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Abstract

Biomass yield of rice (Oryza sativa L.) is an important breeding target, yet it is not easy to
improve because the trait is complex and phenotyping is laborious. Using progeny derived
from a cross between two high-yielding Japanese cultivars, we evaluated whether quantita-
tive trait locus (QTL)-based selection can improve biomass yield. As a measure of biomass
yield, we used plant weight (aboveground parts only), which included grain weight and stem
and leaf weight. We measured these and related traits in recombinant inbred lines. Pheno-
typic values for these traits showed a continuous distribution with transgressive segrega-
tion, suggesting that selection can affect plant weight in the progeny. Four significant QTLs
were mapped for plant weight, three for grain weight, and five for stem and leaf weight (at a
= 0.05); some of them overlapped. Multiple regression analysis showed that about 43% of
the phenotypic variance of plant weight was significantly explained (P < 0.0001) by six of
the QTLs. From F, plants derived from the same parental cross as the recombinant inbred
lines, we divergently selected lines that carried alleles with positive or negative additive
effects at these QTLs, and performed successive selfing. In the resulting Fe lines and
parents, plant weight significantly differed among the genotypes (at a = 0.05). These results
demonstrate that QTL-based selection is effective in improving rice biomass yield.

Introduction

By 2050, we will need to feed two billion more people than at present [1, 2]. How can we
accomplish that task? Rice (Oryza sativa L.) is the staple food for more than half of the world’s
population, particularly in Asia (Ricepedia, http://ricepedia.org/rice-as-food/the-global-staple-
rice-consumers). In some Asian countries such as South Korea and Japan, rice is used for mul-
tiple purposes, including flour, livestock feed (including whole-crop silage), biofuel, and
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conservation of paddy fields. For these reasons, further improvement of rice yield potential,
including biomass, is a major challenge for breeders and geneticists. To our knowledge, how-
ever, little is known about the genetic architecture of rice biomass yield, except for the semi-
dwarfing 1 gene [3, 4]. Similar to animal quantitative traits [5], rice biomass yield (including
grain yield) is governed by quantitative trait loci (QTLs) with small additive effects and greatly
varies among individuals in variable and nonuniform environments. For yield and other traits
under this type of genetic control (many QTLs with small effects), phenotypic values are con-
tinuously distributed in segregating populations and do not show simple Mendelian inheri-
tance [6, 7].

More than 20 years ago, it was suggested that marker-assisted selection (MAS) would allow
integration of molecular genetics and conventional phenotype-based selection [8]. Indeed,
MAS is now widely used in rice breeding for improvement of traits, such as disease and insect
resistance, for which the phenotypes can be associated with the genotypes of DNA markers [9,
10]. Recent advances in rice genomics are improving our understanding of the evolution and
function of the rice genome and are facilitating rice improvement [11-14]; maximizing the use
of such genomic data is necessary to continue increasing rice biomass yield.

Using single-nucleotide polymorphisms detected by high-throughput resequencing, we
are currently assessing the effectiveness of genomics-assisted selection approaches such as
QTL analysis, association study, genomic estimation of breeding value, and haplotype analy-
sis based on pedigree, in the improvement of rice biomass yield [15, 16]. In the present study,
we first analyzed QTLs for biomass yield and related traits using recombinant inbred lines
(RILs) derived from a cross between the high-yielding cultivars ‘“Tachisugata’ (TS) and
‘Hokuriku 193’ (H193), which are used mainly for livestock feeding. Both cultivars were pro-
duced by inter-subspecific crosses between O. sativa ssp. japonica and indica cultivars and
not only produce high grain yield but also have large stems and leaves [16-18]. Using a large
F, population, we then divergently selected lines that carried alleles with positive or negative
additive effects at several of the detected QTLs. Finally, we compared the biomass yield of the
selected lines to evaluate the effectiveness of QTL-based selection in improving biomass
yield.

Materials and Methods
Plant materials and experimental design

The experimental design is depicted in Fig 1. Self-progeny derived from a cross between TS
and H193 were used. For QTL mapping, a set of Fs individuals (N = 191) was genotyped and
then selfed to produce RILs. The trait value of a genotyped individual was estimated as the
mean value of the resulting F¢ family (i.e., F5.5 design). For phenotypic evaluation, RILs,
parents, and their F; progeny were grown in two replications (three rows of 14 individuals each
per plot) in summer in a paddy field (Tsukubamirai, Japan). Seeds were sown in late April and
30-day-old seedlings were transplanted in the field with a spacing of 15 cm between plants
within each row and 30 cm between rows. To avoid border effects, only the middle 10 individu-
als in the central row of each plot were analyzed.

To evaluate the effect of QTL-based selection on biomass yield, we raised more F, individu-
als (N = 468) of the same TS x H193 cross and selected lines that carried alleles with positive or
negative additive effects at detected QTLs (Fig 1). Selected lines were selfed by single-seed
descent up to the Fq generation (Fig 1). Each plot had four rows (14 individuals per row), and
only the middle individuals (10 per row) in the central two rows of each plot were analyzed.
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Fig 1. Diagram of QTL-based selection. Representative plants of the parental cultivars (~30 days after
heading) are shown. TS, ‘Tachisugata’; H193, ‘Hokuriku 193’.

doi:10.1371/journal.pone.0151830.g001

Genotyping

Genomic DNA was extracted from 2-month-old seedlings by the cetyltrimethylammonium
bromide method [19]. From a previously published single nucleotide polymorphism (SNP)
data set [16, 20]; Q-TARO database, http://qtaro.abr.affrc.go.jp/, a subset of 192 SNPs poly-
morphic between TS and H193 was selected and used for genotyping. In this subset, 175 SNPs
were available for QTL analysis (S1 File). For QTL-based selection, a subset of 384 SNPs was
used for genotyping, of which 344 SNPs were available in the F, population [21]. In the F4 gen-
eration, QTL genotypes of the selected F,-derived lines were confirmed by determining the
genotypes of the nearest SNP markers by direct sequencing of PCR products (S1 Table). Geno-
typing was performed on an Illumina GoldenGate BeadArray platform (Illumina Inc., San
Diego, CA, USA).

Phenotyping

Three biomass traits were evaluated: plant weight (aboveground parts only, PW, g), grain
weight (GW, g), and stem and leaf weight (SLW, g). For each trait, 10 mature plants were
bulked, dried for 48 h at 80°C, and weighed.

The following 11 morphological and physiological traits were also evaluated: harvest index
(HIL, %), culm length (CL, cm), panicle length (PL, cm), flag leaf length (FLL, cm), panicle num-
ber (PN), spikelet number per panicle (SN), 1000-grain weight (1000GW, g), spikelet fertility
(SF, %), chlorophyll content (SPAD value), days to heading (DTH), and nonstructural carbo-
hydrate content (NSC, %). HI was calculated as GW/PW x 100. For CL, PL, FLL, PN, SN, SF,
and SPAD, phenotypic values of 10 plants per RIL were used to calculate means. For 1000GW,
first, 100-grain weight was measured with four replications and then the mean was trans-
formed to 1000-grain weight. DTH was scored as days from germination to heading (when 5
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of the 10 plants had headed). For QTL and other analyses, means of two replications for each
trait were used. NSC was measured according to [22]. A five-plant bulk (from another one of
the three rows described above) was harvested at the yellow-ripening stage (approximately 30
days after heading) and was used to determine NSC.

QTL analysis

A linkage map was constructed using RILs (N = 191). Linkage order and genetic distances of
175 marker loci were calculated with MAPMAKER/Exp 3.0 [23]. Residual heterozygotes were
considered as missing data.

QTL analyses were performed using composite interval mapping as implemented in
WinQTL Cartographer version 2.5 [24] with a significance level of o = 0.05. QTLs were added
using forward and backward regression with the standard model (model 6) for up to five con-
trol markers. A window size of 10 cM was used with a walk speed of 2 cM. Significant LOD
scores were assigned for each trait following permutation tests with 1000 replicates [25]. Box-
Cox (for GW, HI, CL, FLL, 1000GW, and DTH) or arcsine (for SF) transformations were con-
ducted for phenotypic data where normality was rejected by the Shapiro-Wilk test (S1 Fig)
[26].

Statistical analysis

Phenotypic correlations among the biomass-related traits were evaluated using Pearson’s cor-
relation. The significance of each correlation was determined using ¢ test with control of the
false discovery rate for multiple tests [27]. Principal component analysis on the correlation
matrix of line means for the 11 traits were also conducted.

To determine the total variation of PW explained by the significant QTLs for PW, GW, and
SLW, multiple regression analysis of the first two principal components (PC1 and PC2) was
performed. The minimum corrected Akaike information criterion was used to choose the best
model. Path diagrams were generated according to Sokal and Rohlf [26].

To test whether QTL x QTL interaction was involved in the phenotypic variation of each
trait in RILs, we performed two-way analysis of variance for all traits and PCs, using the geno-
types of the SNPs nearest to the detected QTLs. Significance levels were corrected on the basis
of the false discovery rate (o = 0.05) for multiple testing according to the number of interaction
tests [27]. Significance of the difference for each trait value between genotypes was determined
by the Tukey-Kramer HSD test.

All statistical analyses were performed using JMP 9 software (SAS Institute Inc., Cary, NC,
USA

Results
Phenotypic variations of traits

Phenotypic variation of 14 traits in the parents, their F; progeny, and RILs are summarized in
Table 1. For PW, GW, and SLW (traits directly associated with biomass yield), there were no
significant differences between the means of the parents. However, F; plants showed larger val-
ues of these traits than their parents, suggesting that at least some QTLs underlying these traits
are different between the parents. In contrast, the differences in CL, PL, PN, SN, 1000GW, SF,
DTH, and NSC between the parents were significant. Transgressive segregation was evident in
RILs for all evaluated traits, supporting the hypothesis that different alleles at the QTLs con-
tribute to the traits in the two parents (Table 1, S1 Fig).
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Table 1. Phenotypic variation of traits.

Trait

Plant weight (g)
Grain weight (g)

Stem and leaf weight (g)

Harvest index (%)
Culm length (cm)
Panicle length (cm)
Flag leaf length (cm)
Panicle number (count)

Spikelet number per panicle (count)

1000-grain weight (g)
Spikelet fertility (%)

Chlorophyll content (SPAD value)

Days to heading (days)

Non-structural carbohydrate content (%)

Abbreviation

PW
GW
SLW
HI

CL

PL
FLL
PN
SN
1000GW
SF
SPAD
DTH
NSC

Parent (n = 9)

Tachisugata

Mean (95% C.l.)

826.9 (792.9-861.0)
330.7 (313.1-348.2)
496.3 (478.2-514.3)
40.0 (39.2-40.7)
105.1 (103.2-107.0)
27.0 (26.5-27.5)
36.2 (34.0-38.3)
8.3 (7.9-8.6)
216.1 (208.1-224.1)
32.5 (32.2-32.8)
81.4 (79.1-83.6)
41.0 (40.2-41.8)
109.1 (108.5-109.7)
28.5 (25.8-31.3)

Hokuriku 193

Mean (95% C.l.)

861.9 (822.3-901.5)
348.2 (325.3-371.1)
513.7 (492.5-534.9)
40.3 (39.1-41.5)
90.6 (89.4-91.8)
28.3 (27.9-28.8)
34.8 (33.9-35.8)
9.3 (9.1-9.4)
193.7 (185.2-202.2)
28.7 (28.6-28.9)
85.5 (82.6-88.5)
40.3 (39.5-41.1)
110.6 (110.1-111.0)
33.7 (30.3-37.0)

Significance

n.s.
n.s.
n.s.
n.s.

1.14E-10

1.69E-04
n.s.
3.61E-05
4.34E-04
2.12E-13
2.05E-02
n.s.
4.09E-04
1.19E-02

F1(n=2)

Mean (two trait values)

921.5 (889.0/954.0)
404.5 (383.0/426.0)
517.0 (506.0/528.0)
43.9 (43.1/44.7)
119.4 (119.6/119.2)
29.7 (30.1/29.2)
37.9 (37.8/37.9)
8.1 (8.0/8.2)
242.3 (250.5/234.1)
32.2 (32.2/32.3)
88.2 (85.7/90.7)
43.5 (43.2/43.9)
108.0 (108.0/108.0)
31.1 (29.3/33.0)

RiLs (N = 191)

Mean (min.—max.)

830.5 (544.4-1137.0)
293.8 (113.0-405.0)
536.8 (382.0-760.5)

35.4 (16.4-48.2)
102.0 (64.5-136.6)
28.4 (22.8-36.6)
37.4 (29.3-45.9)
8.6 (5.8-11.9)
198.3 (116.3-320.4)
29.0 (22.6-36.3)
80.3 (49.2-94.2)
41.3 (33.2-47.1)
110.6 (103.5-122.0)
36.3 (17.9-53.6)

Averages of bulk consisting of 10 plants were shown for PW, GW and SLW. Differences between means (‘Tachisugata' vs 'Hokuriku 193') were compared

by the two-tailed Student's t-test.
doi:10.1371/journal.pone.0151830.t001

Phenotypic relationships between traits

To investigate the relationships between the 14 traits, Pearson’s correlation coefficients
between them were calculated for RILs (Fig 2A, S2 Table). All traits except SPAD were signifi-
cantly correlated with at least one biomass trait (PW, GW, or SLW). Positive correlations
between CL, PL, and FLL were marked (r > 0.5). SPAD was positively correlated with DTH
and NSC and negatively correlated with CL, FLL, and SF.
It was not unexpected that significant correlations between PW and GW (r = 0.546,
P < 0.0001) and between PW and SLW (r = 0.805, P < 0.0001) were observed, because PW is
the sum of GW and SLW. Of note is the closer relationship between PW and SLW than
between PW and GW (S2 Table), which was also confirmed by comparison of standardized
partial regression coefficients from multiple repression (PW = 0.594 x GW + 0.841 x SLW-
2.67E°17, R* = 0.999, P < 0.0001, Fig 2B). No significant correlation was found between GW
and SLW (Fig 2A, S2 Table).
We also performed principal component analysis to evaluate phenotypic integration among
traits other than PW, GW, and SLW (Fig 2C). PC1 and PC2 accounted for 26.2% and 23.2% of
the variation for RILs, respectively. PC1 was a vector for CL, PL, FLL, PN, and SN, whereas
PC2 was a vector for HI, SF, DTH, and NSC.

QTL mapping

Using composite interval mapping in RILs, we identified 55 QTLs for the 14 traits and 6 QTLs
for PCs on chromosomes (Chrs) 1-6, 9, and 10 (Table 2, Fig 3). Among traits directly associ-
ated with biomass yield, four QTLs were mapped for PW (Chrs 1-3 and 10), three for GW
(Chrs 2, 3, and 10), and five for SLW [Chrs 1 (2 QTLs), 3, 5, and 10]. Of these, two QTLs for
PW and two QTLs for SLW, which were detected on Chrs 1 and 10, each explained more than
10% of the phenotypic variation for the corresponding trait.
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Fig 2. Phenotypic correlations between biomass-related traits quantified in recombinant inbred lines.
(A) Relationships between the traits according to Pearson’s correlation coefficients. Two traits that showed
significant correlation are connected to each other. Significant correlation coefficients are indicated by solid
lines (more than +0.212; a = 0.01) or broken lines (more than +0.156; a = 0.05). Correlation coefficients of
more than +0.500 are shown by thick solid lines. PW, plant weight; SLW, stem and leaf weight; CL, culm
length; PL, panicle length; FLL, flag leaf length; SPAD, chlorophyll content; DTH, days to heading; NSC, non-
structural carbohydrate content; SF, spikelet fertility; 1000GW, 1000-grain weight; SN, spikelet number per
panicle; PN, panicle number; HI, harvest index; GW, grain weight. (B) Path diagram showing two
independent variables, GW and SLW, and the residual variable U, affecting plant weight (PW). Numbers
indicate partial regression coefficients. ***, P < 0.0001. (C) Biplot based on principal component analysis for
the traits. The percent variation explained by each principal component is shown in parentheses.

doi:10.1371/journal.pone.0151830.g002

QTLs detected for the other traits were as follows: two QTLs for HI (Chrs 3 and 4); four for
CL (Chrs 1, 2, 5, and 6); five for PL (Chrs 1-3, 6, and 10); four for FLL (Chrs 1, 2, 6, and 10);
three for PN (Chrs 1, 2,and 10); four for SN (Chrs 1, 2, 6, and 10); four for 1000GW (Chrs 2, 6,
and 10); two for SF (Chrs 4 and 9); seven for SPAD (Chrs 1-4); five for DTH (Chrs 1, 2, 5, 6,
and 10); and four for NSC (Chrs 2-4 and 6). Five QTLs for PC1 (Chrs 1, 2, 6, and 10) and one
for PC2 (Chr 3) were also mapped.

It should be noted that QTL(s) for PW, CL, PL, FLL, and PC1, which have a LOD peak near
2a01010816 (at 39.3 Mb) or aa01010927 (at 40.7 Mb) on Chr 1, each accounted for 14.8-73.1%
of the phenotypic variation for the corresponding trait (Table 2). Phenotypic variations of CL
(73.1%), PL (22.6%), and FLL (44.4%) were particularly well explained by the QTL(s).
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Table 2. Summary of QTLs detected in the recombinant inbred lines from a cross between 'Tachisugata' and 'Hokuriku 193'.

Trait Chromosome Nearest Position? LOD PVE® Additive®
marker (Mb) value (%) effect

PW 1 2a01010927 40.70 5.60 14.77 37.07
PW 2 AD02003294 10.00 3.61 6.17 -25.30
PW 3 ah03002520 35.09 3.03 5.48 -22.87
PW 10 aa10003574 22.30 5.41 10.67 31.01
GW 2 AD02003294 10.00 2.70 5.20 -13.15
GW 3 2a03002208 22.11 4.91 9.01 -16.29
GW 10 aa10000954 3.97 4.11 7.53 -15.09
SLW 1 aa01005935 11.42 2.99 5.48 -18.23
SLW 1 aa01010801 37.67 4.40 16.55 32.04
SLW 3 ah03001486 19.21 4.45 7.51 22.02
SLW 5 AD05011295 26.99 4.13 7.48 -21.23
SLW 10 aa10003574 22.30 5.99 12.04 27.56
HI 3 ah03001486 19.21 7.02 13.09 -2.07
HI 4 aa04000040 1.06 3.26 7.08 -1.51
CL 1 aa01010927 40.70 54.23 73.09 15.78
CL 2 ah02000117 2.63 3.75 2.78 3.06
CL 5 AD05011295 26.99 5.60 4.47 -3.71
CL 6 aa06001097 27.75 12.40 11.42 -5.94
PL 1 a2a01010816 39.26 10.43 22.60 1.30
PL 2 2a02003526 31.39 3.61 6.49 -0.69
PL 3 ah03002520 35.09 417 7.33 -0.74
PL 6 aa06001097 27.75 8.50 15.43 -1.04
PL 10 a2a10003574 22.30 2.80 4.91 0.60
FLL 1 2a01010816 39.26 17.41 44.36 2.67
FLL 2 aa02003537 31.98 5.81 10.45 -1.32
FLL 6 P0606_1 30.02 5.12 8.07 -1.15
FLL 10 aa10003584 22.58 2.66 3.74 0.78
PN 1 2a01010801 37.67 14.80 39.23 -0.66
PN 2 ab02000712 30.62 5.30 8.30 0.31
PN 10 ac10000003 0.04 2.59 3.67 -0.20
SN 1 aa01010927 40.70 4.48 9.38 11.35
SN 2 AD02003294 10.00 6.90 12.36 13.66
SN 6 ac06000764 22.58 3.49 13.27 -13.08
SN 10 P1771 22.47 2.61 4.86 8.21
1000GW 2 ac02000125 7.82 4.81 12.03 0.89
1000GW 6 ac06000669 20.66 5.67 11.72 0.84
1000GW 6 P0606_1 30.02 3.36 6.92 -0.65
1000GW 10 ah10000438 10.98 4.29 10.04 0.78
SF 4 P0732 28.77 6.54 13.61 -2.26
SF 9 ab09001026 16.20 2.56 5.46 -1.63
SPAD 1 aa01010927 40.70 4.90 9.37 -0.75
SPAD 2 a2a02000798 10.15 5.57 10.72 -0.83
SPAD 2 a2a02003537 31.98 3.06 7.93 0.67
SPAD 3 P1669_1 6.52 3.04 5.99 0.60
SPAD 3 P0567 37.23 3.27 6.21 0.60
SPAD 4 ab04001194 27.11 5.01 10.31 0.76

(Continued)
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Table 2. (Continued)

Trait

DTH
DTH
DTH
DTH
DTH
NSC
NSC
NSC
NSC
PC1
PC1
PC1
PC1
PC1
PC2

Chromosome

[220N¢) B \C B

O =N S

—
@ K3

Nearest Position? LOD PVE® Additive®

marker (Mb) value (%) effect
aa01010927 40.70 2.64 4.26 -0.60
aa02000715 7.82 4.80 10.45 -0.97
ab05000011 0.98 3.76 5.88 -0.69
P0606_1 30.02 2.65 419 0.57
aa10003607 22.58 11.52 19.03 1.25
P1287 14.54 2.76 5.06 -1.94
ab03000375 16.51 5.83 10.52 2.63
ab04000042 N/A 3.05 5.70 1.92
P0606_1 30.02 2.77 5.26 1.87
aa01010927 40.70 33.89 51.15 1.26
AD02003294 10.00 3.69 3.36 -0.34
aa02003526 31.39 11.15 12.15 -0.61
a2a06001097 27.75 8.76 9.53 -0.53
aa10003574 22.30 3.10 3.1 0.31
aa03002208 22.11 3.09 6.02 -0.41

2 Position is based on the physical position within the rice genome (Build 4, http://rgp.dna.affrc.go.jp/) of the cultivar 'Nipponbare' (O. sativa ssp. japonica)
b Phenotypic variance explained (R2 value x 100)

¢ Additive effects in this column refer to the effect of the allele from ‘Tachisugata' relative to that from '‘Hokuriku 193'

PW, plant weight; GW, grain weight; SLW, stem and leaf weight; HI, harvest index; CL, culm length; PL, panicle length; FLL, flag leaf length; PN, panicle

number; SN, spikelet number per panicle; 1000GW, 1000-grain weight; SF, spikelet fertility; SPAD, chlorophyll content; DTH, days to heading; NSC, non-
structural carbohydrate content.

doi:10.1371/journal.pone.0151830.t002

B —

SPAD s

i
2E3
gs2

Fig 3. Locations of QTLs for biomass-related traits quantified in this study. Vertical bars to the right of
the linkage map of each chromosome denote one-LOD confidence intervals; horizontal bars denote the
position of the LOD peak at each QTL. Green signifies a QTL for which the ‘Tachisugata’ allele had a positive
effect; yellow signifies a QTL for which the ‘Hokuriku 193’ allele had a positive effect. Gray broken lines how
linkage gaps. Ten SNP markers subjected to multiple regression analysis are marked with red arrows; six of
them (filled arrows) were chosen for QTL-based selection. A pink broken line connecting QTLs on Chrs 1
(aa01010927) and 6 (aa06001097) indicates significant epistasis (p = 0.0067). PW, plant weight; GW, grain
weight; SLW, stem and leaf weight; HI, harvest index; CL, culm length; PL, panicle length; FLL, flag leaf
length; PN, panicle number; SN, spikelet number per panicle; 1000GW, 1000-grain weight; SF, spikelet
fertility; SPAD, chlorophyll content; DTH, days to heading; NSC, non-structural carbohydrate content. For
visual clarity, Chrs 7, 8, 11, and 12, where no significant QTLs were detected, and the names of some
markers are omitted.

doi:10.1371/journal.pone.0151830.g003
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QTL clusters

When one-LOD confidence intervals of three or more QTLs overlapped, we considered these
QTLs to be a cluster. Seven QTL clusters were found in RILs on Chrs 1-3, 6, and 10, with two
clusters on each Chr 2 and 3 (Fig 3). The presence of QTL clusters is supported by the observa-
tion that almost all clusters contained a QTL for a principal component (i.e., an integrated
trait); the only exception was a cluster on Chr 3 (near ah03002520, at 35.1 Mb).

Tests for QTL x QTL interactions

No significant epistatic interaction was detected between QTLs for the 13 traits, including PW,
GW, and SLW, suggesting additive relationships between these QTLs. Only one pair of QTLs
for CL, consisting of the QTL on Chr 1 (aa01010927) and the one on Chr 6 (aa06001097),
showed a significant epistatic interaction (P = 0.0067, Fig 3).

Candidate genes

Since QTL mapping was performed using only small numbers of RILs and markers (both
<200), it was difficult to determine the relationships between detected QTLs and known genes.
Still, the relationships between traits and QTL positions suggest some candidate genes. QTLs
for CL, PL, and FLL (and possibly for PW, SN, SPAD, and DTH) in a cluster detected on Chr
1, in which the LOD peaks were detected between aa01010927 and aa01010816 (the nearest
markers), may correspond to the semi-dwarf 1 (sd1) locus at 40.1 Mb (Table 2, Fig 3) [3, 4].
Comparison of the sizes of PCR products followed by partial sequencing of the gene revealed
that TS carries a functional allele, whereas H193 carries a nonfunctional allele with a critical
deletion in the gene, consistently with the direction of the additive effects of the respective
alleles (S2 Fig).

The QTL for 1000GW on Chr 2 may correspond to the GW2 locus at 8.2 Mb [28] and that
for DTH on Chr 10 to the Early heading date 1 locus at 17.6 Mb [29]; Table 2, Fig 3).

Combined effect of detected QTLs on PW

To assess the combined effect of detected QTLs on PW in RILs, we performed multiple regres-
sion analysis. First, eight QTLs for PW (on Chrs 1-3), GW (on Chr 3 and 10), and SLW (two
on Chrs 1 and one on Chr 5), and two QTLs for PC1 (on Chrs 2 and 6) were chosen. In total,
10 SNP markers nearest to the LOD peak of each QTL were analyzed (red arrows in Fig 3). Six
of the markers, which were selected as variables in the best-fitting model chosen using the cor-
rected Akaike information criterion (filled red arrows in Fig 3, Fig 4A), accounted for 43.3% of
the phenotypic variation for PW (P < 0.0001). Indeed, lines selected from RILs on the basis of
the allele types at the six QTLs were distributed according to their genotypes (Fig 4B); the
mean PW values of the selected lines (1036.0 + 91.9 g for alleles with a positive effect and 810.5
g for alleles with a negative effect) and their parents (852.2 + 42.1 g for TS and 970.9 + 1543 g
for H193) were also distinguishable from one another, as expected (Fig 4C).

Evaluation of QTL-based selection for PW

From F, plants, we divergently selected lines that carried alleles with positive and negative
additive effects at the six QTLs and compared PW between F¢ progeny of the selected lines and
their parents (S3 Fig, Fig 5). It should be noted that we did not select one of the QTLs
(2a10000954) in the negatively selected lines (Fig 5).

Significant divergence was observed between the mean PW values of the positively
(2169.0 + 125.0 g) and negatively (1563.6 + 108.2 g) selected lines; moreover, the mean value of
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Fig 4. Combined effect of QTLs for plant weight in recombinant inbred lines. (A) Path diagram showing
the nearest marker to each QTL and the residual variable U, affecting plant weight (PW). Nearest marker loci
to QTLs for each trait were used as variables. Numbers in parentheses indicate chromosomal locations.
Numbers on the lines indicate partial regression coefficients calculated by multiple regression analysis. *,
0.05>P>0.01;** 0.01>P>0.001; ***, 0.001 > P. (B) Frequency distribution of PW. (C) Genotypes and
PW of parental cultivars and selected lines. Means +SD for each genotype class are shown. TS,
‘Tachisugata’; H193, ‘Hokuriku 193’.

doi:10.1371/journal.pone.0151830.g004

positively selected lines was significantly higher than those of TS (1617.9 + 133.3 g) and H193
(1916.1 + 87.3 g) (Fig 5).

Divergent selection affected SLW, CL, PL, SN, and DTH in the same manner as it affected
PW. However, it showed adverse effects on HI, PN, 1000GW, and SF, in that the values of neg-
atively selected lines were higher than those of positively selected lines (S4 Fig). GW was not
affected by divergent selection. Thus, the improvement of PW (Fig 5) appeared to result from
the increase of SLW rather than that of GW (54 Fig).

Discussion

In this study, we showed that classical QTL analysis has a high ability to map phenotypes to
genotypes, and that QTL-based selection is effective in increasing rice PW, even when two
high-yielding cultivars are used to develop RILs.

We found significant phenotypic correlations between traits. Multiple traits were signifi-
cantly correlated with one or more biomass traits (PW, GW, and SLW; Fig 2A, S2 Table). Our
QTL analysis revealed the presence of QTL clusters; that is, colocalization of QTLs for multiple

2a1000095: 2210003574
AD02003294 Il | IIII II bll "II‘" W"I II

2201010027 AD05011295
ah03002520 @ Homozygous for TS allele Homozygous for H193 allele

N
=]
<]
<)

PW (g /20 plants)

“Negative

Fig 5. Effect of QTL-based selection on plant weight in the Fg progeny. (A) Genotypes of parental
varieties and selected lines. (B) Plant weight (PW) of parental cultivars and selected lines. Means +SD for
each genotype class are shown. Means with different letters are significantly different (Tukey—Kramer HSD
test, a=0.05). TS, ‘Tachisugata’; H193, ‘Hokuriku 193’.

doi:10.1371/journal.pone.0151830.g005
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traits (Fig 3). QTL clusters are generally thought to result from pleiotropy of a single QTL or
from tightly linked QTLs for multiple traits, either of which cases would result in genetic corre-
lation [30, 31]. Thus, the phenotypic correlations we found may, at least in part, result from
genetic correlations. The presence of a QTL for the target trait will be more reliable if multiple
traits are analyzed; moreover, such QTLs can be reliable candidate markers for selection aimed
at improving the target trait.

In contrast, because of genetic correlation, it seems likely that a tradeoff between traits may
result in hidden genetic variation in PW. Both GW and SLW are component traits of PW, and
HI and NSC play important roles in determining GW and SLW ([32] for HI; [22] for NSC).
Our analysis of phenotypic variation showed positive correlations between GW and HI and
between SLW and NSC, but negative correlations between GW and NSC, HI and SLW, and HI
and NSC (Fig 2A, S2 Table). Such phenotypic relationships may be accounted for, in part, by
the presence of QTL clusters. For example, in the QTL cluster on Chr 3 (aa03002208 as a repre-
sentative marker), H193 alleles had a positive additive effect for the QTLs for GW and HI, but
TS alleles had a positive additive effect for the QTLs for SLW and NSC (Table 2, Fig 3); thus,
this QTL region may not account for PW variation in the multiple regression (Fig 4A). It
should be noted that these results imply that GW and SLW are potentially interconnected
through other traits such as HI and NSC, despite the absence of a significant correlation
between GW and SLW in RILs, suggesting additive contributions of these traits to PW
(Fig 2A).

By enabling measurements of bulks of individuals (or families) with replication, the use of
biparental RILs was helpful in biomass yield phenotyping, which must detect QTLs with small
effects. Thus, QTL-based selection will be dependable for improving rice biomass yield if bipa-
rental crosses are used.

In conventional rice breeding programs, crosses between a large number of varieties or can-
didate lines are conducted and the progeny are subjected to selection. Considering that multi-
ple alleles are introduced and that breeders are interested in alleles associated with desirable
phenotypes in diverse varieties, genome-wide association studies (GWAS) may be more suit-
able for QTL mapping than QTL analysis. GWAS have succeeded in detecting QTLs for agri-
culturally important traits in rice [16, 33, 34]. However, one should keep in mind that GWAS
have some weak points such as the detection of false-positive or negative QTLs in the presence
of population structure and low power to detect rare alleles in mapping populations because
the detection method depends on allele frequency [35, 36]. The development of well-designed
mapping populations known as nested association mapping (NAM) populations and multi-
parent advanced generation intercross (MAGIC) populations, which segregate for multiple
alleles, is expected to solve these problems [37, 38]. As with GWAS, haplotype analysis based
on pedigree, which employs mapping populations with multiple alleles, can help us to find hap-
lotype blocks or genomic regions selected by breeders [15, 20].

It has been recognized that because there is no one-size-fits-all approach in QTL mapping
that is applicable to all mapping populations, the most suitable approach should be applied in
each study [39]. If possible, the QTL effect should be validated by a combination of different
approaches; for example, biparental QTL analysis after GWAS or haplotype analysis will pro-
vide additional information useful for the improvement of the target trait [39].

Another approach for genomics-assisted selection, genomic selection (GS), is based on
genomic breeding values. Initially proposed for livestock breeding, GS has been recently exten-
sively evaluated for crop improvement [40, 41]. Genomic breeding values are calculated as the
sum of the effects of genetic markers across the entire genome of individuals in a reference
(training) population; this approach potentially captures all QTLs that contribute to pheno-
typic variation in a trait, even if they have minor effects. More recently, GS has yielded
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promising results in rice, although the phenotypic performance of selected lines has not yet
been validated [42-44].

Finally, the connection between genotypes and phenotypes is the most important key in all
genomics-assisted selection approaches. Whereas current advances in rice genomic research
have facilitated genotyping at the whole-genome level, phenotyping of complex traits, such as
biomass yield will remain a bottleneck, because it is laborious and field management is difficult.
As Poland [45] has pointed out, in field-based research, collaboration between genomics and
conventional breeding programs, which always excel in phenotyping of multiple traits (such as
biotic and abiotic stress tolerance and grain quality) and in multiple environments (locations
and years), is essential to further accelerate genotype-to-phenotype mapping of agriculturally
important traits such as biomass yield.

Supporting Information

S1 Fig. Frequency distributions of the values of 14 traits in recombinant inbred lines. Val-
ues along the x axis correspond to the trait and units given in the corresponding graph label.
PW, plant weight; GW, grain weight; SLW, stem and leaf weight; HI, harvest index; CL, culm
length; PL, panicle length; FLL, flag leaf length; PN, panicle number; SN, spikelet number per
panicle; 1000GW, 1000-grain weight; SF, spikelet fertility; SPAD, chlorophyll content; DTH,
days to heading; NSC, non-structural carbohydrate content. Distribution normality was exam-
ined by Shapiro-Wilk test. * shows a departure from normality. TS, “Tachisugata’; H193,
‘Hokuriku 193,

(PPTX)

S2 Fig. Comparison of semi-dwarf 1 alleles carried by ‘Tachisugata’ and ‘Hokuriku 193’.
(A) Structure of the sdI gene and position of PCR primers used in this experiment. (B) Electro-
phoretic profile of PCR products. PCR analyses were performed using two pairs of primers:
sd1_1F (CAGACAGCTCGCCCTGCA) and sd1_1R (CTGTTGCTTCGAAGCAGAGG) (the
present study), and sd1-del-1U (ACGGGTTCTTCCAGGTGTC) and sd1-del-1L
(CTGCTGTCCGCGAAGAACTC) [4]. M, marker. (C) Schematic representation of a deletion
in the ‘Hokuriku 193’ allele. Sequence analyses were performed by direct sequencing of the
products of nested PCR (PCR products that were amplified using a pair of sd1_1F/sd1_1R
primers were used as templates for PCR using a pair of sd1_del_1U/sd1_del_1R primers).
(PPTX)

S3 Fig. Genotypes of F, plants selected on the basis of QTL analysis. (A) A line that carried
alleles with positive additive effects at six QTLs. (B) A line that carried alleles with negative
additive effects at six QTLs. Green and orange horizontal bars show “Tachisugata” and ‘Hokur-
iku 193’ alleles at the marker loci, respectively. Gray horizontal bars represent heterozygous at
the marker loci. Positions of the markers nearest to the selected QTLs are shown by red trian-
gles.

(PPTX)

S4 Fig. Effect of QTL-based selection on 10 traits in the Fs progeny. PW, plant weight; GW,
grain weight; SLW, stem and leaf weight; HI, harvest index; CL, culm length; PL, panicle length;
FLL, flag leaf length; PN, panicle number; SN, spikelet number per panicle; 1000GW,
1000-grain weight; SF, spikelet fertility; SPAD, chlorophyll content; DTH, days to heading;
NSC, non-structural carbohydrate content. Means + SD of each genotype class are shown.

n =9 for ‘Tachisugata’ (TS), n = 10 for ‘Hokuriku 193’ (H193), and n = 5 for the positive and
negative selections. Means with different letters are significantly different (Tukey-Kramer
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HSD test).
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S1 File. Genotypic and Phenotypic data for QTL mapping in the RILs.
(XLSX)

S1 Table. Primers used for genotyping of SNP markers.
(XLSX)

S2 Table. The Pearson’s correlation coefficients (above the diagonal) between traits and
their corresponding P values (below the diagonal).
(XLSX)
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