Pr = 1.0.

doi:10.1371/journal.pone.0155185.g001
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that the convergence region exists inside the ranges −1.80� ℏf � −0.40 and −1.70� ℏθ �
−0.40 for elastico-viscous fluid ðk�1 > 0Þ and −1.50� ℏf � −0.20 and −1.50� ℏθ � −0.50 for
second grade fluid ðk�1 < 0Þ: Table 1 presents that 15th order of homotopic deformations is
necessary for convergent approximate homotopic solutions in elastico-viscous fluid case
whereas the 20th order of homotopic deformations is necessary for convergent approximate
homotopic solutions in second grade fluid case (see Table 2).

Discussion
The present section has been arranged to examine the impacts of viscoelastic parameter k�1,
thermal relaxation parameter γ and Prandtl number Pr on the non-dimensional velocity distri-
bution f0(η) and temperature distribution θ(η). Here the elastico-viscous ðk�1 > 0Þ and second
grade ðk�1 < 0Þ fluids are considered. This purpose is achieved through the plots 3–6. Impact of
viscoelastic parameter k�1 on the velocity distribution f0(η) for both fluids is sketched in Fig 3.
Here the velocity f0(η) is reduced for larger values of elastico-viscous parameter ð k�1 > 0Þ while

Fig 2. The ℏ—curves for f(η) and θ(η) in second grade fluid when k�1 ¼ �0:2; γ = 0.3 and Pr = 1.0.

doi:10.1371/journal.pone.0155185.g002

Table 1. Convergence of homotopic solutions in elastico-viscous fluid for various order of homotopic
approximations when k�1 ¼ �0:2; γ = 0.3 and Pr = 1.0.

Order of approximations −f0 0(0) −θ0(0)

1 1.10000 0.66667

5 1.11802 0.58484

10 1.11803 0.58279

15 1.11803 0.58273

25 1.11803 0.58273

35 1.11803 0.58273

50 1.11803 0.58273

doi:10.1371/journal.pone.0155185.t001
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the velocity f0(η) is higher for larger values of second grade parameter ð k�1 < 0Þ. The results
corresponds to the Newtonian fluid situation when k�1 ¼ 0. Fig 4 presents the influence of vis-
coelastic parameter k�1 on the temperature distribution θ(η) for both fluids. Temperature distri-
bution θ(η) and thermal boundary layer thickness are enhanced for elastico-viscous fluid while
opposite behavior is observed in case of second grade fluid. Fig 5 presents the impact of thermal
relaxation parameter γ on the temperature distribution θ(η). Temperature distribution θ(η)
and thermal boundary layer thickness are decreasing functions of thermal relaxation parame-
ter. Here the thermal relaxation parameter γ = 0 shows that the heat flux expression is reduced
to the classical Fourier's law. Effect of Prandtl number Pr on the temperature distribution θ(η)
for both fluids is displayed in Fig 6. Both the temperature distribution θ(η) and thermal bound-
ary layer thickness are reduced when Prandtl number Pr increases. Prandtl number has an
inverse relationship with the thermal diffusivity. High Prandtl fluid possess weaker thermal dif-
fusivity and the low Prandtl fluid has stronger thermal diffusivity. When we enhance the
Prandtl number, then weaker thermal diffusivity appears. Such weaker thermal diffusivity

Table 2. Convergence of homotopic solutions in second grade fluid for various order of homotopic
approximations when k�1 ¼ �0:2; γ = 0.3 and Pr = 1.0.

Order of approximations −f0 0(0) −θ0(0)

1 0.90000 0.66667

5 0.91286 0.62357

10 0.91287 0.63155

15 0.91287 0.63028

20 0.91287 0.63052

25 0.91287 0.63052

35 0.91287 0.63052

50 0.91287 0.63052

doi:10.1371/journal.pone.0155185.t002

Fig 3. Effect of k�
1 on f0(η).

doi:10.1371/journal.pone.0155185.g003
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creates a reduction in the temperature distribution and thermal boundary layer thickness for
both fluids. Table 3 is computed to investigate the behavior of skin friction coefficient�Re1=2x Cf

for different values of k�1: Tabulated values depict that the skin friction coefficient is higher
for second grade fluid ðk�1 < 0Þ while opposite behavior is noticed for elastico-viscous fluid
ðk�1 > 0Þ: Tables 4 and 5 include the values of heat transfer rate at the surface −θ0(0) for various
values of thermal relaxation parameter γ for elastico-viscous ðk�1 > 0Þ and second grade

Fig 4. Effect of k�
1 on θ(η)when γ = 0.3 and Pr = 1.0.

doi:10.1371/journal.pone.0155185.g004

Fig 5. Effect of γ on θ(η)when Pr = 1.0.

doi:10.1371/journal.pone.0155185.g005
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ðk�1 < 0Þ fluids respectively. Heat transfer rate at the surface −θ0(0) is enhanced for larger values
of thermal relaxation parameter γ in both fluids. It is also analyzed that the values of heat trans-
fer rate at the surface −θ0(0) in second grade fluid ðk�1 < 0Þ are higher when compared with the
elastico-viscous fluid ðk�1 > 0Þ:

Conclusions
Boundary layer flows of two viscoelastic fluids over a linear stretching surface satisfying Catta-
neo-Christov heat flux is analyzed. The main observations of this study are summarized below:

• Velocity profile f0(η) and momentum boundary layer thickness are reduced when we enhance
the positive values of k�1 while opposite behavior is observed for the negative values of k

�
1 .

Fig 6. Effect of Pr on θ(η)when γ = 0.3.

doi:10.1371/journal.pone.0155185.g006

Table 3. Values of skin friction coefficient�Re1=2x Cf for different values of viscoelastic parameter k�
1 .

k�
1 −0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

�Re1=2
x Cf 1.66641 1.46059 1.23950 1.00000 0.73786 0.44721 0.11952

doi:10.1371/journal.pone.0155185.t003

Table 4. Values of heat transfer rate at the surface −θ0(0) in elastico-viscous fluid when k�1 ¼ 0:2 and Pr = 1.0.

γ 0.0 0.2 0.4 0.6 0.8

−θ0(0) 0.55787 0.57414 0.59165 0.61049 0.63086

doi:10.1371/journal.pone.0155185.t004

Table 5. Values of heat transfer rate at the surface −θ0(0) in second grade fluid when k�
1 ¼ � 0:2 and Pr = 1.0.

γ 0.0 0.2 0.4 0.6 0.8

−θ0(0) 0.60023 0.61997 0.64153 0.66121 0.68288

doi:10.1371/journal.pone.0155185.t005
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• Both the temperature distribution θ(η) and thermal boundary layer thickness are decreased
when Pr enhances.

• Increasing values of thermal relaxation parameter γ show a reduction in the temperature dis-
tribution θ(η) and thermal boundary layer thickness.

• Skin friction coefficient is reduced when we enhance the positive values of k�1 while opposite
behavior is noticed for the negative values of k�1 .

• Heat transfer rate at the surface is more for increasing values of thermal relaxation parameter
γ for both fluids.
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