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Abstract
Tropical forests have long been recognized for their biodiversity and ecosystem services.

Despite their importance, tropical forests, and particularly those of central Africa, remain

understudied. Until recently, most forest inventories in Central Africa have focused on trees

�10 cm in diameter, even though several studies have shown that small-diameter tree pop-

ulation may be important to demographic rates and nutrient cycling. To determine the eco-

logical importance of small-diameter trees in central African forests, we used data from a

25-ha permanent plot that we established in the rainforest of Gabon to study the diversity

and dynamics of these forests. Within the plot, we censused 175,830 trees�1 cm dbh from

54 families, 192 genera, and 345 species. Average tree density was 7,026 trees/ha, basal

area 31.64 m2/ha, and above-ground biomass 369.40 Mg/ha. Fabaceae, Ebenaceae and

Euphorbiaceae were the most important families by basal area, density and above-ground

biomass. Small-diameter trees (1 cm� dbh <10 cm) comprised 93.7% of the total tree pop-

ulation, 16.5% of basal area, and 4.8% of the above-ground biomass. They also had diver-

sity 18% higher at family level, 34% higher at genus level, and 42% higher at species level

than trees�10 cm dbh. Although the relative contribution of small-diameter trees to bio-

mass was comparable to other forests globally, their contribution to forest density, and

diversity was disproportionately higher. The high levels of diversity within small-diameter

classes may give these forests high levels of structural resilience to anthropogenic/natural

disturbance and a changing climate.

Introduction
Tropical forests have long been recognized for their biodiversity and ecosystem services such
as carbon sequestration, habitat provision for vertebrates and invertebrates, and non-timber
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resources [1–3]. The tropical forest biome extends across three floristic regions—Central and
South America, the southeastern Asian-Pacific, and equatorial Africa, all with high biodiver-
sity. The African tropical rainforest has been least studied, and information is lacking regarding
tree species diversity and the distribution of structural elements responsible for carbon storage
and other ecosystem functions. Because small-diameter trees (here defined as those with less
than 10 cm diameter at breast height [dbh, 1.3 m above the ground] and greater than or equal
to 1 cm in diameter) are such a visually prevalent element of these forests (Fig 1), we predict
that as in other African forests, they would be a much more important component of the forest
diversity, structure and biomass than other forests globally.

The small-diameter tree population has often been overlooked because it is not important
to timber extraction, and is a much smaller constituent of forest biomass than the larger trees
(e.g., [4]). Until recently, most studies in Africa concentrated on large-diameter trees (here
defined as those with dbh�10 cm; e.g., [5–8]. However, recent studies have shown that the
small-diameter tree population may be important to demographic rates and nutrient cycling
(e.g., [9]), and that the relative contribution of smaller diameter trees to forest biomass may be
higher in tropical Africa than in other tropical and temperate forests (e.g., [10]). Small-diame-
ter trees may also contribute disproportionately to woody plant diversity [11], as many taxa
that reach 1 cm dbh are not present at the 10 cm diameter class—potentially much more so in
tropical Africa than in other forests.

We, therefore, sought to establish a permanent research plot where we could study the
unique contributions of smaller diameter trees to the distribution and abundance of all trees,
and also to compare the Rabi forest with others in the Smithsonian Center for Tropical Forest
Science ForestGEO network of long-term permanent plots [12], including those also located in
the Congo basin rainforest—Ituri in Democratic Republic Congo [13], Korup in Cameroon
[14], and at Rabi in Gabon (the present study). Previous results from Ituri and Korup showed
that tropical African forests have some of the highest proportions of small-diameter trees in
the world, both in terms of forest density and contributions to overall biomass [13,15,16]. Simi-
larly, Lin et al. [17] showed that small-diameter trees (1 cm� dbh<10 cm) contributed 10.4%
of the biomass in a subtropical forest in China, and Vincent et al. [18] showed that the presence
of small-diameter trees contributes to higher local levels of aboveground biomass. Our objec-
tives were to characterize the composition and structure of the forests of Rabi and examine the
relative contribution of small-diameter trees to tree abundance, basal area, above-ground bio-
mass, and diversity. We hypothesized that the relative importance of small-diameter trees
would be higher than in other forests globally and, therefore, that a comprehensive under-
standing of tropical African forests requires sampling of small-diameter trees in addition to the
current emphasis on larger diameter individuals.

Methods
The research authorization to carry out this study was granted by the Government of Gabon,
through the Centre National de la Recherche Scientifique et Technologique (CENAREST).

Study site
The study site is in the Gamba Complex of Protected Areas (1°500 to 3°100 S; 9° 150 to10° 500 E)
in southwestern Gabon (Fig 2). This region is the southern portion of Guineo-Congolian forest
type [14,19–21], which includes swamp and mixed moist semi-evergreen forest types [22]. The
Gamba Complex includes two national parks, Loango National Park on the west and Mouka-
laba Doudou National Park on the east. This area is the largest protected area in Gabon, cover-
ing 267,667 km2 or about 4% of the total area of Gabon [20].

Small-Diameter Trees in Rabi Forest

PLOS ONE | DOI:10.1371/journal.pone.0154988 May 17, 2016 2 / 15

Tropical Research institute through the Forest Global
Earth Observatory (ForestGEO) provided funding for
the salaries of 12 field staff including HRM, and also
provided funding to DK for training and technical
advice. The Rabi plot was established with the
protocols developed by ForestGEO, and DK is
African Program Coordinator for ForestGEO. The
data was analyzed by HRM, DK and JL during a
series of analytical workshops funded by ForestGEO
in China, US and Panama.

Competing Interests: Shell Gabon provided
financial support for the work. There are no patents,
products in development or marketed products to
declare. This does not alter the authors' adherence to
PLOS ONE policies on sharing data and materials.



Fig 1. Representative photos of the four strata of the forest canopy. (A) Treelets (<10 m tall). (B)
Understory trees (10 m to 20 m tall), (C) lower canopy trees (20 m to 30 m tall) and (D) upper canopy trees
(�30 m tall). (E) The plot also features a stream and 11 stumps from past logging of valuable trees (F).

doi:10.1371/journal.pone.0154988.g001

Fig 2. Map of the Rabi Forest Monitoring Plot in relation to the Gamba Complex of Protected Areas and the Rabi Oil
Concession (Africa and Gabon inset, right).

doi:10.1371/journal.pone.0154988.g002
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Rabi is in the northern part of the Gamba Complex between the two national parks. The
vegetation is characterized by the abundance of the tree species such as Dichostemma glauces-
cens, Diogoa zenkeri, Klaineanthus gaboniae, Coula edulis, Crudia gabonensis and Odyendea
gabonensis. The most abundant families are Fabaceae, Euphorbiaceae and Olacaceae [21,23].
Family classification follows the Angiosperm Phylogeny Group III [24].

Soils are characterized as ferralitic and hydromorphic, with mostly sandy clay (approxi-
mately 25% clay) to clay sand (approximately 35% clay) [20]. Temperature throughout the
year is almost invariant between 24°C and 28°C [21]. Annual precipitation averages 2299 mm.
There are two main seasons, a dry season from June to September with precipitations averaging
24 mm/month and a wet season between October and May when precipitations average 269
mm/month. November and March with averages of 406 mm and 303 mm of rain respectively
are the wettest months of the year, while July with an average of 11 mm is the driest month of
the year (Shell Gabon unpublished data, 1985 to 2015).

The 25-ha permanent plot (plot center 1°550S, 9°520W) is orientated southeast—northwest
(Fig 3). Plot elevation varies between 32 m and 62 m, and the plot is bisected by a stream sur-
rounded by gentle slopes and three ridges (Fig 3). The forest in the area underwent selective
logging, mostly of Lophira alata (Azobe), prior to 1990; there are 11 stumps from felled trees
inside the plot (Fig 1F). In addition to the selective logging, seismic assessments were con-
ducted in the area in the 1980s. Seismic assessments involve the temporary use of heavy equip-
ment in localized areas resulting in removal of smaller statured vegetation [25,26]. The forest
canopy is generally divided into four strata—treelets, understory, lower canopy trees and upper
canopy (Fig 1).

Data collection
Field methods followed the standards of the Smithsonian Center for Tropical Forest Science
[27]. The 25-ha was divided into 625 quadrats of 20 m × 20 m each. For tree enumeration, each
quadrat was in turn divided into 16 subquadrats of 5 m × 5 m.Within each subquadrat, the

Fig 3. Topographic map of the 25-ha Rabi plot with 1-m contour intervals. The river flows at the lowest
elevations, specifically between the 32-m and 36-m contours.

doi:10.1371/journal.pone.0154988.g003
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main stem of every tree�1 cm in diameter at breast height (dbh; 1.3 m above ground level) was
mapped (subsidiary stems of the same individual were not mapped). If the tree had either an
irregularity or a buttress at 1.3 m height, the height of measurement was moved (and recorded)
to avoid the irregularity or the buttress.

Tree enumeration (diameter measurement, tagging and mapping) was carried out from
June 2010 to June 2012. Tree identification was conducted in the field and in herbaria. In the
field, trees were grouped into morphospecies—morphologically identical entities—mostly on
the basis of vegetative characters. To ensure consistency in the groupings, up to 15 voucher
specimens were collected for each morphospecies and compared side-by-side. Over time
(2012–2014), flowering and fruiting material were collected for 85% of the morphospecies for
further taxonomic identifications at herbaria in Libreville, Leiden and Brussels. Voucher speci-
mens for the Rabi plot are deposited at the National Herbarium of Gabon, the Naturalis Biodi-
versity Center in Leiden, the Missouri Botanical Garden and the Smithsonian Museum of
Natural History.

Maximum height at maturity
The classification of Rabi species into life-forms followed Kenfack et al. [14]. Each species was
assigned to one of the following four life-forms according to the maximum height that they
attain at maturity, using information from the literature and our field observations. Trees that
do not normally reach 10 m in height and are<10 cm dbh were classified as treelets; under-
story trees were those 10 m to 20 m tall and 10 cm to 30 cm dbh; lower canopy included trees
20 m to 30 m tall and 30 cm to 60 cm dbh; and finally, upper canopy trees were defined as
those reaching>30 m in height and>60 cm dbh.

Data Analyses
Because most forest inventory plots in Central Africa are 1 ha in area and include only trees
�10 cm dbh, for comparison we calculated abundances, basal area, Fisher’s diversity and
aboveground biomass (AGB) per hectare and for two diameter classes; 1 cm� dbh<10 cm
and�10 cm. Diversity was analyzed at the levels of families, genera and species. Aboveground
biomass was estimated for each individual tree (including all stems for multi-stemmed trees)
using the dbh and the wood density allometric equation

AGB ¼ r� expð�1:499þ 2:148� lnDþ 0:207� lnD2 � 0:0281� lnD3Þ
from Chave et al. [28], where AGB is aboveground dry biomass (in kg), ρ the wood density (g/
cm3), D the dbh (in cm), ln the natural logarithm, and exp the exponential function. Frequency
was calculated based on the 20 m × 20m quadrats that make up the plot. Abundance-diameter
relationships were calculated with 1 cm bins. All analyses were performed using version 3.4.2
of R [29] and the CTFS R package (http://ctfs.arnarb.harvard.edu/Public/CTFSRPackage/
index.php/web).

Results

Floristics and diversity
We found 345 morphospecies within the 25-ha plot, of which 294 (85.2%) were identified to
species and the remaining 51 (14.8%) to genus level. Six of the species identified to genus level
have been confirmed to be new to science, and we expect that others will be confirmed as new
to science when fertile material can be collected for these morphospecies. Three species in the
plot were recorded in Gabon for the first time, Okoubaka aubrevillei Pellegr (Santalaceae) &

Small-Diameter Trees in Rabi Forest

PLOS ONE | DOI:10.1371/journal.pone.0154988 May 17, 2016 5 / 15

http://ctfs.arnarb.harvard.edu/Public/CTFSRPackage/index.php/web
http://ctfs.arnarb.harvard.edu/Public/CTFSRPackage/index.php/web


Normand,Magnistipula multinervia Burgt (Chrysobalanaceae), and Beilschmiedia auriculata
Robyns & R. Wilczek (Lauraceae). Because field identification was carried out for some por-
tions of the plot several months after tree enumeration and mapping, a total of 2,109 individual
trees were dead when they were revisited and not identified nor included in the analysis.

The 345 morphospecies belong to 54 families and 192 genera. Rubiaceae, with 57 species in
32 genera, was the most diverse family, followed by Fabaceae that had 43 species in 26 genera.
Other diverse families in the plot included Annonaceae (17 species in 9 genera), Phyllanthaceae
(16 species in 10 genera) and Anacardiaceae (16 species in 2 genera) (see S1 Appendix for a
complete listing of species). The genera Trichoscypha and Diospyros were the richest with 14
and 12 species respectively, followed by Beilschmiedia (8),Maesobotrya,Memecylon, and Xylo-
pia, each with seven species. Of these genera, Trichoscypha, Beilschmiedia andMemecylon had
the highest number of unidentified species (S1 Appendix).

The small-diameter tree group comprised 333 species (96% of the total) in 185 genera and
52 families, while 233 species in 137 genera and 44 families were recorded among large-diame-
ter trees. There were 207 species/ha for all trees in the plot, 201 species/ha for small-diameter
trees, as compared to only 84 species/ha for large-diameter trees (Table 1). Fisher’s α for all
trees was 40.1 per ha, almost the same (39.4/ha) for small-diameter trees, but lower for large
diameter-trees (30.8/ha).

Abundances
In the 25-ha plot, a total of 175,830 trees were recorded, with an average density of 7,026 indi-
viduals/ha. Small-diameter trees were 14 times more abundant than large-diameter trees.
There were 164,491 small-diameter trees (93.6% of all stems), averaging 6580 individuals/ha,
while large-diameter trees had a density of only 447 individuals/ha (Table 1). The families
Euphorbiaceae, and Fabaceae were the most abundant, with densities>1000 individuals/ha,
followed by Ebenaceae, Anacardiaceae, Phyllanthaceae, Rubiaceae, and Clusiaceae (Fig 4).
Among genera, Dichostemma and Crotonogyne, both of the family Euphorbiaceae, were the
most abundant, with>570 individuals/ha, followed by Diospyros, Garcinia, Trichoscypha, Tet-
raberlinia, Gilbertiodendron and Campylospermum (Table 2).

At species level,Dichostemma glaucescens and Crotonogyne gabonensiswere the most abundant
with densities> 500 individuals/ha, followed by Garcinia smeathmannii and Campylospermum

Table 1. Comparison of the small-diameter (1 cm� dbh <10 cm) and large-diameter (dbh�10cm) tree contribution to structure and diversity of the
Rabi 25-ha plot. Numbers in parenthesis represent standard deviation or percentages.

� 1 cm <10 cm � 10 cm

All families 54 52 (96.3%) 44 (81.5%)

All genera 194 187 (96.4%) 139 (71.6%)

All species 345 333 (96.5%) 234 (67.8%)

All trees 175,660 164,491 (93.6%) 11,170 (6.4%)

Total Basal area (m2) 791.23 130.73 (16.5%) 660.60 (83.5%)

Total aboveground biomass (Mg) 9,235.18 458.32 (5.0%) 8,777.01 (95.0%)

Mean density per ha 7026 (660) 6,580 (644) 447 (31)

Mean number of species per ha 207 (12) 201 (12) 84 (8)

Mean Fishers α per ha 40.1 (3.3) 39.4 (3.4) 30.8 (4.6)

Mean basal area per ha 31.65 (4.11) 5.23 (0.55) 26.42 (3.94)

Mean AGB per ha 369.41 (82.30) 18.33 (2.11) 351.08 (81.83)

doi:10.1371/journal.pone.0154988.t001
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Fig 4. The Density (A), basal area (B), and aboveground live biomass (C) of the ten most abundant tree
families in the Rabi plot.Whiskers indicate the 2.5% and 97.5% values of the 25, 100 m × 100 m individual
hectares of the plot.

doi:10.1371/journal.pone.0154988.g004

Table 2. The 20most abundant tree genera in the 25-ha Rabi plot ranked by density. Basal area and above-ground biomass (AGB) rank indicated in
parenthesis.

Genus Density (trees/ha) Basal area (m2/ha) AGB (Mg/ha)

Dichostemma 683.9 1.4 (2) 5.7 (23)

Crotonogyne 573.1 0.2 (42) 0.4 (84)

Diospyros 552.4 0.7 (12) 4.5 (26)

Garcinia 348.1 0.5 (24) 2.5 (35)

Trichoscypha 294.5 0 (186) 1.2 (57)

Tetraberlinia 290.5 0.9 (9) 32.3 (1)

Gilbertiodendron 266.5 1.6 (1) 18.8 (3)

Campylospermum 250.2 0.2 (41) 0.9 (63)

Pancovia 175.8 0.5 (26) 2.7 (34)

Piptostigma 131.2 0.2 (51) 0.4 (86)

Warneckea 126.5 0.1 (179) 1.9 (44)

Maesobotrya 123.6 0.2 (45) 0.9 (64)

Calpocalyx 122.8 0.4 (30) 2.7 (33)

Sorindeia 121.8 0.3 (37) 1.2 (56)

Protomegabaria 119.8 0.5 (27) 3.1 (31)

Dialium 109.6 0.6 (19) 6.9 (17)

Diogoa 100.7 0.6 (20) 5.1 (24)

Didelotia 82.1 0.9 (8) 11.3 (7)

Dactyladenia 81.1 0.6 (18) 6.6 (21)

Anisophyllea 72.4 0.6 (15) 6.8 (20)

doi:10.1371/journal.pone.0154988.t002
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congestum with densities>200 individuals/ha (Table 3). See S1 Appendix for complete listings of
density, basal area and above ground biomass by family, genus, and species.

Tree abundances declined rapidly with increasing diameter. The forest structure at Rabi fol-
lows a declining exponential distribution, with steeper declines at diameters>50 cm dbh (Fig
5). For all species and all diameters, abundance decreased with a slope of -2.63 on a log-log
scale (Fig 5) although some species (e.g., Tetraberlinia moreliana) declined more gradually.
Small-diameter trees, especially treelet lifeforms, declined rapidly within the 1 cm to 10 cm dbh
range (Fig 5).

Species with the greatest frequency of occurrence were the understory trees Garcia smeath-
mannii (91% of 625 quadrats) and Pancovia sp. (82%); the lower canopy trees Diogoa zenkeri
(89%), and the treelet Crotonogyne gabonensis (84%). The high number of small trees is driven
by four treelet species, Coffea mayombensis (Rubiaceae), Oncoba flagelliflora (Salicaceae),
Rinorea gabunensis (Violaceae), and Placodiscus caudatus (Sapindaceae) (Fig 4). A total of 104
species (30%) had densities of less than one individual per ha, of which 32 species were repre-
sented by only one individual in the 25-ha plot.

Basal Area
Total basal area was 791.23 m2 (31.65± 4.11 m2/ha) and was dominated by Fabaceae (11.37
m2/ha; 35.9% of total), followed by Euphorbiaceae, Phyllanthaceae, Ochnaceae, Simaroubaceae
and Burseraceae. The dominant genera by basal area were Tetraberlinia, Gilbertiodendron,
Odyendea, Dischostemma, Eurypetalum and Lophira. At species level, Tetraberlinia moreliana
was the most important, followed by Odyendyea gabonensis, Dichostemma glaucescens, Eurype-
talum tessmannii, Lophira alata and Tetraberlinia bifoliolata (Table 3). Small-diameter trees
contributed 16.5% of the total basal area.

Table 3. The 20most abundant tree species in the 25-ha Rabi plot ranked by density. Basal area and above-ground biomass (AGB) rank indicated in
parenthesis.

Species Density (trees/ha) Basal area (m2/ha) AGB (Mg/ha)

Dichostemma glaucescens 683.9 1.4 (1) 5.7 (21)

Crotonogyne gabonensis 573.1 0.2 (43) 0.4 (107)

Garcinia smeathmannii 304.3 0.4 (28) 1.9 (46)

Campylospermum congestum 213.8 0.1 (96) 0.7 (80)

Diospyros obliquifolia 191.1 0.1 (149) 0.3 (128)

Pancovia sp. nov. 175.8 0.5 (23) 2.7 (38)

Diospyros sp. nov. 158.3 0.1 (151) 0.2 (145)

Tetraberlinia moreliana 149.7 0 (306) 19.8 (2)

Gilbertiodendron ogoouense 135.8 0.7 (9) 7.0 (15)

Piptostigma multinervium 131.2 0.2 (54) 0.4 (114)

Tetraberlinia bifoliolata 123.3 0.9 (6) 9.2 (9)

Calpocalyx dinklagei 121.9 0.3 (33) 1.5 (54)

Protomegabaria stapfiana 119.7 0.5 (24) 3.1 (36)

Warneckea floribunda 109.3 0 (336) 1.4 (56)

Sorindeia gabonensis 103.8 0.2 (55) 1.1 (64)

Diogoa zenkeri 100.7 0.6 (13) 5.1 (23)

Gilbertiodendron unijugum 79.0 0.4 (29) 2.9 (37)

Diospyros hoyleana 75.5 0.2 (47) 0.9 (68)

Trichoscypha sp.8 69.9 <0.1 (327) 0.2 (158)

Amanoa strobilacea 65.5 0.9 (5) 11.1 (6)

doi:10.1371/journal.pone.0154988.t003
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Fig 5. Abundance-diameter relationships for trees within the 25-ha Rabi plot. The relationship between diameter and
abundance for all trees (A) has a linear decline in log-log coordinates of z = -2.63 (R2 = 0.96). An abundant canopy tree,
Tetraberlinia moreliana (B), which includes the largest individual tree in the plot, and is well represented in all diameter classes,
declines less sharply (z = -1.29, R2 = 0.81), and four treelet species,Coffea mayombensis (C; R2 = 0.60),Oncoba flagelliflora
(D; R2 = 0.95), Placodiscus caudatus (E; R2 = 0.82), and Rinorea gabunensis (F; R2 = 0.80), have very steep declines in
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Aboveground biomass
Total aboveground biomass for the 25-ha plot was 9235.18 Mg, averaging 369.41±82.3 Mg/ha
for all trees�1cm dbh. Fabaceae had the highest AGB (150 Mg/ha), followed by Ochnaceae
(33 Mg/ha), Phyllanthaceae (16 Mg/ha), Burseraceae (14 Mg/ha) and Euphorbiaceae (14 Mg/
ha). At genus level, Tetraberlinia and Lophira were the most important (Table 4). Lophira
alata was the most important species in terms of aboveground biomass, followed by Tetraber-
lina moreliana, Eurypetalum tessmannii and Librevillea klainei. The aboveground biomass of
small-diameter trees was 18 Mg/ha, approximately 5% of the total biomass (Table 4). AGB for
large-diameter trees was 351 Mg/ha.

Forest structure by lifeform
Among the 345 species in the Rabi plot, there were 105 treelet species, with diameters mostly
restricted to<10 cm. These accounted for 22% of the total number of individuals in the plot,
but only 2% of basal area and 0.6% of aboveground biomass respectively (Table 4). Three of
the 20 most abundant species in the plot were treelets, Crotonogyne gabonensis,

abundance with increasing diameter. One individual ofCoffea mayombensis (dbh = 14.9 cm) and three individuals of
Placodiscus caudatus (dbh = 10.1 cm, 10.2 cm, and 13.4 cm) not shown, but included in calculations. All relationships P
<0.001.

doi:10.1371/journal.pone.0154988.g005

Table 4. Comparison of the number of species, abundances, basal area and aboveground biomass (percent of total in parentheses) between
small-diameter trees (1 cm� dbh <10 cm) and large-diameter trees with (dbh�10cm) per tree life form in the Rabi plot.

� 1 cm <10 cm � 10 cm

Species

Treelets 105 (30.4%) 105 (30.4%) 14 (4.1%)

Understory 96 (27.8%) 95 (27.5%) 88 (25.5%)

Lower canopy 83 (24.1%) 79 (22.9%) 78 (22.6%)

Upper canopy 61 (17.7%) 54 (15.7%) 54 (15.7%)

Totals 345 333 (96.5%) 234 (67.8%)

Abundance

Treelets 38,474 (22.1%) 38,413 (22.1%) 61 (<0.1%)

Understory 55,605 (32.0%) 53,084 (30.6%) 2,520 (1.5%)

Lower canopy 53,331 (30.7%) 48,558 (28.0%) 4,769 (2.8%)

Upper canopy 26,311 (15.1%) 22,632 (13.0%) 3,674 (2.1%)

Totals 173,721 162,687 (93.6%) 11,024 (6.4%)

Basal Area (m2)

Treelets 15.63 (2.0%) 14.8 (1.9%) 0.83 (0.1%)

Understory 91.42 (11.7%) 44.98 (5.8%) 46.44 (5.9%)

Lower canopy 221.99 (28.4%) 46.29 (5.9%) 175.7 (22.5%)

Upper canopy 452.83 (57.9%) 23.28 (3.0%) 429.56 (55.0%)

Totals 781.87 129.35 (16.6%) 652.53 (83.5%)

Aboveground Biomass (Mg)

Treelets 55.39 (0.6%) 50.26 (0.6%) 5.13 (0.1%)

Understory 549.14 (6.0%) 171.04 (1.9%) 378.1 (4.1%)

Lower canopy 2,019.66 (22.1%) 154.02 (1.7%) 1,865.64 (20.4%)

Upper canopy 6,512.31 (71.3%) 89.71 (1.0%) 6,422.60 (70.3%)

Totals 9,136.50 465.03 (5.1%) 8,671.47 (94.9%)

doi:10.1371/journal.pone.0154988.t004
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Campylospermum congestum and Diospyros sp. nov. (Table 4). The remaining 240 species com-
prised 96 understory, 83 lower canopy and 61 upper canopy species, all of which reach more
than 10 m in height and dbh�10 cm at maturity. These species represented 78% of the total
number of trees, 98% of the total basal area and 99% of the total aboveground biomass.

Small-diameter trees comprised all 105 species of treelets, but also 95%, 91% and 86% of
understory, lower canopy and upper canopy species respectively. Treelets accounted for 23.6%
of the total individuals, 11.5% of the basal area and 10.8% of the aboveground biomass in this
diameter size class. Understory and canopy species had at least 88% of their species among
these small-diameter trees, and accounted for 78.4% of all trees, 85% of the basal area and 89%
of the aboveground biomass of small-diameter trees. Among trees with dbh�10 cm, there
were only 14 species of treelets, representing a tiny fraction of their total individuals, total basal
area and of the aboveground biomass in this diameter class. Conversely upper canopy species
with 33% of the individual accounted for 66% of the basal area and 74% of the aboveground
biomass in this diameter class (Table 4).

Discussion
Although there have been some concerted effort in the recent past towards long-term moni-
toring of tropical African forests (e.g., the African Tropical Rainforest Observation Network;
http://www.afritron.org), studies that include small-diameter trees are still uncommon, espe-
cially in the Congo Basin. The 25-ha Rabi plot is only the third large continuous patch of for-
est in Africa within which all trees with dbh �1cm are censused. Our results show clear
differences in species diversity, abundances, basal area and aboveground biomass between
small- and large-diameter trees. As in Korup and Ituri forests [13–15], lowering the sampling
diameter to 1 cm in the Rabi plot increased the interpretation of the total diversity and the
density of species.

Small-diameter trees were more diverse than large-diameter trees in the Rabi plot based on
Fisher’s α. At least 30% of the species in the plot were treelets that achieve reproductive matu-
rity in the forest understory and never attain 10 cm dbh. In addition to these treelets, small-
diameter trees comprised saplings of all other understory and canopy tree species that do
regenerate.

Tree density in the Rabi plot was comparable to other tropical African and temperate forests
(Table 5). The African plots have generally higher proportions (92% to 95%) of small-diameter
trees compared to other tropical plots, but the plot at Sinharaja, Sri Lanka was comparable.
Temperate plots or dry tropical plots have much lower proportions (30% to 70%) of small-
diameter trees, perhaps because of the combination of climatic limitations and repeated low
intensity disturbance from fire or herbivory. The Rabi plot was notable in the steepness of the
decline in the abundance-diameter relationship (Fig 5, Table 5). When only large-diameter
trees are considered, the Rabi forest is dominated by Fabaceae, Olacaceae and Euphorbiaceae,
which is in agreement with previous forest inventories in the area that used smaller plots (0.1
ha) with a 5 cm minimum diameter [21,23]. As in the Korup plot in Cameroon, Dichostemma
glaucescens was the most abundant canopy species [14]. The abundance of small-diameter
trees in the Rabi forest is not unique. Indeed, the high density of small trees has been reported
in the Congo Basin [13,14] and in other tropical forests worldwide [16,30–32], and stands in
contrast to densities in temperate plots (e.g., [33,34]). For example, within the Rabi plot, small-
diameter trees account for 93.6% of all trees while in the 50-ha plot in Korup, they make up
92.4%. Small-diameter trees in Rabi were predominantly composed of saplings of understory
and canopy tree species (76.4% of all trees in this size class). Saplings are more vulnerable to
environmental fluctuations as well as damaging agents such as browsing herbivores and being
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crushed by windfalls. Long-term monitoring of this life stage is crucial to understanding the
demography of canopy species as well as possible changes to forest composition driven by
global change [12].

That forest basal area and biomass is disproportionately carried in the large-diameter trees
could make the forest at Rabi less resilient to short-term environmental change or disturbance.
If the large-diameter individuals were killed, either through disturbance, disease, or human
agency, the higher Z, relative to other forests (Table 5) suggests that it could take a relatively
longer time for smaller-diameter trees to advance to the overstory. However, the diversity and
abundance of the small-diameter trees suggests that the forest could have the ability to respond
to disturbances in general. The ability of the forest to recover from disturbances affecting
small-diameter trees through the regeneration of small-diameter trees suggests a high level of
structural resilience—the perpetration of the existing diameter distribution within the forest.
Small-diameter trees. Aboveground biomass in Rabi averaged 351 Mg/ha for trees� 1cm
which is lower than the estimated African mean of 395.7 Mg [32]. This lower value is probably
due to the prevalence of small-diameter trees in this forest, and the limited selective logging of
large-diameter trees that occurred two decades previously (site examination suggests that only
the 11 large trees were removed). Small-diameter trees in the Rabi plot stored 5.0% of the total
biomass while in the Korup plot, they accounted for 5.7% of the total biomass. This result is in
agreement with the assumption that in mature tropical forests, the biomass of small-diameter
trees is approximately 5% of the total aboveground biomass [25,33,34]. Our study also con-
firms that large-diameter trees store the bulk of biomass in tropical forests. In Rabi, 95% of the
biomass is stored in trees with dbh� 10 cm. Within this diameter class, upper canopy trees,
comprised only 2% of the total individual trees in the plot, but stored 70% of the total biomass.
Therefore, the contribution of small-diameter trees to biomass may be approximated based on
forest type averages and forest AGB can be estimated from the few large trees [4,33], thereby
avoiding the labor intensive work of censusing the small-diameter trees. However the demog-
raphy of small-diameter trees is important to predicting the long-term change in above-ground
biomass of the forest. For example, in subtropical evergreen broad leaved forests of China,
Lin et al. [17] showed that small-diameter trees contributed 10.4% of the total above ground

Table 5. Comparison of the Rabi, Gabon plot to other African CTFS plots and to tropical plots in South America and Asia, as well as two temperate
plots in the USA. African CTFS plots have a higher proportion of small-diameter trees than other tropical plots, and many more than temperate plots. Z rep-
resents the negative exponent of the abundance-diameter relationship (see Methods).

CTFS-ForestGEO
Site

Country Area
(ha)

Census
year

Trees dbh� 1cm
(Ind./ha)

Trees dbh<10 cm
(Ind./ha)

Trees dbh� 10 cm
(Ind./ha)

Trees dbh<10
cm (%)

Z

Rabi Gabon 25 2013 7,026.4 6,579.7 446.8 93.6 2.6

Ituri-Lenda DR
Congo

20 1995 6,843.6 6,486.0 357.6 94.8 2.1

Ituri-Edoro DR
Congo

20 1995 8,112.1 7,673.5 438.6 94.6 2.1

Sinharaja Sri Lanka 25 1995 8,215.0 7,537.5 677.5 91.8 2.1

Korup Cameroon 50 1999 6,580.6 6,070.7 509.9 92.3 2.0

Lambir Malaysia 52 1997 6,915.5 6,277.5 638.0 90.8 2.0

BCI Panama 50 2000 4,276.1 3,852.0 424.1 90.1 1.9

Pasoh Malaysia 50 2000 6,118.9 5,553.3 565.6 90.8 1.9

Yasuni Ecuador 25 1997 6,094.2 5,392.3 701.9 88.5 1.9

Mudumalai India 50 2000 360.5 109.0 251.6 30.2 1.2

Yosemite USA 25.6 2010 1,346.1 818.1 528.0 60.8 2.0

Wind River USA 25.6 2011 1,209.9 884.7 325.3 73.1 1.8

doi:10.1371/journal.pone.0154988.t005
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biomass, more than trees�50 cm dbh. Therefore the dynamics of the small-diameter trees in
this forest could be relatively more important to overall ecosystem function—an opposite con-
clusion from many studies emphasizing large-diameter trees (e.g., [4,30,34]).

As the Congo Basin forest is considered to be the second most important forested region
on earth after the Amazon, it is crucial that more comprehensive long-term studies including
small diameter trees be implemented throughout its range.

Supporting Information
S1 Appendix. Abundance, basal area, and aboveground biomass (AGB) of woody species
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