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Abstract
Adaptation of asexual populations is driven by beneficial mutations and therefore the

dynamics of this process, besides other factors, depends on the distribution of beneficial

fitness effects. It is known that on uncorrelated fitness landscapes, this distribution can

only be of three types: truncated, exponential and power law. We performed extensive sto-

chastic simulations to study the adaptation dynamics on rugged fitness landscapes, and

identified two quantities that can be used to distinguish the underlying distribution of benefi-

cial fitness effects. The first quantity studied here is the fitness difference between succes-

sive mutations that spread in the population, which is found to decrease in the case of

truncated distributions, remains nearly a constant for exponentially decaying distributions

and increases when the fitness distribution decays as a power law. The second quantity of

interest, namely, the rate of change of fitness with time also shows quantitatively different

behaviour for different beneficial fitness distributions. The patterns displayed by the two

aforementioned quantities are found to hold good for both low and high mutation rates. We

discuss how these patterns can be exploited to determine the distribution of beneficial fit-

ness effects in microbial experiments.

Introduction
Microbial populations have to constantly adapt in order to survive in a changing environment.
For example, a bacterial population exposed to a new antibiotic must evolve in order to exist
[1]. In asexual populations, this process of adaptation is driven only by rare beneficial muta-
tions [2] which provide fitness advantage. Therefore, in order to survive in a new environment,
enough beneficial mutations should be available and the beneficial mutations should confer
sufficient fitness advantage. While the first factor depends on the mutation rate and population
size, the second factor is determined by the underlying fitness distributions. Even though we
have some understanding about the mutation rate of different microbial populations, the full
fitness distribution is more complex and relatively little is known about it. However, for
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moderately adapted populations (i.e., fitness of the wild type is high enough), rare beneficial
mutations which occur in the tail of the fitness distribution can be described by the extreme
value theory (EVT) as proposed first by Gillespie [3]. The EVT states that the extreme tail of all
distributions of uncorrelated random variables (fitness, in this case) can be of only three types.
Depending on whether the tail of underlying fitness distribution is truncated or decaying faster
than a power law or as a power law, the EVT distribution would belong to the Weibull or Gum-
bel or Fréchet domain, respectively [4]. All three EVT domains can be obtained from the gener-
alized Pareto distribution given as

pðf Þ ¼ ð1þ kf Þ�1þk
k ; ð1Þ

where κ is the tuning parameter. One example from each of the three EVT domains is shown
in Fig 1, which shows the distribution of beneficial effects p(f) with fitness f. The three types of
EVT domains are classified according to the value of κ. Here negative κ belongs to the Weibull
domain, while κ = 0 corresponds to the Gumbel domain and positive κ to the Fréchet domain.
Interestingly, all three distribution of beneficial fitness effects(DBFEs) have been observed in
experiments on microbial populations [5–14]. While the exponential distribution belonging to
the Gumbel domain has been most commonly seen [5–8], in recent times, the distribution of
beneficial mutations belonging to the Weibull [10, 14] and Fréchet [11] domains have also
been observed.

Recent theoretical studies have shown analytically and numerically that qualitatively differ-
ent patterns occur in the adaptation dynamics of populations in different EVT domains of
DBFEs in a low mutation regime [15–18]. Specifically, it has been shown that fitness gain in a
fixation event follows the pattern of diminishing returns in the Weibull domain, constant
returns in the Gumbel domain and accelerating returns in the Fréchet domain, and thus indi-
cates that this quantity can be used to predict the DBFE. These observations are restricted to
strong selection-weak mutation (SSWM) regime in which the genetic variation in the popula-
tion is minimal, that is, only one beneficial mutation is present in the population in the time
interval between its appearance and fixation [7]. It is then natural to ask whether the relation-
ship between adaptation dynamics and the DBFE mentioned above are robust for large popula-
tions, where there might be more than one beneficial mutation competing for dominance in
the population. The main aim of our study is to address this question and to see if the fitness
gain in a fixation event can be used for predicting the DBFE in a more general scenario.

Here, we are mainly concerned with the populations in which a large number of mutants
are produced at every generation. Hence, more than one beneficial mutation is expected to be
present at the same time [19–23]. In this case, the beneficial mutations will compete with each
other as has been observed in different experimental populations [24–27]. In this high muta-
tion regime, as a result of the competition among the beneficial mutations, the rate of adapta-
tion slows down. Fitness advantage due to the mutations that get fixed is much higher, since
the availability of more mutations results in allowing only the best (fittest) mutation to get
fixed [28]. A clear comparison of the population fraction of new mutants appearing in a popu-
lation for two mutation regimes is given in Fig 2. In Fig 2(a) we see that the population in the
SSWM regime is more or less monomorphic with only one mutant present at a time in all the
three EVT domains. However, in a high mutation regime, the population is polymorphic with
more than one mutant produced in it at every generation as shown in Fig 2(b). In fact, a large
amount of genetic variation is observed in the case of bounded distributions corresponding to
κ< 0 in Eq (1) resulting in a strong competition between the beneficial mutants.

In this work, we have used Wright-Fisher dynamics to study the adaptation dynamics of an
asexual population in high and low mutation regimes for the three EVT domains of DBFE. The

Adaptation Dynamics Predicts the DBFE

PLOSONE | DOI:10.1371/journal.pone.0151795 March 18, 2016 2 / 16



main motivation of this study is to look for quantities which can be used to distinguish between
DBFEs using the properties of adaptation dynamics as opposed to the direct measurements of
DBFEs. Our most important and interesting result is concerned with the fitness difference
between mutations that spread in a population. This quantity shows qualitatively different
trends in three EVT domains and thus helps in distinguishing the DBFEs.

We have also studied another quantity which is the rate of change of fitness with time, and
observed that this shows quantitatively different behaviour for different EVT domains of the
DBFEs. Though some results for the rate of change of fitness are already known in the litera-
ture [29], we measured it for all the three cases (Weibull, Gumbel and Fréchet) and identified
that this can be used to distinguish the DBFEs in both SSWM and high mutation regimes. In
order to obtain a complete picture, a comparison of our study with the existing literature is
given in Table 1 below.

We also measured quantities like the genetic variation and the number of mutations in the
most populated sequence. All of these quantities are discussed in the Results section. We sug-
gest that the distinct trends shown by the above mentioned quantities can be used to predict

Fig 1. The figure shows the distribution of beneficial fitness effects p(f) with fitness f for the three EVT domains, given by Eq (1) for various κ. Here,
κ is the tuning parameter with κ > 0, κ! 0 and κ < 0 corresponding to the Fréchet, Gumbel andWeibull domains respectively.

doi:10.1371/journal.pone.0151795.g001
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DBFEs from experimental studies on adaptation. The relevance of our work to experiments is
also explored in the Discussion section.

Materials and Methods
We track the dynamics of a population of self-replicating (asexual), infinitely long binary
sequences of fixed size using the standard Wright-Fisher process [21, 28]. In our work, the pop-
ulation size is held constant at N = 104, unless specified otherwise and the total mutation prob-
ability (beneficial and deleterious) per sequence is given by μ. Every occupied sequence is
counted as a class and is labeled when it arises in the population. Initially, the whole population
is in class 1 whose fitness is fixed and specified in every simulation run. We have used the term
leader to refer to the class whose normalised probability of reproduction (product of popula-
tion fraction and fitness) is greater than half. In that case, clearly class 1 is the initial leader
since the whole population is localized there. At every time step, out of N sequences,mt are
chosen from a binomial distribution with mean Nμ as mutants. Every mutant produced
increases the number of classes in the population by one, and with time, the mutants may pro-
duce their own set of further mutants. The population fraction of each class may grow or go
extinct, as can be observed in Fig 2. At any time t, the number of classes present in the popula-
tion is given byN cðtÞ, and the population size and fitness of each class, i, where 1 � i � N c, is

Fig 2. Population fraction of different mutant classes are shown as different coloured lines, where (a) shows the SSWM (Nμ = 0.1, lowmutation
rate) regime and (b) shows the highmutation (Nμ = 10) regime for all three EVT domains of DBFE.

doi:10.1371/journal.pone.0151795.g002

Table 1. Comparison with existing literature. Here, Dfstep is the average fitness difference between the present leader and the new beneficial mutation that
gets established and �F ðtÞ is the rate of change of fitness.

Quantities DBFE domains: Low mutation regime DBFE domains: High mutation regime

Weibull Gumbel Fréchet Weibull Gumbel Fréchet

Dfstep [16] [16] [16] this study this study this study

�F ðtÞ this study [29] [29] this study [29] this study

doi:10.1371/journal.pone.0151795.t001
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denoted by n(i, t) and f(i), respectively. The normalized probability of each class at every time
step, ~pði; tÞ contributing offspring to the population at the next time step, depends on the pop-
ulation size of the class at the present time step and the fitness of the class as

~pði; tÞ ¼ nði; tÞ f ðiÞ
SN cðtÞ

j¼1 nðj; tÞf ðjÞ : ð2Þ

Note that though the fitness of the class is the same as long as it persists in the population, its
size may vary at every time step, thus changing its probability of reproduction as given by Eq
(2). Different classes are populated in the next time step based on the multinomial distribution

Pðnð1; t0Þ; nð2; t0Þ::nðN c; t
0ÞÞ ¼ N!

YN cðtÞ

j¼1

½~pðj; tÞ�nðj;tÞ
nðj; tÞ! ; ð3Þ

where t0 = t + 1. The above equation is subject to the constraint SN cðtÞ
j¼1 nðj; t0Þ ¼ N . In our simu-

lations, we implement Eq (3) along with the above constraint by converting Eq (3) to a bino-
mial distribution for every class, 1 � i < N cðtÞ as

nði; t0Þ ¼
~N ðiÞ
nði; tÞ

 !
qði; tÞnði;tÞð1� qði; tÞÞ ~N ðiÞ�nði;tÞ: ð4Þ

We set the population size of the last class as nðN cðtÞ; t0Þ ¼ N �PN cðtÞ�1
i¼1 nði; t0Þ. In Eq (4),

qði; tÞ ¼ ~pði; tÞ
SN cðtÞ

j¼i ~pðj; tÞ ; ð5Þ

and ~N ðiÞ ¼ N � Si�1
j¼1nðj; tÞ.

At every time step, once the classes are populated based on the algorithm described above,
mt sequences are chosen as mutants based on the binomial distribution with mean Nμ. Every
new mutant class that appears in the population reduces the population size of the class in
which it arose by one. In our work, we have varied μ to access both the SSWM (low mutation)
and the high mutation regime. In our simulations unless specified otherwise, Nμ = 0.01 in low
(SSWM) and Nμ = 50 in high mutation regimes.

A new class is assigned to each mutant and its fitness is chosen from a generalized Pareto
distribution [4] given in Eq (1). The advantage of using Eq (1) is that we can access all three
EVT domains of DBFE by changing κ. The distributions whose κ< 0 belong to the Weibull
domain, while κ = 0 belong to the Gumbel domain, and κ> 0 belong to the Fréchet domain,
respectively. The frequency distribution of beneficial effects p(f) for various values of κ is
shown in Fig 1. The upper bound u for the distributions chosen from Eq (1) is infinity when
κ� 0 and equals −1/κ for κ< 0. In this work, the fitness of the mutants is independently cho-
sen from Eq (1) thus making the fitness of the mutant, Fm an uncorrelated variable, which may
be greater or smaller than the parent fitness, Fp. We have analyzed the results to see how they
vary between the three EVT domains and different mutation rates.

In the allocation of the fitness to any mutant, our work differs from the other works on
clonal interference [21, 28] wherein the fitness of the mutant is hiked above the parent fitness
by the selection coefficients (s) which may be held constant or chosen from a distribution as
Fm = (1 + s)Fp. Unlike the model we have used in this work (as explained above), in this case,
there is a strong correlation between the mutant fitness Fm and the parent fitness Fp. In those
cases, the mutant fitness is always greater than the parent fitness and on an average, a double
or higher mutant is fitter than a single mutant. This is in contrast with our work since in ours,
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as the fitness of the parent increases, the number of better mutants available decreases thus
producing different patterns for the fitness increment in each EVT domain.

In our model, whenever a mutant class goes extinct, the classes below it are moved up and
the number of classes in the population is reduced by one. The normalised probability of repro-
duction given in Eq (2) of a class exceeding half corresponds to a leader change. The new leader
determined now belongs to the class whose normalised probability exceeded half. We have also
explored other criteria for defining the leader as the most populated class and find that our
main results are robust with respect to the change in criteria (data not shown).

Every change of a leader is counted as a step. In the high mutation regime, the population is
spread over many sequences and a sequence can produce two or more mutants, each of which
may become leaders at different time steps. However, in the SSWM regime, the whole popula-
tion is localised at a single sequence with a fixed fitness and can only move to a different
sequence with higher fitness one mutation away. Thus every new leader arises from the previ-
ous leader, as can be observed in Fig 2(a). When a better sequence appearing in the population
does not get lost due to genetic drift, it quickly gets fixed. Further mutations that may lead to
future leaders appear in this genetic background. The change in the fitness of the population is
the same as the change in the fitness of the leader. In this case, every move of the population
(leader) from one sequence to another is termed as a step in the adaptive walk [30–33], whereas
in the high mutation regime, the population is polymorphic and as seen from Fig 2(b) the
leader change is not obvious.

Various quantities like the difference in fitness between successive leaders and the average
number of mutations in the leader are averaged only over the walks that take the step. Other
quantities like the number of classes present at any point in time and the rate of change of fit-
ness are averaged over all time steps in that simulation run.

In this paper, the total number of iterations is 105 in every simulation run and the dynamics
are tracked for a finite time limit of 104 generations, which we shall refer to as tmax. In this time
span, the maximum fitness value, fmax that arises in the population can be calculated as

tmaxNm
Z u

fmax

pðf Þdf ¼ 1; ð6Þ

where u is the upper limit of the fitness distribution equalling (-1/κ) for bounded distributions
and infinity for the unbounded ones [4]. From the above integral, we get

fmax ¼
ðtmaxNmÞk � 1

k
: ð7Þ

Results

The number of classes in the population
For a population that is fixed in size, the number of classes in the population is expected to
increase with the mutation rate. The average genetic variation, which is defined here as the
average number of classes (N c) present in the population is shown in Fig 3 for all three DBFE
domains. The top and bottom panels of the figure show the data corresponding to the high and
low mutation regimes respectively. In both mutation regimes, we see that the average number
of classes increase during the initial time steps and decrease at later times when the classes with
lower fitness are eliminated by the fitter ones. The maximum number of classes existing in the
population for the first case, as shown in Fig 3(a), does not belong to the lowest initial fitness,
but to a slightly higher initial fitness. This could be because when the initial fitness is low, its
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class is quickly replaced by a fitter mutant and all further mutants that arise on this new back-
ground must compete with this fitter class.

In the low mutation regime, the population is localized at a single sequence for most of the
time and produces Nμmutants at every time step. Hence, in this case, the average number of
classes approach a constant Nμ + 1 at large times as can be seen in the bottom panels of Fig 3.
These panels also indicate that the value of this constant increases with decreasing κ. This is
because in the case of bounded distributions with κ< 0, the fitness of a beneficial mutant pro-
duced is expected to be closer to the parent fitness. In other words, mutations are nearly neutral
and thus it takes a longer time to take over the population as shown in Fig 2(a). This results in
a larger number of mutants in the Weibull domain, which can be observed in the bottom panel
of Fig 3(a). We can clearly see from the top panels of Fig 3 that number of classes increases
with decreasing κ even in a high mutation regime. Moreover, the average number of classes
present at a time is much higher in this regime. This makes sense because the fitness of the clas-
ses belonging to κ = −1 cannot be very different from each other (can take on values between 0
and 1), which makes it possible for many of them to exist in the population. The maximum fit-
ness of the classes belonging to κ = 1/4 distribution will on an average be much higher than all
others (since the distribution is unbounded with a fat tail), thus out-competing the others in
the population.

Fig 3. The plot shows the average number of classes in the population as function of time for various initial fitnesses. The fitnesses are chosen from
Eq (1) with (a) κ = −1 (b) κ! 0 and (c) κ = 1/4. For each κ value, the plot showsN cðtÞ in both high mutation (top panels) and low mutation (bottom panels)
regimes. The straight line in all plots showsNμ + 1.

doi:10.1371/journal.pone.0151795.g003
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Number of mutations in the leader
In the low mutation regime, the average number of mutations in the leader is expected to be
very close to the step number since the genetic variation in the population is low and any muta-
tion that escapes drift quickly takes over the population [3]. We verify this point via simula-
tions as depicted in Fig 4. We find that the mutation number equals the step number in all the
three EVT domains of the DBFE in the low mutation regime during the initial steps. However
in the high mutation regime, the number of mutations in the leader of any step differs between
the three DBFE domains. When the mutation rate is increased, the genetic variation of the pop-
ulation and the significance of clonal interference also increases. In the high mutation regime,
the number of mutations in the leader is found to be less than the step number in all three
DBFE domains. This is because there is a chance that different mutants originating from the
same parent class can become the leader of the population at different times. This decrease
from the step number is the minimum for the fat-tailed distributions and maximum for the
truncated ones, as shown in Fig 4. This result is consistent with the number of classes present
in the population as discussed in the previous section. In the Fréchet domain, since the clonal
interference is minimal, it is most likely that a mutant originating from the present leader will
become the next one. In the Weibull domain, due to the large number of classes present in the
population, mutants originating from the same class can become leaders at different time
points.

Fitness and fitness difference
From our simulations, we find that the average fitness of the first mutant fixed in the popula-

tion, �f1 increases linearly with initial fitness, f0 for all κ in the low mutation regime and for
κ 6¼ 0 in the high mutation regime. So we can write

�f1 ¼ aðNmÞ
k f0 þ bðNmÞ

k ; ð8Þ

where the coefficients aðNmÞ
k and bðNmÞ

k are constants. In the low mutation regime, where the pop-
ulation for most times is monomorphic, the adaptive walk model has been used to analytically

obtain the fitness at the first step, �f1 as [15, 16]

�f1 ¼
Z u

f0

df Tðf  f0Þf ; ð9Þ

where the transition probability

Tðf  f0Þ ¼
1� e�

2ðf�f0Þ
h

� �
pðf Þ

R u

f0
dg 1� e�

2ðg�f0Þ
f0

� �
pðgÞ

: ð10Þ

In this model, from Eq (9), the coefficient aðNm�1Þ
k was obtained as 0.33, 1.0 and 1.6 for κ = −1,

0, and 1/4, respectively. The corresponding bðNm�1Þ
k for the aforementioned κ were 0.66, 2.0 and

1.89 [16]. In the high mutation regime where the adaptive walk model is not applicable, we
obtained the values for the coefficients in Eq (8) numerically. We find that for large f0, að50Þk

equals 0.004 and 1.5 and bð50Þk equals 0.99 and 9.1 for κ = −1 and 1/4 respectively.
The interesting result from our work is that, irrespective of the number of mutants produced

in the population, the difference Dfstep ¼ �f1 � f0 between the fitness of the first step and the ini-

tial fitness displays different qualitative trends: it increases for positive κ, approaches a constant
when κ = 0 and decreases for negative κ as shown in Fig 5 and S1 Fig.

Adaptation Dynamics Predicts the DBFE

PLOSONE | DOI:10.1371/journal.pone.0151795 March 18, 2016 8 / 16



We can better understand these increasing and decreasing trends by the following heuristic
argument. In both the low and high mutation regimes, for large f0, the fitness at the first step f1
increases linearly with the initial fitness is given in Eq (8). Therefore, we can write the selection
coefficient defined as the relative fitness difference at the first step as

s ¼
�f1 � f0
f0
¼ ða

ðNmÞ
k � 1Þf0

f0
þ bðNmÞ

k

f0
; for all k ; Nm: ð11Þ

In an adapting population, since the fitness of the first step is greater than the initial fitness, the
selection coefficient is always positive. As the fitness distributions belonging to the Fréchet
domain are unbounded with fat tails, high f0 values can be considered. In this case, the
second term on the right hand side (RHS) of Eq (11) can be ignored and we can write
s � ðaðNmÞ

k � 1Þ > 0. Thus for κ> 0, since aðNmÞ
k > 1 it follows that the fitness difference at the

first step increases with f0. On the other hand, since the distribution belonging to the Weibull
domain is truncated, we can invoke the following inequality to explain the decrease in fitness

Fig 4. Themain plot shows the number of mutations in the leader at any step for various κ andmutation rates. The simulation data is represented by
points while the broken lines connect the data points. The solid line shows y = x. In the inset, from a single simulation run, the fitness of the whole population
as a function of time is shown by broken lines and the fitness of the leader, whenever the leader changes, is shown in symbols.

doi:10.1371/journal.pone.0151795.g004
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difference with increasing f0:

�f1 � f0 < u� f0; ð12Þ

where u is the upper limit of the fitness distribution. With increasing f0, the RHS of the above

equation decreases showing that as the initial fitness increases, �f1 � f0 has to necessarily
decrease. Thus, the qualitative trends discussed above appear to be determined by the behav-
iour of the tail (bounded/unbounded), and not by the details of the model.

Further, it is interesting to note that while the data points for the exponentially decaying dis-
tribution (κ = 0) increase and seem to be approaching a constant in the low mutation regime,
the data in the high mutation regime seems to be reducing to approach the same constant. Our

Fig 5. Themain plot shows the fitness difference at the first step as a function of the initial fitness for variousNμ. The fitnesses are chosen from Eq
(1) with (a) κ = −1 (b) κ! 0 and (c) κ = 1/4. The solid lines in the main plot are obtained by numerically evaluating the integral given by Eq (9), while the dotted
lines are the approximate results that can be obtained for the results when the initial fitness is high in the low mutation regime. The broken lines for κ 6¼ 0 are
lines of best fit as mentioned in the text. The broken line for κ! 0 is used for connecting the data points. The inset shows the fitness difference at the first step
as a comparative measure of the fitness difference obtained at the first step when f0 = 0. Here, the lines are used for connecting the data points.

doi:10.1371/journal.pone.0151795.g005
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simulation results shown in Fig 5 not only match the predicted theoretical values and validate
the claim of different qualitative trends in each EVT domain in the SSWM regime, but also
show that the trends hold irrespective of the number of mutants produced in the population.
This result suggests that the qualitatively different trends of the fitness difference (increasing,
constant and decreasing with initial fitness in the Fréchet, Gumbel and Weibull domains,
respectively), can be used to distinguish between the EVT domains in a more general scenario.

Though the fitness difference at the first step is greater in the high mutation regime, when
compared with the results in the low mutation regime, when we look at the fitness difference at
the first step scaled by the fitness difference obtained when the initial fitness is zero (insets of
Fig 5), we see that this increase is slower in the high mutation regime compared to the results
obtained in the low mutation regime. This indicates that as the mutation rate increases, though
the number of mutants accessed is higher, the difference in fitness compared to a lower initial
fitness is not proportionally higher and is in fact lower for all the fitness distributions.

Rate of change of fitness with time
Besides the fitness increment at a fixed event of leader change, we also measured the fitness as a
function of time as shown in Fig 6. We observed that even though the fitness increases with
time in all the three EVT domains, the rate at which the fitness increases depends strongly on
the DBFE. This rate has an initial fast transient phase, after which it slows down.

The initial transient phase is strongly dependent on the initial condition as well as the muta-
tion rate as shown in S2 Fig. The increase in fitness is fastest for the lowest initial condition, but
it approaches the same fitness value as in the case of higher initial fitness in few generations.
The time taken for populations of different initial fitness to reach the same fitness value
depends on the mutation rate: for Nμ� 1, it takes about 20 generations, whereas for Nμ� 1,

Fig 6. Figure shows the average fitness increase with time for three different values of κ in the SSWM regime (Nμ = 0.01), and in the highmutation
regime(Nμ = 50). In all the cases, population starts with the same initial fitness f0 = 0.5.

doi:10.1371/journal.pone.0151795.g006
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it is approximately 200 generations. Even after this transient phase, the rate of increase in aver-
age fitness ( �F ðtÞ) with time depends on the mutation rate as shown in Fig 6. This is because of
the fact that when a large number of mutations is available at the same time, a highly fit mutant
can invade the population and give a large fitness increment. Therefore, the fitness of a highly
fit mutant sequence would be greater in the high mutation regime compared to the one in a
low mutation regime. The maximum fitness value reached in 9000 generations, in the case of
Fréchet distribution, is about 10 times more for the high mutation regime, which is consistent
with the expectation from Eq (7). Even beyond this point we noticed that the fitness is still
increasing. In the same way, the Gumbel distribution also shows a significant increase in maxi-
mum fitness reached in the high mutation regime as compared to the SSWM regime (about 4
times). Here also we found that the fitness is still increasing beyond the time point till which
we tracked the dynamics. The bounded distribution (Weibull) reaches near the upper bound
in SSWM and evolves slowly. However, fitness reaches a fitness plateau in the high mutation
regime and rate of adaptation becomes zero as can be seen in Fig 6.

From this, we observe that the rate of change of fitness strongly depends on the properties
of the underlying DBFE, which suggests that looking at this quantity can help us in distinguish-
ing the DBFEs. Hence, we measured the fitness increment defined as

D �F ðtÞ ¼ h �F ðt þ 1Þ � �F ðtÞi; ð13Þ

at each step. The D �F ðtÞ initially increases, then slowly decreases and settles down to a zero as
shown in Fig 7. If we denote this function as

D �F ðtÞ ¼ A
ta
; ð14Þ

where A is a constant and the exponent α can be used to distinguish the DBFE, since, as
explained below, exponent α is found to be greater (smaller) than one in the Weibull (Fréchet)
domain, but is close to one in the Gumbel domain.

In the SSWM regime, from Fig 7(a), we can see that each type of DBFE considered shows a
different rate of decay. The Weibull domain has a faster decay with α = 1.86, the Gumbel
domain has α� 1 [29] and the Fréchet domain α = 0.66 [29]. We observed that the same trend
is robust in a high mutation rate regime as well, where α values are slightly larger in all cases. In
this regime also α = 2.02, 1 and 0.76 for the Weibull, Gumbel and Fréchet domains, respectively
as shown in Fig 7(b). In the high mutation regime, in the case of Weibull distributions, fitness
reaches a plateau in few generations, after which its rate of change goes to zero as observed in
Fig 7(b). The theoretical prediction for fitness at every time step for the unbounded distribu-
tions belonging to the Gumbel and Frèchet domains was obtained by Park and Krug [29] in the
low mutation regime. The comparison of our simulation data with these predictions shows a
very good agreement in the Gumbel domain and in the Fréchet domain (up to a constant). In
this work, we have also considered the bounded distribution and observed that its rate of
decrease is faster with an exponent greater than one, which was not considered in the previous
studies. We observed that even in a high mutation regime, the exponent α shows the same
behaviour. In this regime, the rate of change of fitness has been calculated only for exponential
distribution belonging to the Gumbel domain [29] and their prediction matches with our data.
In this work, we have obtained a complete picture by studying the rate of change of fitness
numerically for the other two EVT domains as well.

Thus, the second main finding from our study is that in all DBFEs, the fitness difference at
each time step decreases with time as given by Eq (14) and we can distinguish between the
three EVT domains of DBFEs by looking at the exponent α.
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Discussion
The main purpose of our work is to determine the quantities that can be used to distinguish the
different extreme value domains of DBFE. Previous studies [16, 18] have found that in an
adapting population, the fitness gain at each fixation event shows qualitatively different trends
in the three DBFE domains when the number of mutants produced in the population is much
less than one at every generation (Nμ� 1). The focus of this work is to explore the parameter
regime in which the number of mutants produced is much above one (Nμ� 1). When the
mutation rate is high, the population becomes polymorphic and the better mutants existing in
the population compete with each other. From our study, we have observed that the qualitative
trends found for fitness difference when a new mutation establishes in the low mutation
regime hold irrespective of the number of mutants produced. Thus, this study suggests that the

Fig 7. Figure shows the fitness increment in each time step for three different values of κ in twomutation regimes (SSWM and highmutation). In
each case the data is fitted with the theoretically expected function given in Eq (14), except for the exponential distribution for which we used the theoretical
prediction by Park and Krug [29]. In all cases, the population starts with the same initial fitness f0 = 0.5.

doi:10.1371/journal.pone.0151795.g007
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fitness difference between successive mutations that spread in the population is a very impor-
tant and robust quantity that can be used to predict the DBFEs in a more general scenario.

From our simulations, we see that as the initial fitness is increased, the fitness difference at

the first step given by Dfstep reduces, approaches a constant, or increases with the initial fitness in

theWeibull, Gumbel and Fréchet domains, respectively. We can understand these trends by a
heuristic reasoning as discussed in detail in the Results section. This argument explains the

increase in Dfstep with f0 for an unbounded power law distribution and shows that the trends are

determined by the behaviour of the tail (bounded/unbounded), and not by the details of the
model.

Another important measure in understanding the dynamics of adaptation is the rate at
which it occurs. Most of the previous studies which measured the adaptation rate have only
considered exponentially distributed fitness distributions [20–22, 28, 34]. A previous study by
Park and Krug [29] also considered DBFEs belonging to the Fréchet domain, but only in the
SSWM regime (see Table 1). In this work, we have extended the previous studies by numeri-
cally measuring the rate of change of fitness for bounded distributions as well. We have mea-
sured the rate of change of fitness in all the three EVT domains of the DBFE in both low and
high mutation regimes. We observed that in all the cases, the rate of change of fitness decreases
with time as*t−α, where α> 1 for Weibull, α� 1 for Gumbel [29] and α< 1 for Fréchet
domains [29].

Experimentally, the distribution of beneficial fitness effects can be inferred by two methods.
In the first method, mutations are introduced in the wild type sequence and those that confer a
fitness advantage are separated and their distribution of fitness effects are determined. In this
method, DBFE belonging to all the EVT domains have been observed [5–14]. In contrast, here
we focus on learning about DBFE via adaptation dynamics. Though many works have tracked
the dynamics of the population during adaptation [7, 35–38], in most of them only the selec-
tion coefficient of the mutant fixed was measured. In our study, we have observed that the
selection coefficient as given by Eq (11) always decreases, with the increasing initial fitness or
increasing steps as shown in S3 Fig. Hence, this quantity is not useful to distinguish between
the EVT domains. However, from our study we observe that the fitness difference between
steps shows different patterns depending on the EVT domain of the DBFEs in both the high
and low mutation regimes and can be used to distinguish between the EVT domains.

In this work, we have numerically shown that the fitness returns in each EVT domain is
very robust and holds good even when the number of mutations produced is large (Nμ� 1).
Fitness difference can be measured in experiments, for example as in [5]. We suggest that
experiments can predict the EVT domain of DBFE by measuring the fitness difference between
successive mutations fixed in the population or even from the fitness of the first mutation,
when the initial fitness is varied. However, currently experimental studies that measure both
fitness and DBFE in the same study are not available, but it is highly desirable to have such
studies to test our predictions.

Supporting Information
S1 Fig. The plot shows the fitness difference at the first step as a function of the initial fit-
ness for different κ and two different Nμ. The lines give the theoretical values while the open
symbols are the simulation output for Nμ = 0.02 and the closed symbols are those for Nμ = 5.
(TIF)

S2 Fig. The figure shows the average fitness of the population for various κ in both the low
and high mutation regimes. Two different initial conditions f0 = 0 (open symbols) and f0 = 0.5
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(closed symbols) are considered.
(TIF)

S3 Fig. The main figure shows the selection coefficient as a function of step for all three
κ values.We considered two different Nμ where open symbols and closed symbols are for
Nμ = 0.01 and Nμ = 50, respectively. The inset shows the selection coefficient of various steps
for two different initial fitnesses f0 = 0.2fmax and f0 = 0.6fmax, where fmax is calculated using Eq
(7) in the high mutation regime.
(TIF)
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