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Abstract
Combining path consistency (PC) algorithms with conditional mutual information (CMI) are

widely used in reconstruction of gene regulatory networks. CMI has many advantages over

Pearson correlation coefficient in measuring non-linear dependence to infer gene regulatory

networks. It can also discriminate the direct regulations from indirect ones. However, it is

still a challenge to select the conditional genes in an optimal way, which affects the perfor-

mance and computation complexity of the PC algorithm. In this study, we develop a novel

conditional mutual information-based algorithm, namely RPNI (Regulation Pattern based

Network Inference), to infer gene regulatory networks. For conditional gene selection, we

define the co-regulation pattern, indirect-regulation pattern andmixture-regulation pattern
as three candidate patterns to guide the selection of candidate genes. To demonstrate the

potential of our algorithm, we apply it to gene expression data from DREAM challenge.

Experimental results show that RPNI outperforms existing conditional mutual information-

based methods in both accuracy and time complexity for different sizes of gene samples.

Furthermore, the robustness of our algorithm is demonstrated by noisy interference analysis

using different types of noise.

Introduction
Inferring gene regulatory networks is a key step in understanding biological processes [1–5].
Microarray techniques generate a large amount of gene expression data, providing a workable
data foundation [6]. Many computational methods were developed to infer gene regulatory
networks using these high-throughput data [2, 4]. These methods can be divided into two cate-
gories: the model-based and the machine learning-based approaches [3].

Model-methods are based mainly on singular value decomposition [7], multiple linear regres-
sion [8] and linear programming [9]. In machine learning methods, Bayesian networks, Pearson
correlation coefficient, partial correlation coefficients, information theory, and conditional
mutual information are applied to measure the regulation strength between genes. Bayesian net-
works are based on maximizing the scoring function, for the moment, dynamic programming is
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the best way to achieve a global optimal structure with 35 nodes [10]. Although Cassio et al. [11]
proposed a structure constraint method based on Bayesian information criterion (BIC) and
Akaike information criterion (AIC), reducing the size limitation to 70 nodes, it remains an open
problem due to its local optimum and high computing cost [3, 12, 13]. Pearson correlation coef-
ficient and information theory can reconstruct large-scale networks with limited samples in
acceptable time [14, 15]. Compared with Pearson correlation coefficient, mutual information
(MI) provides a reasonable gauge to measure non-linear dependence (which commonly exists in
biology [16]). Therefore, mutual information is widely applied in inferring gene networks [3,
16–20].

In recent years, conditional mutual information (CMI) has taken the place of MI because
MI cannot distinguish the direct interactions from the indirect ones [17–19, 21]. Path consis-
tency (PC) algorithms are an effective strategy to infer a causal network by conditional relation
[14, 18, 19, 22]. Combining PC algorithm with CMI and corrected-CMI, PCA-CMI (path con-
sistency algorithm based on conditional mutual information) [18] and CMI2NI (CMI2-based
network inference) [17] are proposed to “thin” the edges with independent correlation recur-
sively from zero to high order correlation. Theoretical analysis shows that CMI underestimates
the regulatory strength in some cases [23]. CMI2 corrects the underestimation by utilizing
interventional probability and KL-divergence (Kullback—Leibler divergence), however, previ-
ous methods force to select conditional genes which has exponential complexity w.r.t the data
size, so it is still a challenge to select the conditional genes in an optimal way [18], which may
affect the performance and sharply reduce the search space [22].

In this work, we aim to define three candidate patterns based on biological processes [24,
25] to guide the selection of candidate genes. A novel algorithm, called RPNI (Regulation Pat-
tern based Network Inference), is developed to infer gene regulatory networks by considering
the candidate patterns and PC algorithm based on CMI2 to delete the edges with indepen-
dent correlation recursively. We also make statistical analysis using different scales of yeast
networks. Z-tests show that our defined candidate patterns significantly exist in gene regula-
tory networks, consistent with the discovered regulation motifs [23, 24]. Our method also
greatly reduces the computational complexity. Under the hypothesis of Gaussian distribution
of gene expression data, CMI2 can be calculated in a simple form using a covariance matrix
of related gene expression data [18]. RPNI follows CMI2’s strength to measure the regulatory
strength. Moreover, it can accurately predict regulatory networks using limited samples. We
apply our algorithm to DREAM data [2, 26, 27], and experimental results show that RPNI
outperforms PCA-CMI and CMI2NI in both accuracy and time complexity. Furthermore,
the robustness of our algorithm is demonstrated by noisy interference analysis using different
types of noise.

Methods
This section includes an introduction to some definitions of information theory, a path consis-
tency algorithm, our defined candidate patterns and the RPNI algorithm for inferring gene reg-
ulatory networks.

Information theory
With the advantages of measuring non-linear dependence association between two variables
and relatively high efficiency, information theory is increasingly used to measure the regulatory
strength between genes. The definitions of mutual information (MI) and conditional mutual
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information (CMI) are as follows:

MIðX;YÞ ¼ ∬pðx; yÞlog pðx; yÞ
pðxÞpðyÞdxdy ð1Þ

CMIðX;Y jZÞ ¼ ∭pðx; y; zÞlog pðx; yjzÞ
pðxjzÞpðyjzÞ ð2Þ

where p(x,y) denotes the joint distribution of X and Y. p(x) and p(y) represent the marginal dis-
tribution of x and y, respectively. Since it is widely accepted that gene expression data follow
Gaussian distribution [18, 19], formulation of entropy subject to n-dim Gaussian distribution
can be easily calculated by a simple equation, where |C| is the determinant of covariance matrix
of variables x1,x2,. . .,xn [28].

HðXÞ ¼ logð2peÞn2jCj�1
2 ð3Þ

After mathematical transformation, we can obtain the following equation, guiding us to
compute MI and CMI2.

MIðX;YÞ ¼ 1

2
log

jCðXÞj � jCðXÞj
jCðX;YÞj ð4Þ

CMI2 proposed to integrate Kullback—Leibler divergence [28] and interventional probabil-
ity in order to correct the underestimation of CMI [23],

CMI2ðX;Y jZÞ ¼
X
x;y;z

pðx; y; zÞln pðx; y; zÞ
pðx; zÞPx pðyjx; zÞpðxÞ þ pðy; zÞPy pðxjz; yÞpðyÞ

ð5Þ

With the same hypothesis of Gaussian distribution, CMI2 can be easily calculated. The
details of computational process and mathematical proof can be found in Zhang’s work [18].

Path consistency algorithms
Path consistency (PC) algorithms are widely used in inferring gene regulatory networks [14,
18, 19]. By removing the most likely uncorrelated edges repeatedly from low to high order
dependence correlation until it can’t continue, PC-algorithm can construct a high-confidence
undirected network [22].

Candidate Pattern
We define the co-regulation pattern, indirect-regulation pattern andmix-regulation pattern to
facilitate the selection of candidate genes in inferring gene regulatory networks.

Single-input co-regulation pattern (also denoted as the single input motif) is defined as a
pattern in which a set of target genes are regulated by a single gene (Fig 1a), in other words,
two or more genes share the same upstream gene in this pattern and guide the deleting of
false positive (FP) edges [18]. Single-input co-regulation pattern occurs infrequently in ran-
domized networks (p<0.01) and is potentially useful for coordinating a discrete unit of bio-
logical function. For example, several genes in the leucine biosynthetic pathway are regulated
by the Leu3 transcriptional regulator [23]. In Fig 1a, gene X and gene Y have a common
upstream gene A (i.e. gene A regulates gene X and gene Y at the same time). This causes gene
X and Y to have higher mutual information (MI), which leads to false positives. Choosing A
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as the conditional gene can significantly reduce the MI between X and Y and guide the delet-
ing of false positive (FP) edges [19]. As an extension of co-regulation, we take into account
the situation of more than one regulator, whose structure is denoted as themulti-input co-
regulation pattern [24]. Experiment indicates that the sets of genes regulated by different
transcription factors in E. coli share much more common genes than expected at random
[25] for both cases. In this scenario, their co-regulators are selected as conditional genes.
Both single-input co-regulation pattern and multi-input co-regulation pattern are collectively
called co-regulation pattern.

Second, single-chain and multi-chain indirect-regulation pattern is defined as a pattern in
which a gene is both directly or indirectly regulated by two or more genes. As is shown in Fig
1b, target gene Y is both directly and indirectly regulated by gene X and gene A. This structure
is also denoted as the regulator chain motif. It consists of a chain in which one regulator binds
the promoter of a second regulator and the second binds the promoter of a third regulator, and
so forth. This network motif is observed frequently in the location data for yeast regulators
[25]. As mentioned above, MI cannot distinguish the direct interactions or correlations from
indirect ones, which leads to FP [19]. Here, choosing gene A as the candidate gene can guide
the deleting of FP edges. Both single-chain and multi-chain indirect-regulation pattern are col-
lectively called indirect-regulation pattern.

Third, in the mix-regulation pattern (Fig 1c), gene X and gene Y are affected by both co-regu-
lation and indirect-regulation. It is evident that choosing genes in {A,B,. . .,K} and {A',B',. . .,K'}
as the conditional genes can remove the FP edges between gene X and gene Y. The case contain-
ing co-regulation pattern and indirect-regulation pattern simultaneously is called mix-regula-
tion pattern.

RPNI
Given an expression dataset with n genes and m samples, we develop a novel algorithm, called
RPIN, to infer gene regulatory network. Firstly, we focus on the identification of the three

Fig 1. Diagram of candidate patterns. (a) Co-regulation pattern consists of single-input and multi-input co-regulation. (b) Indirect-regulation pattern
consists of single-chain and multi-chain indirect-regulation. (c)Mix-regulation pattern includes both co-regulation and indirect-regulation.

doi:10.1371/journal.pone.0154953.g001
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patterns. Under the hypothesis of Gaussian distribution, for a perturbed gene, we use z-tests to
select differentially expressed genes as its upstream genes. As shown in Fig 1a, in the co-regula-
tion pattern, gene A is the co-upstream gene of gene X and Y, in the indirect-regulation pattern,
gene A is the upstream gene of gene X and downstream gene of gene Y. We thus select gene A
is candidate gene of gene X and gene Y. Fig 2 illustrates the flow chart of our RPNI algorithm,
using a network consisting of five genes as an example. First, we generate a complete undi-
rected graph with five nodes. Second, we choose independent edges by MI between any two
nodes. If MI is smaller than θ, the corresponding edge will be deleted. Here, I(X,Z) and I(W,V)
are equal to zero, so the edges E(X,Z) and E(W,V) are deleted and we obtain the zero—order
network. The first-order network is then constructed by deleting E(X,V) because I(X,V|Y) = 0
and Y,X,V satisfy the co-regulation pattern. Based on n-th order network, we construct the
n+1-th order network by deleting the conditional uncorrelated edges with the evidence of
I(A,B|choosing any n+1 combination in pattern (A,B)). The algorithm terminates after con-
struction of the second-order network because there are not enough regulation pattern genes
to compute the third-order conditional mutual information. The detail procedure of this algo-
rithm is described in Box 1.

Results

Datasets and evaluation metrics
In order to compare our method with CMI and CMI2, we apply these methods to infer gene
regulatory networks using the same dataset from DREAM3 challenge and acute myeloid leuke-
mia (AML) based on the Level-3 processed RNA sequencing data of AML patient from TCGA
(http://cancergenome.nih.gov/) [29, 30].

The performance of the methods is evaluated using true positive rate (TPR), false positive
rate (FPR), positive predictive value (PPV), accuracy (ACC) and Matthews coefficient constant

Fig 2. Diagram of RPNI. First, we generate a complete undirected graph. Second, we choose independent
edges by MI between any two nodes. If MI is smaller than θ, the corresponding edge will be deleted. Here, I
(X,Z) and I(W,V) are equal to zero, so the edges E(X,Z) and E(W,V) are deleted and we obtain the zero—order
network. The first-order network is then constructed by deleting E(X,V) because I(X,V|Y) = 0 and Y,X,V satisfy
the co-regulation pattern. Based on n-order network, we construct the n+1-order network by deleting the
conditional uncorrelated edges with the evidence of I(A,B|choosing any n+1 combination in pattern (A,B)).
The algorithm terminates after construction of the second-order network because there are no enough
regulation pattern genes to compute the third-order conditional mutual information.

doi:10.1371/journal.pone.0154953.g002
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(MCC) [18]. Their definitions are as follows:

TPR ¼ TP
ðTP þ FNÞ ð6Þ

FPR ¼ FP
ðFP þ TNÞ ð7Þ

PPV ¼ TP
ðTP þ FPÞ ð8Þ

ACC ¼ ðTP þ TNÞ
ðTP þ FP þ TN þ FNÞ ð9Þ

MCC ¼ ðTP � TN � FP � FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞp ð10Þ

where TP,FP,TN and FN denote the number of true positives, false positives, true negatives and
false negatives, respectively.

We also plot the receiver operating characteristic (ROC) curves and calculate the area under
curve (AUC) [18, 31] which is the area under the ROC. Finally, we compare the running time
between our method and CMI2 in the same parameter and environment.

Performance on simulation data
We use the gene expression data from DREAM3 challenge, which aims at reconstruction of
gene networks from steady state data. There are three sub-challenges corresponding to three

Box 1

Algorithm RPNI
Input:
Gene expression matrix A,
Dependence threshold θ.
Output:
Inferred gene regulatory network G,
Regulatory strength of each edge,
Order of inferred network L.
Step-1. Initialization. Generate a complete connected network G0. Set
L: = −1.
Step-2. Choose candidate gene set. L: = L+1; For each existing edge
(i.e. G0(i,j)6¼0), select adjacent gene connected with both gene i and
j. If their common neighbors form a pattern, add it to candidate gene
set. Compute the number of genes (T) in the candidate gene set.
Step-3. Set G: = G0. If T<L, stop the algorithm; else, select L genes from
these T genes and add each combination into the set K ¼ fk1; k2; . . . ; kng; n ¼ CL

T,
compute these CMI2(i, j|k) and choose the maximal one denoted as
CMI2max(i, j|k). If CMI2max(i, j|k)<θ, set G(i,j) = 0.
Step-4. If G = G0, stop the algorithm; else, set G0 = G and return to
Step-2.
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gene networks with 10 and 50 genes. To validate the performance of our method, we apply it to
different sizes of networks and compare the performance between different methods. We
choose the null-mutants data which contain the steady state levels for the wild-type and the
null-mutant strains for each gene. We test RPNI on Yeast1 gene expression data with 10 genes
and 11 samples, and choose 0.03 as the threshold to delete edges. The detailed results are
shown in Table 1, and the ROC curves are plotted in Fig 3, which shows that RPNI is superior
to both PCA-CMI and CMI2NI.

Table 1. Comparison of different methods using networks with sizes 10, 50.

Method TP FP TN FN TPR FPR PPV ACC MCC AUC

Size 10

PCA-CMI 9 1 34 1 0.9 0.028 0.9 0.956 0.8714 0.9343

CMI2NI 9 1 34 1 0.9 0.028 0.9 0.956 0.8714 0.9757

RPNI 9 1 34 1 0.9 0.028 0.9 0.956 0.8714 0.9929

Size 50

PCA-CMI 29 34 1114 48 0.377 0.029 0.46 0.933 0.3813

CMI2NI 32 31 1117 45 0.416 0.027 0.508 0.938 0.427

RPNI 42 43 1105 35 0.545 0.037 0.494 0.936 0.4852

doi:10.1371/journal.pone.0154953.t001

Fig 3. ROC curves generated using several methods including RPNI, CMI2NI, PCA-CMI on DREAM3
challenge Yeast1 dataset in size 10. The blue solid line is the ROC curve of RPNI. The AUC value reaches
0.9929.

doi:10.1371/journal.pone.0154953.g003
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Second, we test RPNI on Yeast1 gene expression data with 50 genes and 51samples. We
choose the same threshold of 0.05 as in Zhang’s work [17] to delete edges. The detailed results
are listed in Table 1.

The time complexity of our algorithm for a graph G is bounded by the largest degree in G.
Let k be the maximal degree of any vertex and let n be the number of vertices. Then, in the

worst case, the T(n) of CMI2 required by the algorithm is bounded by n2ðn�1Þk�1

ðk�1Þ! . The closer to 0

the threshold, the closer to n2ðn�1Þk�1

ðk�1Þ! the calculation counts [22]. So we cannot compare the com-

plete ROC curves because when the threshold is too small, the time complexity will reach

O 502ð49Þ47
ð47Þ! � t

� �
. Assuming one second can accomplish 100000 counts of CMI2 (actually it is

1000 times per second on Intel i5-3470 3.20GHz). The computation time of this algorithm is
8.4E10 years. Based on the above discussion, we conclude that it is meaningless when threshold
is too small, leading to deleting few edges. Fig 4 shows the ROC curve with the parameter rang-
ing from 0.001 to infinity. ROC curve shows our method outperforms other methods [19] in
accuracy.

Case study: cancer regulatory networks
As a case study, we construct a gene regulatory network for cancer which can provide a global
view of disease-causing gene regulations [32]. We thus use RPNI to build a gene regulatory net-
work for acute myeloid leukemia (AML) based on the Level-3 processed RNA sequencing data

Fig 4. ROC curves of several methods on DREAM3 challenge Yeast1 dataset in size 50.

doi:10.1371/journal.pone.0154953.g004
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of AML patient from TCGA (http://cancergenome.nih.gov/) [29, 30]. The RPKM value is used
as the gene expression level.

We constructed an AML-specific regulatory network with RPNI considering the 81 cancer
genes involved in a network built by RACER [33]. Our reconstructed network consists of 16
regulators, 65 target genes, and 151 regulatory links, showed in Fig 5, among which 33 regula-
tory links have also been inferred by RACER [32].

In order to show the superiority of RPNI, the same gene expression data are used as input for
CMI2NI to infer a regulatory network. The comparative results show that our algorithm gener-
ates 16 differential regulation links compared with CMI2NI and that the network generated
using CMI2NI includes 14 differential regulation relationships. In order to verify the effective-
ness of these differential regulating relationships, we hereby verify howmany genes in these two
target genes sets are involved in the pathways related to the AML. By analyzing the two differen-
tial target gene sets using cancer gene annotation system CaGe (http://mgrc.kribb.re.kr/cage/),
we noticed that 8 in 9 target genes with RPNI and 4 in 7 target genes with CMI2NI are related
to the AML. Apparently, the target gene set inferred by RPNI is more significantly enriched for
AML cancer pathways than that inferred by CMI2NI. Our method has a significantly better

Fig 5. AML-specific gene regulatory network reconstructed by CMI2NI and RPNI. The common target genes are
colored in pink. The differential target genes inferred by RPNI and CMI2NI are colored in blue and yellow, respectively.

doi:10.1371/journal.pone.0154953.g005
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p-value (p-value = 2.1742e-16) than CMI2NI’s p-value (p-value = 1.9473e-07), statistical test
using the method of fisher exact test (the detailed results are listed in Table 2).

Robustness study
We use different types of noise to demonstrate the robustness of our algorithm. First, we use
measurement errors, which follows the Gaussian distribution. Considering that different genes
follow different Gaussian distribution, we add a noise of Gaussian distribution to the k-th gene

whose mean is 0 and variance is sðkÞ
2
(σ(k) is the k-th gene’s variance). For each parameter, we

repeat this procedure ten times and compute the mean of FPR and the median of TPR as the
label of x and y, respectively. For showing the result more comprehensive, we add the box and
whisker chart for each point to indicate the TPR range for each FPR. Fig 6a shows that our
approach outperforms CMI2NI in robustness. Moreover, we find that our method has smaller
variance in TPR, demonstrating its good robustness in noise. Second, outlier noise is also con-
sidered here, which often leads to recording errors or instrument errors. We replace one-tenth
original expression data with noise data following Gaussian distribution with the mean and
variance of all expression data. As analyzed above, we plot the box and whisker chart in the
ROC curve in Fig 6b. Simulation result shows that the performance of both methods are signif-
icantly decreased, nevertheless, our result is still ahead of CMI2NI in this case. Finally, we con-
duct a perturbation analysis. We choose one-tenth expression data and perturb their positions
randomly. This procedure is also repeated 10 times. The ROC curve reveals our method is
superior to CMI2NI using perturbation data.

Discussion
Information theory-based methods show a strong ability to measure non-linear dependence
that exists commonly in biology. PC algorithm is an effective strategy to “thin” the inferred
graph by removing edges from zero order to higher order conditional independent relations.
Due to these advantages, PCA-CMI [18] and CMI2NI [17], combining PC algorithm with
CMI and CMI2, show a good performance. However, both CMI and CMI2 have not yet solved

Table 2. Enrichment analysis results using RPNI algorithm.

No. Base Pathwaysa) Pathway (Database)b) Genes in pathway Genes overlapped p-valuec) q-valued)

1 ALL ACUTE MYELOID LEUKEMIA (KEGG) 60 8 2.04E-16 1.70E-13

2 ALL CHRONIC MYELOID LEUKEMIA (KEGG) 73 7 4.31E-13 1.79E-10

3 ALL PATHWAYS IN CANCER (KEGG) 328 8 1.73E-10 4.80E-08

4 ALL ERBB SIGNALING PATHWAY (KEGG) 87 6 2.95E-10 6.14E-08

5 ALL NON SMALL CELL LUNG CANCER (KEGG) 54 5 3.24E-09 5.40E-07

6 ALL GLIOMA (KEGG) 65 5 8.35E-09 1.16E-06

7 ALL PANCREATIC CANCER (KEGG) 70 5 1.22E-08 1.36E-06

8 ALL MELANOMA (KEGG) 71 5 1.31E-08 1.36E-06

9 ALL PROSTATE CANCER (KEGG) 89 5 4.08E-08 3.77E-06

10 ALL INSULIN SIGNALING PATHWAY (KEGG) 137 5 3.46E-07 2.60E-05

a) Pathway set used for the test. CGC: 146 Cancer Gene Censers gene-based pathways, CGI: 179 Cancer Gene
b) Index gene-based pathways, and ALL: All 833 pathways from BioCarta/KEGG/Reactome databases.
c) p-value from Fisher's exact test for the overlapping gene.
d) q-value for false discovery rate control.

doi:10.1371/journal.pone.0154953.t002
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the challenge of how to select the conditional genes in an optimal way. In this paper, we pro-
pose three candidate patterns, namely co-regulation pattern, indirect-regulation pattern and
mix-regulation pattern, to guide the choice of candidate genes. Choosing reasonable condi-
tional genes may improve the performance of PC algorithm. Actually, not limiting candidate
genes will lead to deleting some true positive edges for random noise, which is a key barrier in
improving the accuracy of regulatory network inference. On the basis of CMI2, we propose a
novel network inference algorithm, namely RPNI, to infer gene regulatory networks. Selecting
candidate gene set sharply reduces the search space in PC algorithm simultaneously. Experi-
mental results show that RPNI outperforms the state-of-art approaches in both accuracy and
time complexity.

Despite the advantages of RPNI, there exist several promising directions to further improve
its performance. First, RPNI cannot infer the direction of edges in the network. Combining
Bayesian network model with RPNI may overcome this weakness. Second, choosing a biologi-
cal significance pattern will improve the precision of inferred regulatory networks.

Supporting Information
S1 File. The sample data set used in the paper.
(TSV)

S2 File. The benchmark for the sample data set.
(TXT)

Fig 6. ROC curves of twomethods of CMI2NI and RPNI using different types of noise. (A) ROC curves of two methods with noise. (B) ROC curves of
two methods with outliers. (C) ROC curves of two methods with perturbation.

doi:10.1371/journal.pone.0154953.g006
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