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Abstract
We define data analyses to monitor a change in R, the average number of secondary cases

caused by a typical infected individual. The input dataset consists of incident cases parti-

tioned into outbreaks, each initiated from a single index case. We split the input dataset into

two successive subsets, to evaluate two successive R values, according to the Bayesian

paradigm. We used the Bayes factor between the model with two different R values and that

with a single R value to justify that the change in R is statistically significant. We validated

our approach using simulated data, generated using known R. In particular, we found that

claiming two distinct R values may depend significantly on the number of outbreaks. We

then reanalyzed data previously studied by Jansen et al. [Jansen et al. Science 301 (5634),

804], concerning the effective reproduction number for measles in the UK, during 1995–

2002. Our analyses showed that the 1995–2002 dataset should be divided into two sepa-

rate subsets for the periods 1995–1998 and 1999–2002. In contrast, Jansen et al. take this

splitting point as input of their analysis. Our estimated effective reproduction numbers R are

in good agreement with those found by Jansen et al. In conclusion, our methodology for

detecting temporal changes in R using outbreak-size data worked satisfactorily with both

simulated and real-world data. The methodology may be used for updating R in real time, as

surveillance outbreak data become available.

Introduction
Incidence and prevalence are standard epidemiological indicators, monitored to understand
disease dynamic within society [1, 2]. In the case of infectious diseases, it is customary to
measure how far an epidemic is from eradication by calculating yet another epidemiological
parameter, the basic reproduction number, denoted by R0 (e.g., [3], pp. 4–5). By definition, R0

represents the average number of secondary cases caused by a typical infectious individual in a
fully susceptible population. If R0 is larger than 1, then an outbreak becomes an epidemic; oth-
erwise, it goes extinct. If the population is not fully susceptible, then one calculates the effective
reproduction number, denoted by R [4, 5]. However, neither R0 nor R is regularly monitored
by public-health authorities (e.g., [6], pp. 39–65).
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R0 depends on a number of factors pertaining to the pathogen–host biology, such as patho-
gen transmissibility and the natural history of disease. In addition, R0 may depend on factors
pertaining to host sociology, such as population density and social awareness about epidemics.
All these factors may change with time. Changes in R0 may signal that the pathogen has
become more transmissible, virulent or persistent in the population. They may also signal soci-
etal re-organization in response to the epidemic dynamic. Particularly important are changes
in R, which, in addition to changes in R0, may also reflect changes in the susceptibility of the
population. Monitoring changes in Rmay thus be instrumental in determining the success of
public-health interventions such as mass vaccination [4, 7, 8].

An epidemiological situation that would benefit from R0 and/or Rmonitoring is that of a
zoonotic pathogen repeatedly introduced in a population where it undergoes subcritical
transmission. As the pathogen explores more and more hosts, the opportunity for mutations
increases, with increasing chance for pandemic strains to occur [9]. Possible applications of
this scenario may be the cases of the pre-pandemic severe acute respiratory syndrome [10] and
Middle East respiratory syndrome [11].

Another application of R0 and/or Rmonitoring is to assessing the success of mass vaccina-
tion by surveying disease outbreaks before and after a major epidemiological event, such as
implementation of mass vaccination [5] and loss of confidence in vaccination programs [7].
Surveillance and contact tracing provides a means of monitoring outbreaks by permanent reg-
istration of new cases. For example, monkeypox [12] and non-zoonotic measles [4] are poten-
tial candidates for eradication through vaccination. Monkeypox remains worrisome for the
possibility that repeated introductions in the human population may yield novel strains of
human poxes [13]. Following vaccine licensing in 1963, measles incidence in the United States
decreased by more than 95% [14]. Nevertheless, recent R analysis [8] shows the potential for
measles to re-emerge and emphasizes the importance of continued surveillance. In this work,
we discuss monitoring R using outbreak-size surveillance data; only minor modifications are
needed to apply our methodology to monitoring R0 of emerging infectious diseases.

There exist two major approaches to estimate R from outbreak-size data. In the first
approach, R is estimated using the maximum likelihood method. Blumberg et al. [8, 15] used
Galton–Watson branching processes to construct the likelihood of observed data consisting of
outbreak sizes. By maximizing the likelihood function, they calculated R for monkeypox in the
Democratic Republic of Congo (1980–1984) and measles in the United States (2001–2011).
Jansen et al. [7] used continuous-time Markov chains to construct the likelihood of observed
data. By maximizing the likelihood function, they calculated R for measles outbreaks in the
United Kingdom (1995–2002), advocating for an increase in R due to loss of confidence in the
vaccination program.

The second approach is based on Bayesian inference, which requires a prior distribution
describing the current knowledge on the parameter of interest (e.g., R) and the likelihood of
observing the data set according to a model of choice [16]. As a result, one computes a posterior
distribution, representing an upgrade of the prior, according to the data. Hence Bayesian infer-
ence follows closely the principle of surveillance and learning processes.

Farrington et al. [4] proposed two alternative ways to constructing the posterior probability
of R based on (1) outbreak size and (2) outbreak duration. They estimated R for measles
(1997–1999) outbreaks in the United States using data from 41 outbreaks caused by a single
introduction. Angelov et al. [17] estimated R from a set of clusters sizes, where each cluster
consisted from a known number of outbreaks. Following a Bayesian approach, they calculated
R for mumps for three different regions of Bulgaria (2005–2008). Yanev et al. [18] described
different Bayesian estimators under two different families of loss functions to study multiple
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outbreaks. They calculated R to describe transmission of smallpox in Europe (1960–1970).
Prior knowledge on R was obtained from past data covering the period 1951–1960.

Previous literature focused on extracting a single R value from a given epidemiological data-
set. In this work, we describe a methodology to estimate two time-ordered R values from the
same set of surveillance data, in the regime of subcritical transmission (R<1); however, the
generalization to multiple values is straightforward.

Monitoring Temporal Changes in R
A patient of an outbreak directly infects a number of individuals, so-called secondary cases. In
successive generations, each secondary case continues to spread the pathogen, causing second-
ary cases by themselves. The network of who has infected whom has a tree structure, which, for
emerging or re-emerging diseases, may be described using the theory of branching processes
[19]. We assume that the data set, denoted by T, is an array of N sizes of trees (i.e., outbreak
sizes) ordered by the infection time of the index patient. We analyze the transmission process
in terms of the effective reproduction number, R, which may change with time due to biological
(e.g., pathogen transmissibility and virulence) and/or sociological (e.g., frequency of contact
between individuals) factors.

General theory
We first briefly present how to compute a single value of R from an epidemiological dataset,
in the Bayesian paradigm. To express lack of knowledge about R, we use a non-informative
improper prior π(R) = 1, where R is uniformly distributed from zero to infinity. We construct
the likelihood L(T|R) that the dataset T is observed, assuming that the effective reproduction
number is R. Given that the detected trees have sizes n1,. . .,nN, ordered according to the date of
infection of index patients, we have [15, 19]

LðΤjRÞ ¼
YN
i¼1

pðni;RÞ ð1Þ

where p(ni,R) is the probability that the single transmission tree i has size ni [19]. The posterior
distribution p̂ðRjΤÞ of R for the observed dataset T is calculated according to Bayes’ rule [4]

p̂ðRjΤÞ / LðΤjRÞpðRÞ ð2Þ
which yields

p̂ðRjΤÞ ¼ LðΤjRÞ=
ð1

0

LðΤjRÞdR: ð3Þ

The posterior distribution p̂ðRjΤÞ was used to calculate the average effective reproduction
number hRi and its 95% credible interval (CI).

The quality of R statistics depends not only on the number of trees but also on their sizes. In
short, we summarize the amount of data using the concept of information. According to the
definition (e.g., [16], pp. 32), information is given by the logarithm of the probability to observe
the given dataset T. In our case, the information, denoted by IT, is given by the natural loga-
rithm of the likelihood L(T|R) (c.f. Eq 1)

IΤ ¼ �lnLðΤjRÞ ð4Þ
so that information is measured in natural units (i.e., nat). Hence, information is presented as
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the sum of N contributions, one for each tree in T (i.e., an extensive quantity over the number
of trees). For a numerical estimate of IT corresponding to the dataset, we used the average of
R (i.e., hRi) obtained from the Bayesian framework.

Monitoring the pandemic risk of emerging infectious diseases, one extracts at least two
time-ordered R values from the same dataset T. Hence, the dataset T is divided into two time-
ordered subsets Ta and Tb = T\Ta. The Bayesian approach described above (c.f. Eq 3) is then
applied independently to each subset Ta,b to estimate two effective reproduction numbers Ra,b.
Obviously, the estimates Ra,b depend on the selection of Ta,b. For example, if Ta is nearly all T
then Rb is badly estimated.

To justify the choice of extracting two R values from T, we proceed as follows. We denote by
HT the model with a single R estimate and by Ha,b the model with two R estimates. Given Ra,b,
the likelihood for the dataset Ta[Tb is given by L(Ta|R

a)L(Tb|R
b) [c.f., Eq 1 for L(T|R)]. We

evaluate whether Ha,b is more plausible than HT by calculating the Bayes factor [20], using the
corresponding likelihoods. When our initial beliefs are a priori equally probable, pr(Ha,b) = pr
(HT), the Bayes factor

BðΤaÞ ¼
LðΤajRaÞLðΤbjRbÞ

LðΤjRÞ ð5Þ

expresses how well the observed data were predicted by Ha,b, compared to HT; i.e., the higher
the value of B(Ta), the more is justified to extract two R values rather than one from T. Kaas
et al. [20] provided an interpretation of the strength of the second model Ha,b in terms of four
categories according to the gradation of 2lnB(Ta). They suggested a very strong preference for
Ha,b if 2lnB(Ta)>10. In our model, we make the same decision. We extract two Ra,b values
when 2lnB(Ta)>10; otherwise, we extract a single value of R from T.

Our R analysis is performed according to the following steps. For every i = 1,. . .,(N−1):

1. Let Ta consist of the first i trees in T and Tb = T\Ta;

2. Estimate the pair of posterior distributions p̂ðRa;bjΤa;bÞ using Eq 3; Numerical integration
of the normalization constant was performed using the trapezoidal rule.

3. Use the average hRia,b as an estimate of the parameters Ra,b.

4. Calculate B(Ta) using Eq 5.

Finally, we denote by Τ�
a;b the sets Ta,b which yield the largest value of 2lnB(Ta). If

2lnBðΤ�
aÞ > 10, we accept hRia,b as the best estimates of effective reproduction numbers on

Τ�
a;b and we denote them by hRi�a;b; otherwise, we calculate a single R value on T using Eq 3.

Numerical tests using synthetic data
Synthetic data consisting of arrays of sizes of transmission trees were simulated, assuming that
the number of cases caused by each infected individual is a Poisson deviate with average R.
Tree sizes are random integers given by a distribution p(ni,R), obtained from the probability-
generation function for the Galton–Watson branching processes according to Pitman [19]. For
the Poisson offspring distribution, we obtain

pðni;RÞ ¼
ðniRÞni�1expð�niRÞ

ni!
ð6Þ

The synthetic dataset, consisting of sizes of N transmission trees with known R, was used
to validate our methodology of estimating Ra,b. The analytical approach according to Eq 3
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yields

hRi ¼ 1� 1=�n þ 1=ð�nNÞ ð7Þ

where �n is the average size of the trees in T. The corresponding standard deviation

stdðRÞ ¼
ffiffiffiffiffiffiffi
hRi
�nN

r
ð8Þ

becomes negligible when N�1. Eq 7 gives R = 1 if T consists of a single tree. For large tree
number in T, the third term goes to zero and Eq 7 becomes identical to the formula derived
from the maximum likelihood L(T|R) method.

Using Eq 7, we estimate the change of R in real time, as new epidemiological data become
available. Suppose we add a new tree of size n to T. The corresponding change in R,

dR ¼ nð1� 1=NÞ � �n
�nð�nN þ nÞ ð9Þ

shows that, for a sufficiently large tree number in the dataset N�1, the sign of the change in R
is determined by the difference between the size n of the newly added tree and �n.

We now proceed with the discussion of our simulations. In the first example, we generated a
homogeneous dataset T, consisting of 100 trees with R equal to 0.6. Fig 1(a) shows 2lnB(Ta) as
a function of information (c.f. Eq 4) in the first subset Ta. The observed maximum is ~3, indi-
cating weak justification for calculating two R values. Hence we concluded that this dataset
should be assigned a single R estimate.

In the second example, we assumed a stepwise increase of R, modeling adaptation of the
pathogen to human-to-human transmission. We generated a non-homogeneous synthetic
dataset where 50 trees were generated with Ra = 0.6, while the remaining 50 trees were gener-
ated with Rb = 0.85. The parameter 2lnB(Ta) (c.f. Fig 1(b)) reaches its maximum at the 55th

tree. Contrary to the previous example, the observed maximum of 2lnB(Ta) is ~14, suggesting
strong justification for calculating Ra,b. The best Ra,b estimates, denoted by R�a;b, have non-
overlapping error bars (95% CI) and are in satisfactory agreement with the numerical choices
for the parameters when 2lnB(Ta)>10 (c.f. Fig 1(c)).

In order to clarify the minimal size of the initial dataset required to get reliable estimations
of Ra,b, we performed evaluations of R�a;b for statistically independent synthetic datasets T, con-
taining from 2 to 200 trees. For each size of T, we averaged 120 independent realizations to alle-
viate stochastic effects. Fig 2(a) shows the average 2lnBðΤ�

aÞ and its 95% confidence interval as
a function of the total number of trees in the homogeneous datasets, when R equal to 0.6. The
values are below 10 and the featured dependence is not particularly sensitive to the number of
trees in T.

The situation is quite different for non-homogeneous datasets. As an example, we generated
a set of trees T with R equal to 0.6 and 0.85 for the first and second halves, respectively. The
results are presented in Fig 2(b), where the average 2lnBðΤ�

aÞ increases with the number of trees
in T. For a low number of trees (up to ~100 trees in T), the average of 2lnBðΤ�

aÞ is less than 10,
indicating no preference to estimate two R values. For a high number of trees, the average of
2lnBðΤ�

aÞ is larger than 10, demonstrating that the model with two R values is superior. For
small sizes of T (c.f. Fig 2(c)), average estimates of R�a;b display strong fluctuations. Starting
with ~50 trees per dataset T, R estimates are neater. With further increasing the size of T, R
estimates are more grouped around the exact values and the error bars (95% CI) are smaller.
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Application to epidemiological data
We applied our method of evaluating two R values from an epidemiological dataset. We aimed
to reproduce recent results obtained by Jansen et al. [7], concerning the transmission dynamics
of measles in the UK during 1995–2002. Although measles-elimination programs were set
worldwide, measles eradication has not yet been achieved. In the late nineties, the safety of a
combined measles-mumps-rubella (MMR) vaccine became controversial, which resulted in
decreased uptake of the MMR vaccine after 1998. As a consequence, measles outbreaks
increased in sizes.

Jansen et al. [7] calculated two effective reproduction numbers R for the UK, regarding the
periods 1995–1998 and 1999–2002, respectively. They found that R increased significantly,
from 0.47 to 0.82. The epidemiological data consisted of measles cases grouped into outbreaks
of size 2 or more. We accounted for the left censoring of the outbreak-size data by renormaliz-
ing the probability of observing outbreaks p(ni,R) as p(ni,R)/(1−p(1,R)), where Eq 6 provided
the probability model. The results are presented in Fig 3. The parameter 2lnB(Ta) shows a
marked maximum (c.f., Fig 3(a)) at the 35th outbreak, the latest one of 1998. The magnitude of

Fig 1. Ra,b values for synthetic datasets T.We considered simulated datasets consisting of 100 outbreak sizes; the vertical arrows show the position of the
50th tree. Panel (a) corresponds to R = 0.6 and shows 2lnB(Ta) as a function of information in Ta, as Ta increases from including the first tree only to including
the first N−1 trees. The maximum of 2lnB(Ta) is below 10, suggesting preference for a single R estimate over the whole dataset. Panel (b) is similar to panel
(a), except T consisted of 50 trees with Ra = 0.6 and 50 trees with Rb = 0.85. Values of 2lnB(Ta) larger than 10 show where the dataset T can be split into Ta,b

with justification for evaluating Ra,b. The corresponding Ra,b values are shown in the panel (c) as a function of 2lnB(Ta).

doi:10.1371/journal.pone.0152629.g001

Fig 2. The impact of amount of data on R evaluation.We considered 120 independent realizations of synthetic datasets with number of outbreaks
between 2 and 200. Panels (a) and (b) show the average of 2lnBðΤ�

aÞ and its 95% confidence interval as a function of tree number for homogeneous and non-
homogeneous T, respectively. In particular, the panels are as follows. (a) All trees in T are generated with R = 0.6. The average 2lnBðΤ�

aÞ < 10 recommends
one R evaluation from T. (b) The first half of the number of outbreaks in T has Ra = 0.6, while the second half has Rb = 0.85. The average 2lnBðΤ�

aÞ increases
with the number of trees in T. Once above 10 (i.e., starting from datasets of 100 outbreaks or more), it is justified estimating Ra,b. The corresponding hRi�a;b
values, calculated for each dataset T, are shown in the panel (c), as a function of the number of outbreaks in T.

doi:10.1371/journal.pone.0152629.g002
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2lnB(Ta) is ~14, justifying the split of the 1995–2002 dataset into two separate subsets for the
periods 1995–1998 and 1999–2002. Jansen et al. [7] used the same split of the dataset, based
on information about measles-vaccination coverage and the MMR controversy. Our analysis
yielded the same conclusion, based on the measles outbreak data alone.

Fig 3(b) shows Ra,b (95% CI) as a function of 2lnB(Ta). Both Ra,b have nearly constant values
for 2lnB(Ta)>10. For the maximum value of 2lnB(Ta)>10, we evaluated R�a;b as 0.54 (90%CI
0.43–0.66) and 0.86 (90%CI 0.79–0.93), respectively. The quantitative difference with the
results by Jansen et al. [7, 21] (Ra = 0.47 (90%CI 0.36–0.55) and Rb = 0.82 (90%CI 0.71–0.87))
is not significant (pa = 0.92 and pb = 0.96 for Ra,b, respectively) and is explained by the choice
of the offspring distribution (i.e. the Poisson or the geometric offspring distribution) rather
than by the difference in the methods of data analysis.

Discussion
We propose a method to monitor the effective reproduction number of infectious diseases with
sub-threshold transmission. The method may apply to alert and surveillance systems of dis-
eases emerging and/or re-emerging from natural reservoirs. In this case, monitoring an
increase in R0 and/or Rmay be used to determine the implementation of public-health inter-
vention. The method may also be used to assess the effectiveness of public-health programs
designed for disease elimination. In this case, evaluating R before and after implementing inter-
vention may confirm the performance of the public-health program.

We validated our method using synthetic data, of which we presented a few simulations.
We also reanalyzed data previously studied by Jansen et al. [7, 21], concerning the transmission
of measles in the UK during 1995–2002. While our R findings are similar, we also extracted the
time when rumors on the MMR vaccine started to affect measles vaccination from the epidemi-
ological data. Of note, in a previous publication, Blumberg et al. analyzed the transmissibility
of measles in the US (1997–1999) and Canada (1998–2001), estimating two values of R from
two distinct datasets. However, further epidemiological assumptions are required for a direct
comparison of R resulting from the two analyses.

Our model has several limitations. Epidemiological data are often meant for estimating inci-
dence or prevalence (e.g., [1, 2], [6] pp. 39–65). However, our study requires a particular type

Fig 3. Ra,b values for measles in the UK during 1995–2002. The dataset consists of 78 trees “Jansen et al. [7]”. (a) 2lnB(Ta) versus information in Ta. Since
2lnB(Ta)>10, we evaluate Ra,b. The vertical arrow indicates the best splitting point of T, determined by the maximum of 2lnB(Ta). (b) hRia,b values (95%CI),
plotted as a function of 2lnB(Ta)>, were calculated for all frames Ta,b where 2lnB(Ta)>10.

doi:10.1371/journal.pone.0152629.g003
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of longitudinal data, consisting of outbreak sizes where the outbreaks are ordered according to
the date of infection of index patients. In addition, our model implies the appearance of every
new index case only after the termination of an outbreak caused by the previous index case
(i.e., we assume a sequence of non-overlapping in time transmission trees). These data may
result from close surveillance of emerging or re-emerging infections. However, outbreaks may
be clustered in time and space and difficult to tell apart. If the number of index patients in each
cluster is determined, the model could be amended by using the Borel–Tanner distribution
[22] for p(ni,R) in Eq 6.

Our model provides a scheme to monitor R in the regime of subcritical transmission (i.e.,
R<1); other methods may be used for estimating R in the regime of supercritical transmission
[23]. The quality of R estimation in our model depends on the number of outbreaks; see Fig 3c.
Therefore the number of changes in R that can be estimated from a dataset depends on the
number of outbreaks. We addressed the case of detecting a single change in R by solving a one-
dimensional maximization problem for the Bayes factor B(Ta) (c.f., Eq 5). It is no coincidence
that (global) maximization problems are divided between one- and multi-dimensional, the first
class of problems being significantly easier. However, a number of numerical algorithms are
readily available to address maximization in several dimensions [24]. In our case, such algo-
rithms would have to face additional difficulties, inherent to the stochastic nature of the data
modeling.

In conclusion, our work proposes a novel method to monitor changes in the effective repro-
ductive number from an epidemiological dataset consisting solely of outbreak sizes.
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