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Abstract
Next generation sequencing is extensively applied to catalogue somatic mutations in can-

cer, in research settings and increasingly in clinical settings for molecular diagnostics, guid-

ing therapy decisions. Somatic variant callers perform paired comparisons of sequencing

data from cancer tissue and matched normal tissue in order to detect somatic mutations.

The advent of many new somatic variant callers creates a need for comparison and valida-

tion of the tools, as no de facto standard for detection of somatic mutations exists and only

limited comparisons have been reported. We have performed a comprehensive evaluation

using exome sequencing and targeted deep sequencing data of paired tumor-normal sam-

ples from five breast cancer patients to evaluate the performance of nine publicly available

somatic variant callers: EBCall, Mutect, Seurat, Shimmer, Indelocator, Somatic Sniper,

Strelka, VarScan 2 and Virmid for the detection of single nucleotide mutations and small

deletions and insertions. We report a large variation in the number of calls from the nine

somatic variant callers on the same sequencing data and highly variable agreement.

Sequencing depth had markedly diverse impact on individual callers, as for some callers,

increased sequencing depth highly improved sensitivity. For SNV calling, we report EBCall,

Mutect, Virmid and Strelka to be the most reliable somatic variant callers for both exome

sequencing and targeted deep sequencing. For indel calling, EBCall is superior due to high

sensitivity and robustness to changes in sequencing depths.

Introduction
Next generation sequencing creates a wealth of genomic data and therefore efficient and accu-
rate bioinformatic tools are required in the data analysis. Driving cancer research forward, the
detection of somatic mutations in cancer samples by whole genome and exome sequencing is
becoming routine in cancer research and increasingly in the clinical setting where identification
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of somatic mutations forms the basis for personalized medicine. Thus, highly accurate bioin-
formatic analysis pipelines are essential. In recent years, a number of publicly available somatic
variant callers have been developed, performing paired comparisons of sequencing data from
cancer tissue and matched normal tissue in order to detect somatic events. A limited number
of studies have evaluated the performance of a few of these tools, many analyses are based on
simulated data and evaluates only the detection of somatic single nucleotide variants (SNVs)
[1–6]. Limited comparisons have been performed for the detection of somatic small deletions
and insertions (indels) callers [7].

The nature of cancer tissue makes somatic variant calling a challenging task. Most solid
tumors, including breast cancer are known to be admixed with a large number of stromal cells.
Thus, a heterozygote allele distribution cannot be expected in cancer samples due to stromal
cell admixture, cancer cell aneuploidy, large genomic amplifications and deletions and genetic
heterogeneity of cancer cells due to subclonality within the cancer cell population. Hence, the
sensitivity of a somatic variant caller is of great interest, in order to detect a delicate signal. An
allele observed at low frequency might be just as scientifically interesting or of potential clinical
importance, compared to a more frequently sequenced allele, as it may originate from a cancer
subclone harboring mutations of clinical relevance. Ideally, a variant caller should also have a
high specificity to keep the number of false positive calls as low as possible. The a priori odds
that a given genomic position contains a somatic mutation may be as low as 1:105 to 1:106 as
the frequency of somatic mutations in many tumors is suggested to be as low as 1–10 per Mb
[8]. Hence, variant call format (VCF) files containing several thousands of somatic variant calls
from exome sequencing of a tumor sample must be expected to contain a substantial amount
of false positive calls, requiring additional post-call filtering. Suggestions for post-call filtering
are often poorly described or not provided by the software vendors wherefore subsequent vali-
dation analysis are often necessary.

When minimizing the number of false positive calls by making strict cut-offs for parameters
like Somatic Score values (SSC) (e.g. Somatic Sniper) or Fisher’s p-value (e.g. Varscan 2) one
risks filtering out true low-allelic somatic events. Setting the cut-off thresholds at a reasonable
point is a delicate task; balancing between not being flooded by false positives and not filtering
out low-allelic true somatic calls.

Sample preparation and exome enrichment laboratory procedures can introduce PCR
amplification artifacts, resulting in false positive or false negative calls. Sequencing and align-
ment errors, both random and systematic, also contribute to false positive calls [9,10]. For
example, if a germline variant is not detected in the normal sample and successfully detected in
the tumor sample the variant will be misinterpreted as a somatic variant, also resulting in a
false positive call. Early attempts to identify somatic mutations relied on the “subtraction”
method where independent genotyping of the tumor and normal samples were subtracted [3].
Newer algorithms utilize advanced statistical methods for the complex task of detecting
somatic events. Several somatic variant callers use a Bayesian approach [8,11–15], modified in
different ways, while others uses a Fisher’s exact statistics [16,17]. Each somatic variant caller is
built on its own mathematical algorithm, with inherent strengths and weaknesses. The callers
employ different user-defined input criteria for calling and provide varying output parameters.

Studies have shown, that sequencing errors are not uniformly distributed, as they are influ-
enced by e.g. GC-content and platform-related phenomena such as enzyme preferences during
the sequencing-by-synthesis technique [9]. The somatic variant caller EBCall [12] addresses
this issue by using sequencing data from multiple non-paired normal samples as prior knowl-
edge of the distribution of sequencing errors (and alignment artefacts) in order to optimize the
discrimination between sequencing errors and genuine somatic mutations.

Somatic Variant Calling in Next Generation Sequencing Data
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That current sequencing paradigms are inadequate for tumors that are impure, aneuploid
or clonally heterogenous was recently demonstrated in a comprehensive study by Griffith et al
[18].

The aim of our study was to compare the performance of nine different publicly available
somatic variant callers, assessed to be the most commonly utilized by the bioinformatics com-
munity, for both SNV and indel calling on real-life breast cancer sequencing data. Our study
evaluates the performance on medium sequencing depths by use of exome sequencing data
and high sequencing depths by use of targeted deep sequencing data. Evaluating caller perfor-
mances on deep sequencing data is highly relevant due to the increasing clinical use of targeted
cancer panels for identification of therapeutic target mutations. We report major differences in
the number of somatic calls returned by the individual callers. A large proportion of calls were
returned by only a single caller and most likely represent false positive calls. Sequencing depth
had clear impact on most callers, where increased sequencing depth often lead to highly
improved sensitivity.

Results
In order to evaluate the performance of nine publicly available somatic variant callers the dif-
ferent caller software were applied to medium and high sequencing depth data, as depicted in
Fig 1. We started out with exome sequencing (mean coverage 80 x) of matched tumor and

Fig 1. Flow chart illustrating the overall experimental design. Exome sequencing was performed on matched tumor-normal DNA from five breast cancer
patients followed by somatic variant calling using nine different somatic variant callers. The union of these calls, except intronic and intergenic positions,
reported by the nine somatic variant callers was included in a capture reagent and targeted deep sequencing was performed. Variant calling was repeated in
the deep sequencing data. The two dataset were compared to a set of manually curated high-confidence somatic mutations which were obtained through
manual inspection of the data.

doi:10.1371/journal.pone.0151664.g001
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normal DNA from five breast cancer patients followed by variant calling with the nine somatic
variant callers. We then designed a capture reagent including the union of these calls, a total of
21,970 chromosomal regions, and performed targeted deep sequencing (mean coverage 362 x).
Variant calling was repeated in the deep sequencing data. The two dataset were compared to a
set of manually curated high-confidence somatic mutations which were obtained through
manual inspection of the data. A detailed description is found in the methods section.

Large variation in the number of calls returned by somatic variant callers
using exome sequencing data
Four callers including Mutect, Virmid, Shimmer and Somatic Sniper return only SNVs, one
caller, Indelocator, returns only indels and four callers namely Seurat, Varscan 2, EBCall and
Strelka return both SNVs and indels. Somatic variant calling on the exome sequencing data of
the five tumor-normal pairs revealed major differences in the number of calls returned by the
different variant caller tools, as shown in Fig 2.

Seurat and Somatic Sniper returns the by far largest number of SNV calls. Strelka returns
the lowest number of both SNV and indel calls. Seurat and Indelocator return surprisingly
high numbers of indels. A comparable pattern is seen for the caller performances on the differ-
ent tumor-normal pairs. Therefore, results from individual samples are pooled in the same
dataset in the following analyses.

Varying degree of inter-caller agreement between somatic variant
callers
The inter-caller agreement is shown in Fig 3. For SNV calling in exome sequencing data, Shim-
mer stands out reporting only a small fraction of the positions called by the other callers. Also
displaying low agreement with the other callers, only a very small fraction of the positions
called by Somatic Sniper are also reported by other callers. For indel calling in exome sequenc-
ing data, an overall low inter-caller agreement is observed. Strelka stand out from the other
callers. Calls reported by Strelka are to a large extent also reported by other callers, but Strelka
fails to detect a large proportion of calls detected by others, a phenomenon also seen in the call-
ing of SNVs. Thus, Strelka is a very strict caller, which is also reflected in the low total number
of calls returned by Strelka.

Fig 2. Total number of somatic mutations called by nine somatic variant caller tools in the exome sequencing data of five breast cancer samples.
SNV and indel calls in left and right panels, respectively.

doi:10.1371/journal.pone.0151664.g002
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For both SNVs and indels, the variant callers have a higher degree of agreement in the deep
sequencing data set. For SNV calling in deep sequencing data, four callers, EBCall, Mutect,
Strelka, and Virmid, exhibit the highest inter-caller agreements and seem to converge towards
a common set of SNV positions. A high fraction of positions reported by Shimmer are not
reported by other callers. Somatic Sniper has very low agreement both in terms of detecting
what is reported by other callers and for the positions reported by Somatic Sniper to be
reported by other callers. For indel calling in deep sequencing data Strelka and Indelocator dis-
play the overall highest inter-caller agreement.

Sequencing depth impacts the number of calls returned by somatic
variant callers
To evaluate the effect of increased sequencing depth on the reported number of somatic calls,
comparison of the number of calls returned from the exome sequencing and targeted deep
sequencing data, respectively, was performed for each of the somatic callers, shown in Fig 4.

Sequencing depth was found to have markedly diverse impact on the individual callers.
Shimmer and Somatic Sniper, reporting only SNVs, are highly sensitive to increased sequenc-
ing depth as these callers return a far higher number of calls from the deep sequencing data
compared to exome sequencing data. These additional calls are most likely highly enriched for
false positive calls as a large number are reported as recurrent mutations across the patients,
shown in S1 Fig, a phenomenon not likely to be biological. Seurat and Varscan 2 also report

Fig 3. Inter-caller agreement. Pairwise comparisons of the nine studied variant callers in exome sequencing of five breast cancer samples in exome
sequencing and deep sequencing data in upper and lower panels, respectively. The matrix depicts the agreement among the studied variant callers. In each
horizontal line, the number reflects the fraction of calls found by the caller that are also reported by the other callers. For instance, looking at EBCall in the first
line, Mutect reports 51% of the calls reported by EBCall. Deep sequencing data includes only data covered by 200 x at minimum in both tumor and normal
sample. The color reflects the degree of agreement, with the highest color intensity depicting high agreement between the two callers.

doi:10.1371/journal.pone.0151664.g003
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relatively high number of calls exclusively in only one of the data set. Conversely, EBCall and
Virmid and to a smaller extent Mutect and Strelka have high fractions of calls reported in both
medium and high sequencing depths. Focusing on indels, Seurat, Indelocator and VarScan 2
return many positions exclusively from exome sequencing data. EBCall and especially Strelka
report very few positions, but a high fraction is reported from both medium and high sequenc-
ing depths.

Many calls are reported by only one or two callers
For both SNVs and indels, the main part of called positions are reported by only one or two
callers as seen in Fig 5, depicting the number of callers agreeing on the called positions in
exome sequencing and deep sequencing data.

In exome sequencing data, a subset comprising 472 SNV variants were detected by all eight
SNV callers. In comparison, 22,032 SNVs were only called by a single caller. All five indel call-
ers agree on 27 indels. In comparison, 10,541 indels are called by only a single indel caller. In
deep sequencing data, the same tendency of many positions reported by only a single or a few
callers is seen.

The variant callers display varying degree of sensitivity
A set of high confidence somatic variant calls within the coding region were identified as
described in the methods section. The ability to detect this set of high quality variants, in total
528 SNVs and 31 indels, were used as a surrogate sensitivity measure of each of the studied
somatic variant callers, depicted in Fig 6.

For SNV calling, Somatic Sniper performed poorly in both medium and high coverage data
with sensitivity in exome sequencing data of 54% decreasing to 48% in the deep sequencing
data. Shimmer also achieved a low sensitivity of 58% in exome sequencing data, which was
highly improved in deep sequencing data to a sensitivity of 94%. Seurat, Strelka and Virmid
also displayed marked improved sensitivity in deep sequencing data and Seurat attained the
highest sensitivity of SNV detection of 96%. The sensitivities of EBCall and Mutect are robust
to changes in sequencing depth, but only reach sensitivities of 77% and 87% in deep sequencing
data, respectively. For indels, EBCall has the highest sensitivity rate of 67% and 74% in exome
and deep sequencing data, respectively. The remaining four indel callers had sensitivity rates
ranging between 45% and 64%.

Fig 4. Impact on variant calling of increased sequencing depth. The impact on variant calling of increased sequencing depth for SNV and indel calling
are shown in left and right panels, respectively. The number of called positions called in exome sequencing only, validation data only and both data set,
depicted in blue, green and red, respectively. This analysis only includes regions that are successfully covered (at least 200 x) in the deep sequencing data.

doi:10.1371/journal.pone.0151664.g004
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Major differences in calling patterns are observed among the studied
somatic variant callers
The different calling patterns of the somatic variant callers can be illustrated by hierarchical
cluster analysis, as shown in Fig 7.

For SNV calling in exome sequencing data, Virmid, Strelka and EBCall display the most
similar calling pattern and report relatively few positions. Conversely, Seurat and Somatic
Sniper stand out with the most dissimilar calling patterns. For indel calling in exome sequenc-
ing data Strelka and EBCall have the most similar pattern, while Seurat, Indelocator and Vars-
can 2 report a large number of calls that are not called by other callers. Focusing on SNV

Fig 5. Concordance of called positions.Concordance of called positions in exome sequencing data and deep sequencing data are shown in upper and
lower panels, respectively. SNVs and indels are depicted in left and right panels, respectively.

doi:10.1371/journal.pone.0151664.g005
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calling in deep sequencing data Virmid, Mutect, Strelka and EBCall converge towards a similar
pattern of mutation calling and report relatively few mutations. Shimmer and to a lesser extent
Somatic Sniper, Varscan 2 and Seurat report large numbers of SNVs but in diverse calling pat-
terns. For indel calling in deep sequencing data Seurat and Varscan 2 display a very low agree-
ment with the other callers, reporting a number of calls exclusive to each of these callers.

Discussion
Somatic variant callers are challenged by the balancing act between detecting true low-allelic
somatic mutations and stringency of the calling procedure in order to reduce the number of
false positive calls. Each caller algorithm presents its own version of this compromise and the
performance is most likely dependent on the nature of the cancer samples. In contrast to most
previous reports, we utilize real breast cancer sequencing datasets for evaluation of the perfor-
mance of nine somatic variant callers and our data contain highly variable, low allelic fractions
which is representative of breast cancer sequencing studies.

Controlling the false positive rate is the major challenge in somatic variant calling. We
report the number of calls returned by the different somatic variant caller tools to be highly
variable. EBCall, Mutect, Strelka and Virmid return the lowest number of SNV variant calls,
display similar calling pattern in the hierarchical cluster analysis of deep sequencing data and
thus converge towards the same set of mutations. Conversely, Seurat, Somatic Sniper and
Shimmer (Shimmer in high sequencing depth data only) return surprisingly high numbers of
SNV calls in low agreement with other callers. The very large number of positions in exome
sequencing data reported by only a single or two of the nine somatic variant caller tools sug-
gests the main part of these positions to be false positive calls, though some may represent true
somatic mutations originating from a very small fraction of malignant cells. For indel calling,
Seurat and Indelocator report very high numbers of returned calls, while Strelka, especially in
sequencing depths around 80 x reports a very limited number of indel calls.

We observe a lower agreement in indel calling compared to SNV calling, suggesting that
indel calling poses greater challenges to the callers. Correct indel calling is highly dependent on
accurate alignment, and in recent updates of germline variant calling software like GATK [19]
local de novo assembly is performed around indels in order to optimise indel calling. This
method is not applied by any of the somatic variant callers included in our study.

Overall, an increase in sequencing depth results in a higher level of agreement among the
different callers. For some somatic variant callers, sequencing depth highly affects the

Fig 6. Variant caller sensitivity. Variant caller sensitivity for detecting the manually curated mutations for SNVs and indels are shown in left and right
panels, respectively. The y-axis depicts the number of variant calls. The dark and light grey bars represent calls in the exome and targeted deep sequencing
data, respectively.

doi:10.1371/journal.pone.0151664.g006
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performance. For SNVs, Shimmer, Seurat and Somatic Sniper are revealed to be highly sensi-
tive to changes in coverage and for these callers the number of returned calls is tremendously
dependent on sequencing depth. Shimmer and Somatic Sniper return surprisingly high num-
ber of calls in the deep sequencing data. These positions are to a large degree not detected by
any other caller and are considered to include many false positive calls. Conversely, EBCall and
Virmid have high fractions of calls reported in both medium and high sequencing depths, sug-
gesting that these algorithms are reliable in both sequencing depths around 80 x and deep
sequencing data with coverages around 300 x and can thus be categorized as performing in a
more robust, coverage-independent manner. Mutect performs almost similarly but has a
higher false positive rate as a slightly higher fraction of calls in exome sequencing data cannot

Fig 7. Calling patterns of the somatic variant callers.Hierarchical cluster analysis of mutations called by the somatic variant callers in exome and deep
sequencing data in left and right panel, respectively. Each red line represents a called somatic mutation.

doi:10.1371/journal.pone.0151664.g007
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be validated in the deep sequencing data. Strelka is a conservative variant caller with a very low
number of returned calls, especially at medium sequencing depths.

Focusing on indels, Seurat, Indelocator and VarScan 2, are found to be highly affected by
changes in sequencing depth. Strelka returns very few calls and has the highest percentage of
calls reported in both exome and deep sequencing data. EBCall is also relatively coverage-inde-
pendent and performs best in “sensitivity test” detecting the manually curated positions. Seu-
rat, Varscan 2 and Indelocator (Indelocator in medium sequencing depth only) have very high
total numbers of reported calls, indicating a low specificity for these callers.

Somatic sniper has no lower cut-off for the read depth of its candidate somatic event sites and
therefore the default use of Somatic Sniper returns high rates of somatic calls compared to other
variant callers. Even with addition of post-call filtering of SSC> 40, a phred based score which in
principle should be translated into a false discovery rate of 1 in 10,000, the resulting number of vari-
ants called by Somatic Sniper is unrealistically high. Somatic Sniper has the second-highest number
of total somatic calls but nevertheless the poorest agreement with other callers and the lowest sensi-
tivity towards the manually curated calls. Thus, Somatic Sniper most likely reports a high number
of false positive calls and is, in our study, outperformed by other somatic variant callers.

In exome sequencing data, EBCall, Mutect, Strelka and Virmid detect a high fraction of the
manually curated somatic mutations without also reporting a large number of suspected false
positive calls. All somatic variant callers, except Somatic Sniper, detect the main part of the
manually curated high-quality somatic mutations within the coding region in deep sequencing
data. However, no caller detects all of them. Thus, a combination of somatic variant callers
may be a good solution. A statistical approach for building a combined caller has been pre-
sented [1]. A combination of somatic variant caller tools can improve sensitivity. An open-
source software tool, CAKE, that integrates four somatic variant caller algorithms, Bambino,
CaVEMan, SAMtools and Varscan 2, is in fact already available [20].

Although the use of real biological data has some advantages, a major caveat to our study is
the difficulty of defining the true number of somatic mutations in the cancer samples, render-
ing calculations of true false positive and false negative rates impossible.

Alignment of the sequenced reads greatly influences the subsequent variant calling. Thus, a
possible weakness of our study is that we have used only one aligner tool, NovoAlign. The use
of other alignment tools could potentially influence our results. However, NovoAlign has
repeatedly been shown to be one of the best performing alignment tools available, being highly
accurate. Likewise, the evaluated somatic variant callers may perform differently in other types
of cancer tissue, e.g. with higher content of malignant cells. In sequencing studies of tumor
samples with a higher content of malignant cells than presented here, true somatic mutations
are more easily detected and thus, for high purity samples it might be beneficial to increase
stringency levels and perform strict post-call filtering in order to reduce the false positive rate.
It must be mentioned that it is possible that comprehensive output parameter optimization
could potentially improve caller performance for some of the included callers.

Conclusions
Our use of non-simulated sequence data has the advantage of capturing real biological varia-
tion such as the complex inherent features of cancer tissue and process errors, and therefore
reveals the most realistic performance measure of the somatic mutation callers. Our study illus-
trates the effect of validation with targeted deep sequencing relating to the question of necessity
of validation of findings from exome sequencing studies. In studies based on exome sequencing
only, typically with a relatively low coverage, we recommend EBCall and Virmid as they return
very few calls that cannot be validated by targeted deep sequencing.

Somatic Variant Calling in Next Generation Sequencing Data
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In summary, our data reveals major differences among the nine studied somatic variant call-
ers. EBCall, Mutect, Strelka and Virmid all perform well in our study. These four callers are
seen to converge towards a common set of positions, while other of the studied variant callers
report more divergent sets of positions. Sequencing depth had markedly diverse impact on
individual callers. For SNV calling, we report EBCall, Mutect, Virmid and Strelka to be the
most reliable somatic variant callers for both medium and high coverage sequencing data.
Strelka is, however, a very conservative somatic variant caller. For indel calling, EBCall is supe-
rior compared to other callers as this caller has a high sensitivity rate, low number of returned
calls and is robust to changes in sequencing depths.

Methods

Patient material
The study is based on fresh frozen primary tumor tissue (in one case pre-invasive tissue
(DCIS)) from five breast cancer patients with invasive ductal carcinoma and matched normal
tissue. Tumor tissues were secured during primary surgery and stored at -80˚C until sample
preparation. Haematoxylin-eosin sections of tumor tissue were reviewed by a certified patholo-
gist, ensuring a content of malignant cells of 60% at minimum. A start amount of 20–30 mg
fresh frozen tissue was used for the purification process. Tissue disruption and homogenization
was performed using TissueLyser (Qiagen) and purification of DNA was performed using All-
Prep DNA/RNAMini Kit (Qiagen). Matched normal tissue was stored as formalin-fixed paraf-
fin-embedded (FFPE) tissue. The FFPE blocks were cut in 30–40 sections of 10 μm and DNA
extracted using AS1000 Maxwell 16 (Promega, USA).

Ethics
The study was approved by the Ethical Committee of Region Syddanmark and notified to the
Danish Data Protection Agency. The patients have provided written, informed consent to par-
ticipate in the study. Due to restrictions from the Ethical Committee of Region Syddanmark
and in order to ensure patient confidentiality raw exome sequencing data are not available. All
relevant data are available upon request to the corresponding author.

Library construction and exome sequencing
One microgram of genomic DNA from each sample was randomly fragmented by focused
acoustic shearing (Covaris inc.) according to Illumina’s protocol. The fragment length was
measured by Bioanalyzer (Agilent Technologies 2100), confirming a fragment length of 150–
300 bp. Exome enrichment was performed with Illumina's TruSeq DNA Sample Preparation,
followed by sequencing on the Illumina HiSeq 1500 platform with paired end sequencing 2 x
100 bases, loading three exomes per lane. FASTQ files were aligned to the human reference
genome GRCh37 (feb.2009) using the Novoalign v. 3 algorithm (www.novocraft.com) at
default parameters. Removal of duplicate reads, recalibration and local realignment around
indels were performed using Best Practices pipeline v. 2.7 [19]. The result was a mean coverage
rate in the exome region of 80 x (S1 Table).

Variant calling in exome sequencing data
On the exome sequencing data, somatic variant calling was performed using nine publicly
available somatic variant callers: EBCall [12], Mutect [8], Seurat [14], Shimmer [16], Indeloca-
tor (http://www.broadinstitute.org/cancer/cga/indelocator), Somatic Sniper [13], Strelka [11],
VarScan 2 [17] and Virmid [15] with default settings and recommended parameters. We did
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not include LOH calls in the study. Post-call filtering was applied for Indelocator, Somatic
Sniper and VarScan 2. Settings and post-call filters are shown in Table 1.

For variant calling with EBCall, exome sequencing data from unrelated individuals, run in our
laboratory in a clinical setting, processed under the exact same conditions were used as prior
knowledge for the purpose of discrimination between sequencing errors and somatic mutations.

A detailed description of the somatic variant callers used in the study can be found in S1 File.

Validation of candidate somatic variants by targeted deep sequencing
The union of putative somatic mutations, except intronic and intergenic positions, reported by
the nine somatic variant callers was used to select chromosomal candidate regions for targeted
deep sequencing.

Additional genomic positions were included as related cancer samples from the same
patients formed the basis for selecting targeted regions, described in Krøigård et al. [21], there-
fore the variant callers had a chance to report low allele frequency variants found in other steps
of cancer progression when presented with increasing coverage.

In total, 21,970 chromosomal regions were targeted. Target enrichment was performed
using SureSelect DNA enrichment methodology (Agilent). A custom SureSelect enrichment kit
was designed using the Agilent SureDesign application (https://earray.chem.agilent.com/
suredesign/). Library construction and SureSelect enrichment were performed according to
manufacturer’s protocol and sequenced on the Illumina HiSeq 1500 platform with paired end
sequencing 2 x 100 bases. Deep sequencing resulted in a mean coverage of 362 x of the targeted
positions (S1 Table). Alignment and data preprocessing were performed as described above.
Variant calling of the targeted sequencing data was performed by the nine variant callers using
the same settings as for exome sequencing data (Table 1).

For deep sequencing data only positions covered by at least 200 x are included in the data
analyses.

Table 1. The nine somatic variant callers, settings and post-call filtering used in the study.

Somatic
variant caller

Statistical approach URL V Type of
call

Settings Post-call filter

EBCall [12] Bayesian algorithm http://gihub.com/friend1ws/
EBCall

2 SNV's,
INDELS

Default -

Mutect [8] Bayesian algorithm http://www.broadinstitute.
org/cancer/cga/mutect

1.1.5 SNV's Validation_strictness Strict -

Seurat [14] Bayesian algorithm http://sites.google.com/site/
seuratsomatic

2.5 SNV's,
INDELS

Phred scaled somatic
score: Q > 15

-

Shimmer [16] Fisher's exact test,
multiple testing
correction

http://www.github.com/
nhansen/shimmer

0.36 SNV's Base quality > 20, mapping
quality > 10

-

Indelocator Not specified http://www.broadinstitute.
org/cancer/cga/indelocator

2.3.9 INDELS Tumor INDEL
fraction > 10%

Indel seen by min 2
reads

Somatic
Sniper [13]

Bayesian algorithm http://gmt.genome.wustl.
edu/somatic-sniper/current

1.0.3 SNV's Mapping Quality > 10 RD: Tumor min 6,
normal min 8,
SSC > 40

Strelka [11] Bayesian algorithm ftp://strelka@ftp.illumina.
com/

1.0.12 SNV's,
INDELS

Default -

VarScan 2 [17] Heuristic, Fisher's exact
test

http://varscan.sourceforge.
net

2.3.6 SNV's,
INDELS

Strand bias [0] Fisher's p-value < 0.05

Virmid [15] Bayesian algorithm http://sourceforge.net/
projects/virmid

1.1.0 SNV's Mapping quality > 10 -

RD: read depth. SNV: single nucleotide variant. SSC: Somatic score. V: version.

doi:10.1371/journal.pone.0151664.t001
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Establishment of a set of high-confidence somatic mutations by an
alternative method combined with manual curation
In a previous study of ours [21], an alternative calling method combined with manual curation,
was applied to obtain high-confidence somatic variants from the coding regions of the included
samples. To evaluate the sensitivity of the tested variant caller tools we used this conservative
method to identify a set of high-confidence somatic mutations as a list of true somatic muta-
tions. In brief, the VarScan 2 multisample tool (version 2.3.6) was utilized in its most lenient
stringency settings on the validation data of the five tumor-normal pairs to generate a list of
putative variants, germline as well as somatic. Subsequently, manual filtration of the variants
were conducted using the following criteria: normal sample B Allele Frequency (BAF) less than
0.02, all samples should have a read depth of min. 50 x and BAF in the tumor sample should be
0.05 at minimum. Subsequently, all identified somatic mutations were manually examined by
visual inspection of the BAM files to remove false positive calls as visual evaluation of called
somatic mutations is increasingly recognized to be a powerful strategy for excluding false posi-
tive calls. The manual inspection was carried out as follows: BAM files of tumor and normal
samples as well as five other unrelated normal BAM files were loaded in to GenomeBrowse
(Golden Helix) and the postulated somatic variant calls were visualized. Variant calls in which
the variant base were also present repeatedly in normal BAM files were rejected as false positive
calls. As were variant calls located in repetitive areas and variants with many adjacent variants
(SNP cluster regions) as they were suspected to result from systematic misalignment.

The resulting set of manually validated high-confidence somatic variants allowed us to eval-
uate the sensitivity, but not the specificity of the included somatic variant caller tools.

Supporting Information
S1 Fig. A pseudomeasure of false positive calls returned by the somatic variant callers. For
each caller, in exome sequencing and deep sequencing data in upper and lower panels, respectively,
the diagrams depict whether mutations are called in only a single tumor sample or are reported
recurrently frommore than one tumor sample. Recurrent variant calls among the different tumor
samples most likely represents false positive calls rather than a biological phenomenon and major
differences are seen among the different somatic variant callers in this parameter.
(TIF)

S1 File. Short description of the evaluated somatic variant callers.
(DOCX)

S1 Table. Mean coverage in exome sequencing and targeted deep sequencing.
(DOCX)
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