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Abstract
Molecular analysis of patient tissue samples is essential to characterize the in vivo variabil-

ity in human cancers which are not accessible in cell-lines or animal models. This applies

particularly to studies of tumor metabolism. The challenge is, however, the complex mix-

ture of various tissue types within each sample, such as benign epithelium, stroma and

cancer tissue, which can introduce systematic biases when cancers are compared to nor-

mal samples. In this study we apply a simple strategy to remove such biases using sample

selections where the average content of stroma tissue is balanced between the sample

groups. The strategy is applied to a prostate cancer patient cohort where data from MR

spectroscopy and gene expression have been collected from and integrated on the exact

same tissue samples. We reveal in vivo changes in cancer-relevant metabolic pathways

which are otherwise hidden in the data due to tissue confounding. In particular, lowered

levels of putrescine are connected to increased expression of SRM, reduced levels of cit-

rate are attributed to upregulation of genes promoting fatty acid synthesis, and increased

succinate levels coincide with reduced expression of SUCLA2 and SDHD. In addition, the

strategy also highlights important metabolic differences between the stroma, epithelium

and prostate cancer. These results show that important in vivometabolic features of cancer

can be revealed from patient data only if the heterogeneous tissue composition is properly

accounted for in the analysis.

Introduction
Cancer is a heterogeneous disease where the understanding of underlying molecular mecha-
nisms characteristic for each individual type could be important to provide efficient personal-
ized and targeted therapy or choice of treatment. Human tissue samples generate a molecular
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snapshot of tumor states which is essential for characterization of in vivo cancer heterogeneity
that is lost in animal models and cell-lines [1]. This applies to studies of tumor metabolism in
particular [2]. A common but complicating factor when analyzing human tissue samples is
the heterogeneous mixture of various cells and tissue types which can confound results from
molecular analysis. This risk of confounding applies not only to prostate cancer (PCa) tissue,
but to most cancers tissue types.

A simplistic model divides the human prostate tissue into three different components;
benign epithelium, stroma and cancer tissue. Based on this model, a differential molecular
analysis between cancer and normal samples should ideally emphasize differences between the
benign epithelium and the PCa tissue. However, in such differential studies, normal samples
are composed of two tissue types (benign epithelium and stroma) while PCa samples consist of
three tissue types (benign epithelium, stroma and PCa), all in various proportions. This intro-
duces a systematic sample bias of increased stroma content in the normal samples which con-
founds the molecular differences between epithelium and cancer. This problem is generally
acknowledged [3,4]. However, thorough assessment of the composition of these three tissue
types is not routinely accounted for during sample harvesting, preparation and analysis of PCa
tissue samples. Additionally, the tumor environment introduces changes to the surrounding
stroma tissue, termed stromogenic cancer [5,6], which represent a fourth tissue component in
prostate cancer samples, but was not considered in this study.

Previously presented strategies to handle sample tissue heterogeneity have generally used
computational models to adjust each sample for the influence of various tissue types in differ-
ential analysis [7,8]. Such computational strategies can either require prior information on tis-
sue composition [9–11], pre-defined gene signatures [12,13], or be purely data driven [14,15].
Computational models usually handle tissue heterogeneity by making adjustment to the origi-
nal expression values prior to differential analysis. This increase the risk of introducing a
model bias, especially when the signal from each tissue component is not homogeneous. This
is the case for tissue samples from many cancers, including PCa [16–19].

In this study we apply an alternative and simpler approach to account for the confounding
effect of stroma when comparing PCa samples with normal sample histology for differential
analysis. The strategy is to construct datasets of cancer and normal samples where the average
content of stroma is balanced between the two datasets. The intention is to attenuate the differ-
ential signal due to various amounts of stroma in the analysis, and emphasize the true molecu-
lar differences between cancer and normal tissue. Unlike most computational methods used
for tissue heterogeneity adjustments, the strategy does not perform corrections to the original
molecular expression values. However, pathological characterization of tissue composition
(benign epithelium, stroma and PCa) for all samples is required.

In this study, fresh frozen prostate tissue slices were collected after radical prostatectomy
and each tissue core sample was histopathologically evaluated for tissue composition prior to
analysis [20]. The tissue was then analyzed by HR-MAS (high resolution magic angle spinning)
MRS (magnetic resonance spectroscopy) allowing 23 quantified metabolites, followed by gene
expression measurements by microarray. HR-MAS is a non-destructive method, which permits
gene expression analysis to be performed on the exact same tissue sample [21]. This integration
of gene and metabolite data offers a unique opportunity to investigate central molecular path-
ways in PCa.

This study illustrates that variations in stromal tissue composition can be a systematic con-
founding factor in molecular analysis when PCa and normal tissue samples are compared.
This bias can be removed by balancing the stromal composition between the sample sets. Only
when such tissue biases are accounted for, integrated differential changes in genes and metabo-
lites in central metabolic pathways can be simultaneously revealed.
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Methods

Sample collection, microarray and HR-MAS analysis
Samples were obtained using a standardized harvesting procedure previously described by Ber-
tilsson et al. [20]. This procedure includes cutting and handling of frozen tissue slices removed
from the prostate gland during prostatectomy. Tissue sample cores were carefully selected
from the slices based on clinical histopathology. Additionally, histopathological assessment of
the amount of cancer, stroma and benign epithelium was carried out on each sample prior to
the HR-MAS and microarray analyses (S1 File). Microarray and HR-MAS protocols and analy-
sis are thoroughly described previously in Bertilsson et al. and Giskeødegård et al., respectively
[21,22]. The complete dataset (95 PCa samples and 34 normal samples) contained microarray
expression measurements for 16,381 genes, and HRMAS metabolite concentrations for 23
different metabolites measured on the exact same tissue samples. The use of human tissue
material was approved by the Regional Committee for Medical and Health Research Ethics
approval no 4-2007-1890. Consent forms were obtained from all patients. Other ethical aspects
regarding the specific samples used in this study have been described in previous publications
[20–22]. The microarray gene experiment is published in Array Express with accession
E-MTAB-1041. Metabolite concentrations measured on each samples is given in S2 File.

Controlling the influence of stroma tissue by sorting the original
complete data into, balanced, unbalanced and unstratified datasets
The balanced, unbalanced and unstratified datasets were created by the following procedure:
Cancer and normal samples were sorted independently according to their histopathologically
determined content of stroma. The balanced dataset was created by splitting the sorted cancer
and normal samples in two halves, and then selecting the 47 PCa samples with the highest
stroma content (top half) and the 17 normal samples with the lowest stroma content (bottom
half) from the sorted sample lists. This procedure minimizes the difference in average stroma
content between PCa and normal samples for the balanced dataset (Fig 1A). Likewise, the
unbalanced dataset was created by selecting the 48 PCa samples with the lowest stroma content
and the 17 normal samples with the highest stroma content. In the unbalanced dataset, the dif-
ference in average stroma content between the cancer and normal samples is maximized (Fig
1A). The separation of samples into balanced and unbalanced datasets is given in S1 File. To
create an unstratified dataset with the same statistical power as the balanced and unbalanced
datasets, 50 random selections of 47 cancer and 17 normal samples were drawn from the com-
plete dataset.

Differentially expressed genes and metabolites
Raw expression values were filtered, log2 transformed and quantile normalized using the
limma R package [23] as described in Bertilsson et al. [21]. All operations were performed
prior to sample separations into balanced, unbalanced and unstratified datasets. Differentially
expressed genes were identified for the complete, unstratified, balanced and unbalanced data-
sets as described in Bertilsson et al. [21]. P-values were corrected for multiple testing using
Benjamini-Hochberg false discovery rate [24]. For the unstratified dataset, the average p-value
over the 50 datasets was used. P-values for differentially expressed metabolites were calculated
by the t.test function in R. The t.test function initially gives an assessment of whether the two
sample groups display equal variance, which is used to decide the optimal significance test.
Using the initial variance equality assessment, we used the t.test function with equal variance
if the p-value of the initial test was below 0.05, and the test for unequal variance otherwise.
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Fig 1. Average tissue composition in balanced and unbalanced datasets produce different sets of
differentially expressed genes. (A) By canceling out the same types of tissues in PCa and normal samples,
the balanced dataset compares in average 51% cancer to 43% benign epithelium and 8% stroma. Likewise,
the unbalanced dataset compares 75% cancer to 58% stroma and 17% benign epithelium, while the
complete and unstratified datasets compares 63% cancer to 33% stroma and 30% benign epithelium. The
balanced, unbalanced and unstratified dataset have the same statistical power. Our strategy predicts that
differentially expressed genes identified in the balanced dataset set should reflect changes in PCa rather
than differences in tissue composition. (B) Histogram of tissue percentage distributions for cancer, stroma
and benign epithelium in the balanced and unbalanced datasets. (C) Percentage of DEGs shared between
the balanced and unbalanced datasets compared to the average percentage of DEGs shared between the 50
random subsets in the unstratified dataset. Percentages of shared genes are calculated using increasing
numbers of the most significant DEGs in each dataset. The random numbers were calculated as the average
number of genes shared over all 1225 possible comparisons between the 50 random subsets. For the 200
most significant DEGs, 20% were shared between the balanced and unbalanced datasets, and 39%were
shared for the 2000 most significant DEGs. The corresponding percentages for the confounded dataset were
65% and 73% respectively. (D) Microarray probes with a p-value changing in various orders of magnitude
between the balanced and unbalanced datasets greatly exceeds p-value changes expected by chance in the
unstratified dataset. Of all probes, 2830 showed a p-value fold change of more than four orders of magnitude,
and 1460 changed their p-values by more than six orders of magnitude between the balanced and
unbalanced datasets compared to 42 and 1 probes for the unstratified dataset respectively.

doi:10.1371/journal.pone.0153727.g001
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Validation data
To validate the strategy of tissue balancing, an independent dataset [11] were downloaded
from Gene Expression Omnibus (accession GEO ID, GSE8218). This data set consisted of
microarray gene expression from 65 PCa samples and 71 normal samples together with histo-
pathologic evaluation of four different tissue components (prostate cancer, stroma, epithelium
from BPH and atrophic gland). To compare tissue composition in the validation set with the
main dataset (the dataset used in the current study), percentages of epithelium from BPH and
atrophic gland were combined into a single component corresponding to benign epithelium in
the main dataset. Dataset balancing and identification of differentially expressed genes were
performed in the same way as for the main data. To compare the similarity of differentially
expressed genes highlighted in the balanced and unbalanced datasets between the validation
and main data, we developed a Significance Ratio (SR) score calculated for each gene:

SR ¼ pB=pS
ð1Þ

for the balanced dataset and

SR ¼ pS=pB
ð2Þ

for the unbalanced dataset, where pB and pS are the p-value in the balanced and unbalanced
datasets, respectively. The score is introduced to compare the relative p-values for each gene,
and is calculated independently for the validation and the main data. Genes are ranked in
ascending order based on the SR score for the balanced and unbalanced datasets in both the
validation and main data. A high number of shared genes among the top-ranked genes in the
main and validation data indicate that the compared lists have similar relative alterations in p-
values between the balanced and unbalanced dataset.

Results and Discussion

Balancing the content of stroma tissue when human PCa tissue samples
are compared to samples from normal prostate tissue
Samples from the original complete dataset are presented as three differently arranged subsets,
balanced, stroma and unstratified, based on the difference in average stroma content between
PCa and histopathologically normal samples (Fig 1A, Methods). The balanced dataset was
designed to have an average stroma content as equal as possible between PCa and normal sam-
ples (37% vs 45% respectively). This was to emphasize the molecular transformations between
cancer and normal tissue, without the confounding effect due to different amounts of stroma.
In contrast, the unbalanced dataset was created with a maximized difference in average stroma
content (14% vs 72% for PCa and normal samples respectively) to emphasize the molecular
variations observed when the amount of stroma is not accounted for. A unstratified dataset
was created with the same tissue properties as the complete dataset, but with a reduced number
of samples to permit direct comparison of p-values with the balanced and unbalanced datasets.
The unstratified dataset had an intermediate difference in average stroma content (26% vs 59%
for PCa and normal samples respectively), representing the tissue composition in samples
from a typical patient cohort. There was no significant difference in average Gleason score
between the PCa samples in the balanced, unbalanced and unstratified datasets (7.17, 7.27 and
7.22 respectively). To simplify interpretation of the results, we assume that molecular signals
from equal amounts of the same tissue type in PCa and normal samples cancel each other out
in a differential analysis. This analysis does not take into account the changes between healthy
stroma and stromogenic cancer. However, it will serve as a good approximation to study
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confounding signals from stroma due to different average tissue compositions in the cancer
and normal samples. If we remove the contributions from equal amounts of tissue, analysis of
the complete and unstratified datasets compare the molecular signal from 63% cancer tissue in
the PCa samples to 33% stroma and 30% benign epithelium in the normal samples, which rep-
resents an almost complete confounding between stroma and benign epithelium. In this setting
it is impossible to conclude whether the observed differentially expressed genes (DEGs) and
metabolites are due to changes between PCa and normal tissue, or due to different amounts of
stroma in PCa and normal sample groups. In contrast, the observed DEGs and metabolites are
directly attributable to molecular changes between cancer and normal tissue for the balanced
dataset, and cancer and stroma tissue in the unbalanced dataset. The differential signals in
these two dataset comparisons thus highlight genes and metabolites, as well as the relationships
between them, which are otherwise hidden in the complete and unstratified datasets.

Two criteria were used to divide samples between the balanced and unbalanced datasets: i)
the average percentage of stroma should be as equal as possible between cancer and normal
samples, and ii) each dataset should include as many samples as possible to ensure maximum
statistical power. To improve the analysis even further, a third criterion can be introduced,
which ensures that individual samples in each dataset are homogenous with respect to the per-
centage of stroma. This criterion should, in theory, reduce the expression value variance within
each group to improve differential statistics. Due to the limited number of available samples
with similar tissue composition, it was concluded that a selection also including the third crite-
rion would compromise the statistical power of the analysis. Nevertheless, the first two criteria
proved to be sufficient to highlight important differences between the balanced and unbalanced
datasets.

An important feature of the balanced and the unbalanced datasets is that they indirectly also
assess the difference between benign epithelium and stroma tissue. Genes and metabolites dis-
playing differential change only in the unbalanced dataset, and not in the balanced dataset, are
not markers for PCa transformation. These will rather be markers of stroma that changes in
the complete and unstratified datasets only due to differences in the amount of stroma tissue.
Further, genes and metabolites which display similar changes in both the balanced and the
unbalanced dataset are markers for PCa which is unaffected by the presence of stroma. Finally,
genes and metabolites displaying differential changes only in the balanced data set, but not in
the unbalanced dataset, represent markers for PCa which are confounded by the presence of
stroma. These assessments are important when separating observed changes directly related to
PCa transformation from changes resulting only from biased amounts of stroma tissue. Such
interpretations will be performed in the subsequent analysis.

Balanced and unbalanced datasets display different patterns of gene
expression at the global level
Considerable differences in gene expression patterns were observed when comparing DEGs
between the balanced and unbalanced datasets. A far lower percentage of DEGs were shared
between the balanced and the unbalanced datasets when compared to the percentage of DEGs
expected to occur by chance (Fig 1B), where the expected percentage was estimated as the aver-
age number of shared genes between the 50 random subsets in the unstratified dataset. The fact
that the balanced and unbalanced datasets capture significant biological differences which are
unlikely to be observed by chance was confirmed by the high number of gene probes with a p-
value changing by several orders of magnitude between the balanced and the unbalanced data-
sets compared to the unstratified dataset (Fig 1C). All three datasets displayed expected up and
downregulation of seven well validated genes in PCa (Figure C in S3 File). To conclude, the
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observed differences between these datasets are attributable to differences in the amount of
stroma tissue. The applied strategy of tissue balancing is able to highlight these differences.

The balanced dataset highlights metabolites related to PCa change
In the balanced dataset 17 of the 23 metabolites measured by HR-MAS were found to display
significant changes in concentration levels between PCa and normal tissue (Fig 2). This is a
considerably higher number compared to the 8 significant metabolites identified in the unstrat-
ified and 13 identified in the complete dataset. This indicates a high degree of confounding
from the stroma tissue in these datasets, which specifically applies to the nine metabolites
putrescine, spermine, glycine, glutamine, alanine, valine, succinate, isoleucine and citrate that
were significant in the balanced but not the unstratified dataset. These nine metabolites are
thus changes which are characteristic for PCa but are difficult to detect due to confounding
from unbalanced amounts of stroma tissue. The identification of citrate serves as a proof-of-
principle for the applied analysis strategy, due to the absence of citrate in stroma and reduced
levels observed in PCa tissue [22,25]. Additionally, changes in the metabolites succinate,
valine and glycine were not detectable in the complete dataset, despite the higher statistical
power compared to the balanced set. No metabolites were specific for the unbalanced dataset,
possibly with an exception of taurine with borderline significance (p = 0.053). Other typical
metabolite biomarkers for PCa like glucose, lactate and the three choline-containing metabo-
lites [22,26] were observed in all datasets, thus showing stability as biomarkers regardless of tis-
sue composition.

Integration of metabolite and gene expression data pinpoints changes in
genes involved in PCa metabolism
We predict that performing differential expression analysis in a dataset balanced for the con-
tent of stroma tissue between PCa and normal samples highlights genes and metabolites
directly relevant for PCa changes. Moreover, the simultaneous gene and metabolite data mea-
sured on the exact same samples facilitate the integration of these data on specific metabolic
pathways. In this study we focused on pathways of the TCA cycle, polyamine synthesis and
fatty acid synthesis, and on DEGs related to the metabolites putrescine, citrate and succinate,
as these pathways were specifically highlighted in the balanced dataset. Differential expression
is presented in terms of p-values. Corresponding changes with respect to gene rank and fold
change are presented in Figures A and B in S3 File and in S4 File.

Reduced putrescine levels relates to increased expression of SRM in the polyamine path-
way. Increased production of polyamines is important for cancer progression by promoting
cell growth, degrading surrounding tissue and diminishing anti-tumor immune functions [27].
In the polyamine pathway (Fig 3A), ODC1 converts ornithine to putrescine, which is further
converted to spermidine by SRM. Spermidine is then converted to spermine by SMS, all in a
forward reaction. SRM and SMS are assisted by AMD1 in the conversion process, while SAT1
and SMOX are responsible for the further downstream fate of spermidine and spermine [28].
Previous studies have reported that genes in the polyamine pathway are upregulated in cancer
[29,30]. A concordant upregulation of polyamine genes will increase the flux of all polyamines,
but not necessarily change the relative levels of individual metabolites. In the balanced dataset,
we observe a significant level reduction for the metabolite putrescine. This reduction coincides
with a specific upregulation of the SRM gene (Fig 4A). Mechanistically, upregulation of SRM
will consume putrescine for the production of spermidine, and without putrescine replacement
from ornitihine by upregulation of ODC1, the concentration of putrescine should be reduced.
This is exactly what is observed from the MR metabolic measurements. Upregulation of SRM
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Fig 2. The balanced dataset improve the identification of significant metabolites altered in prostate
cancer (PCa). Positive -log10(p-value) indicate increased concentration and negative -log10(p-value)
indicate reduced concentration in PCa. The unstratified, balanced and unbalanced datasets all have the
same statistical power.

doi:10.1371/journal.pone.0153727.g002
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without concordant upregulation of other genes in the polyamine pathway is observed only in
the balanced dataset, while a general upregulation of polyamine genes is a feature observed
mostly in the unbalanced dataset. Applying the indirect relationship between the balanced and
unbalanced dataset, this general upregulation are most likely caused by differences between
benign epithelium and stroma, and the upregulation of SRM and concordant putrescine
decline is due to PCa transformation. Interestingly, SRM has recently been suggested as a drug
target for the polyamine pathway in a model of B-cell lymphomas [31]. In addition, a signifi-
cant decrease in spermine levels (p = 0.047) is also observed, which fits with a significant upre-
gulation of SAT1 and SMOX, without significant upregulation of SMS. However, this relation

Fig 3. Schematic representation of pathways affected by genes andmetabolites. (A) Polyamine
pathway. (B) TCA cycle, fatty acid synthesis and glutamine consumption. The genes up- and downregulated
in the balanced dataset are highlighted in red and blue respectively. Gene names: ODC1: ornithine
decarboxylase 1, SRM: spermidine synthase, SMS: spermine synthase, AMD1: adenosylmethionine
decarboxylase 1, SAT1: spermidine/spermine N1-acetyltransferase 1, SMOX: spermine oxidase, ACO1/2:
aconitase 1/2, CS: citrate synthase, ACLY: ATP citrate lyase, ACACA/B: acetyl-CoA carboxylase alpha/beta,
FASN: fatty acid synthase, SUCLA2: succinate-CoA ligase ADP-forming beta subunit, SUCLG1/2: succinate-
CoA ligase beta subunit, SDHA/B/C/D: succinate dehydrogenase complex subunit A/B/C/D.

doi:10.1371/journal.pone.0153727.g003
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is more subtle. A significant difference in spermine concentrations was previously reported to
separate aggressive (Gleason grade�7) from more indolent types of PCa tissue (Gleason
grade = 6) [22]. However, in this comparison the confounding of stroma is less pronounced
since only cancer samples are compared.

Reduced citrate levels relates to increased fatty acid synthesis. Significantly higher levels
of citrate in normal samples were only detectable in the balanced dataset. In the complete data-
set, where the statistical power is doubled, citrate levels did not reach statistical significance
between cancer and normal samples. Citrate is normally converted to isocitrate by ACO1 and

Fig 4. Integrated analysis of gene expression andmetabolite concentrations highlights and validates
genes corresponding to metabolic changes in key pathways important for prostate cancer (PCa). (A)
Top: SRM and putrescine in the polyamine pathway. Middle: SUCLA2 and SDHD and succinate in the TCA
cycle. Bottom: Citrate in fatty acid synthesis. Positive -log10(p-value) indicate upregulation and negative
-log10(p-value) indicate downregulation. The metabolites displayed on the left side are a subset of the
metabolites shown in Fig 2. (B) Validation of significant genes in PCa compared to normal samples with
respect to the polyamine pathway, succinate in the TCA cycle and fatty acid synthesis in an independent
dataset. (C) Average tissue compositions in the balanced, unbalanced and complete/unstratified datasets
from the validation study. Histogram of tissue distributions are shown in Figure D in S3 File. (D) Number of
shared genes among the N first genes sorted by the significance ratio score when various datasets are
compared. Genes with opposite changes (3 in the balanced and 116 in the unbalanced datasets) were
removed from analysis. The number shared genes are much higher when balanced and unbalanced datasets
are compared between themselves, than when balanced are compared with unbalanced datasets. This
indicates that the validation and control studies display a highly concordant ranking of genes for both the
balanced and unbalanced datasets.

doi:10.1371/journal.pone.0153727.g004
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ACO2 in the TCA cycle (Fig 3B), which is the preferred mode of energy production in most
cells. The normal prostate deviates from this mode, because the conversion from citrate to
isocitrate is partly blocked, leading to accumulation of citrate. Accumulated citrate can be
secreted, or converted to acetyl-CoA and utilized for fatty acid synthesis (Fig 3B). Secretion
leads to increased detectable levels of citrate, while higher TCA cycle activity and/or fatty acid
synthesis reduces citrate levels. Our data supports a model where high level of citrate is a hall-
mark of normal prostate epithelial cells, and that citrate levels are reduced in both stroma and
cancer cells.

The most pronounced gene differences related to citrate metabolism and fatty acid synthesis
is found in the unbalanced dataset (Fig 4A). We therefore detect more gene differences between
cancer and stroma than between cancer and benign epithelium. This result is in accordance
with general TCA cycle activity in the healthy stroma [32], while TCA cycle function is altered
in both benign epithelium and PCa. Concordantly, we observe a highly significant downregula-
tion of ACO1, upregulation of fatty acid synthesis genes ACLY, ACACA and FASN, and down-
regulation of fatty acid oxidation gene ACACB in the unbalanced dataset where PCa are
compared to the stroma. In the balanced dataset, changes in gene expression are more subtle.
We observe significant downregulation of ACO1, ACO2 and ACACB, and upregulation of fatty
acid synthesis gene ACACA, but not ACLY and FASN. Altogether, this indicates that increased
fatty acid synthesis is a hallmark feature for both the benign epithelium and PCa.

In the transformation to PCa (the balanced dataset) fatty acid synthesis can be further acti-
vated by increased expression of ACLY, FASN and/or ACACA (the rate limiting enzyme of
fatty acid synthesis), leading to increased consumption of accumulated citrate. Consumption
of citrate for fatty acid synthesis, rather than restoration of normal TCA cycle function may be
the main reason for citrate depletion, since downregulation of both ACO1 and ACO2 in the
balanced dataset corroborates decreased forward TCA cycle. This conclusion is in agreement
with other studies highlighting increased fatty acid synthesis as a common feature in PCa [33].
However, compared to these studies, ACACA rather than FASN [33–35] is here highlighted as
the main source of increased fatty acid synthesis. Inhibition of ACACA in PCa cell-lines
induced growth arrest and apoptosis [36,37]. ACACA has also been shown to be a target for
androgen receptor AR [38], and may be a drug target in PCa that directly targets in vivo
changes in fatty acid synthesis.

Increased succinate levels relates to changed expression of SUCLA2 and SDHD.
Increased succinate levels were only observed in the balanced dataset. In the forward TCA
cycle, the genes SUCLG1, SUCLG2 and SUCLA2 participate in the reversible conversion of suc-
cinyl-CoA to succinate, which is further converted to fumarate by the four succinate dehydro-
genases SDHA/B/C/D (Fig 3B). Downregulation of these genes is most pronounced in the
unbalanced dataset, especially for SUCLA2, SUCLG1, SDHA and SDHD. The cancer tissue is
therefore more different from stroma than from benign epithelium, and this study indicates
that stroma cells harbor canonical TCA cycle metabolism whereas benign epithelium and PCa
do not. In benign epithelium and PCa these genes are downregulated, due to impaired TCA
cycle and possibly increased fatty acid synthesis (Fig 4A). In the balanced dataset, downregula-
tion of SUCLA2 was particularly pronounced. Downregulation of SUCLA2 without concordant
downregulation of the related enzymes may disturb the metabolic flux balance, leading to the
observed increased levels of succinate in PCa. However, since the conversion of succinyl-CoA
to succinate is a reversible reaction, the actual effect of SUCLA2 expression will depend on
additional factors such as the equilibrium state between succinate and succinyl-CoA. A
decreased, but less pronounced, expression of SDHD is also observed in the balanced dataset.
In contrast to SUCLA2, conversion of succinate to fumarate by SDHD is irreversible, and
downregulation of this enzyme will lead to accumulation of succinate in PCa. Earlier studies
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have suggested a tumor promoting function of increased succinate levels through activation of
hypoxic regulatory programs by the transcription factor HIF1A, but did not mention PCa
explicitly [39]. It is thus concluded that this mechanism, as well as other possible functions of
increased succinate levels has yet to be explored for PCa.

Validation in an independent cohort
Currently there exist only one additional dataset for PCa where the tissue composition of can-
cer, stroma and benign epithelium are characterized in both PCa and normal samples [11].
This enables a direct transfer of the balancing strategy applied in this study. Gene expression
using microarrays were measured on 65 PCa and 71 normal tissue samples in this dataset, how-
ever no measurements of metabolism was collected and only validation of gene expression was
possible. To our knowledge, there are no other study which simultaneously measure gene
expression and metabolism in PCa. In both studies, histopathology showed the same bias of
increased stroma tissue in the normal samples (Fig 4C). Using the 9723 genes with measure-
ments in both datasets, concordant variations in differentially expressed genes (ranked accord-
ing to the SR-score) were identified in the balanced and the unbalanced datasets (Fig 4D,
Methods).

At the pathway level, we observed similar patterns for both the polyamine and fatty acid syn-
thesis in the balanced and unbalanced datasets of both studies (Fig 4B). At the individual gene
level, the specific cancer-related increase in expression of SRM in the polyamine pathway, as well
as a general activation of all pathway genes in epithelium compared to stroma, was confirmed.
In the fatty acid synthesis pathway, the validation analysis highlights FASN and ACLY as signifi-
cantly upregulated, but not ACACA (p = 0.13). This supports the notion of increased fatty acid
synthesis in PCa, but also indicates that this activity can be caused by the activation of various
key genes in this pathway. Both datasets strongly confirmed increased fatty acid synthesis and
downregulation of ACO1 as a feature mostly characteristic of PCa when compared to stroma,
while the transformation from epithelium to PCa involves more subtle changes. Succinate and
the TCA-cycle showed less similarity and lower p-values for the involved genes. The expression
of succinate genes also showed a comparable expression pattern in the validation data, though
SUCLA2 and SDHD were only borderline significant (p = 0.054 and p = 0.066 respectively).

Generally, the number of differentially expressed genes for the balanced dataset were fewer
in the validation data compared to the main data (1011 versus 2800 respectively), and the p-
values were less significant. This is likely attributed to the higher average content of normal
stroma in the validation data (74% and 46% in validation and main data, respectively), which
attenuates the differential signal. Overall, the validation datasets generally confirm the findings
in the main data, and thus supports the viability of the proposed strategy to analyze tissue sam-
ple collection with large variations in tissue compositions.

An advantage of the applied strategy of removing stroma confounding the reduced amount
of samples needed to obtain similar results of differentially expressed genes. To illustrate this,
we performed differential expression analysis on the complete dataset using the histopatholog-
ical analysis as contrasts in a factorial design (S4 File). When PCa were compared to benign
epithelium, p-values in this analysis were highly comparable to the p-values in the balanced
analysis. Since the influence of confounding tissue is under control in the balanced dataset,
comparable p-values could be obtained by using only half the number of samples.

Conclusion
A strategy to balance the original dataset based on pathology-reviewed tissue composition has
been applied. Separation of changes between PCa and normal tissue, from changes between
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PCa and stroma, makes it possible to identify relevant DEGs and metabolites characteristic for
each tissue component. A unique integration of gene expression and metabolite data on the
exact same tissue sample highlights new information on important cancer pathways which can
be possible future drug targets. The presented strategy is transferable to all heterogeneous can-
cer tissue types and similar results may be expected. The results from balanced and unbalanced
datasets also show that adding more samples to a cohort study will not improve differential
expression analysis unless the sample groups have a balanced composition of confounding
tissue.
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