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Abstract
Experimental measurements require calibration to transformmeasured signals into physi-

cally meaningful values. The conventional approach has two steps: the experimenter

deduces a conversion function using measurements on standards and then calibrates (or

normalizes) measurements on unknown samples with this function. The deduction of the

conversion function from only the standard measurements causes the results to be quite

sensitive to experimental noise. It also implies that any data collected without reliable stan-

dards must be discarded. Here we show that a “1-step calibration method” reduces these

problems for the common situation in which samples are measured in batches, where a

batch could be an immunoblot (Western blot), an enzyme-linked immunosorbent assay

(ELISA), a sequence of spectra, or a microarray, provided that some sample measurements

are replicated across multiple batches. The 1-step method computes all calibration results

iteratively from all measurements. It returns the most probable values for the sample compo-

sitions under the assumptions of a statistical model, making them the maximum likelihood

predictors. It is less sensitive to measurement error on standards and enables use of some

batches that do not include standards. In direct comparison of both real and simulated immu-

noblot data, the 1-step method consistently exhibited smaller errors than the conventional

“2-step”method. These results suggest that the 1-step method is likely to be most useful for

cases where experimenters want to analyze existing data that are missing some standard

measurements and where experimenters want to extract the best results possible from their

data. Open source software for both methods is available for download or on-line use.

Introduction
Nearly every quantitative experiment requires calibration—the mathematical conversion of
raw measurements into physically meaningful values. For example, calibration of immunoblot
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(Western blot) data converts the intensities of protein bands that are detectable on a blot into
the concentrations of proteins that were present in the original samples. Although many scien-
tists take calibration for granted, we show here that conventional approaches are not particu-
larly accurate, causing them to lose some of the information that is carried by valuable
measurement data. As a result, they provide a less than optimal estimate of the true sample val-
ues. To address this, we developed an approach that systematically exploits all available infor-
mation in the data and returns the most accurate results possible within the constraints of a
statistical model.

The classical solution to the linear calibration problem [1–4] is a two step process: first, dur-
ing the calibration step, measurements on known samples, “standards,” are used to deduce a
conversion function. Then, during the prediction step, the conversion function is used to con-
vert measurements on unknown samples to physical quantities. For example, suppose a chem-
ist uses an instrument whose response is linear in the amount of protein, chemical, or other
analyte in a sample. This means that an instrument measurement, y, is related to the amount of
analyte, x, according to the response function

y ¼ aþ bx þ ε: ð1Þ

The α and β parameters are instrument-specific sensitivity coefficients and ε represents ran-
dom measurement noise. In the calibration step, the chemist estimates the α and β sensitivity
coefficients, yielding a and b respectively, by measuring several standards with known compo-
sitions and fitting the resulting data with Eq 1 using linear regression. Substituting the regres-
sion results into Eq 1 and solving for x yields the conversion function

x ’ y � a
b

: ð2Þ

In the prediction step, the chemist measures samples of unknown composition on the same
instrument and inserts the measurements into Eq 2. This yields the sample analyte amounts.

In this example, note that errors in the standard measurements lead directly to errors in the
sensitivity coefficient estimates. From there, they lead to errors in the computed analyte
amounts. For this reason, it is good practice to measure standards repeatedly because this
reduces the effects of their errors through averaging. More standard measurements also help
because they can enable the experimenter to test the instrument (or method) response linearity
(e.g. see ref. [5]). However, the number of standard measurements is usually limited by several
factors. First, each standard measurement costs time and materials. Also, standard measure-
ments often replace the opportunity to measure unknown samples; for example, protein elec-
trophoresis gels have a fixed number of lanes, so lanes that are used for standards cannot be
used for unknown samples. Additionally, experimental mistakes or artifacts may make some
standard measurements invalid.

Calibration often needs to be performed repeatedly. For example, many experimental meth-
ods analyze samples in groups in which the sensitivity is the same for all measurements within
a group but different for measurements in different groups (e.g. immunoblots and ELISA
assays). Multiple calibrations are also required when one has many instruments that have dif-
ferent sensitivities. Additionally, most instrument sensitivities “drift” over time, necessitating
periodic re-calibration (e.g. spectrometers and chromatographs). For convenience, we call all
of these situations “batch-analyses,” defining a batch as any collection of measurements for
which the sensitivities can be considered to be constant. By implication, each batch requires its
own calibration.

We show here that calibrating each batch independently of the others, which is typical, is
not the best approach because the results are very sensitive to errors in the standard
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measurements. However, if sample replicates are spread across different batches, then calibrat-
ing all batches in a simultaneous analysis can substantially reduce the effects of measurement
noise. In brief, our approach is to fit a statistical model to all of the data in a single step, finding
both the instrument sensitivities and analyte amounts that best agree with all of the measure-
ments. In other words, we cross-calibrate each batch against every other one. We call this the
1-step method, in contrast to the conventional 2-step method. The principle advantage of the
1-step method is that it makes calibration less sensitive to individual standard measurements.
This often enables the use of batches that did not include any standards and it also enables the
detection of errors in standard measurements. The results of the 1-step method are the maxi-
mum likelihood predictors, meaning that they are the results that are most probable within the
assumptions of a statistical model.

We developed the 1-step calibration method to analyze data that we recently collected on
proteins in mouse skin tumors. Our goal was to compare the relative levels of each of 7 differ-
ent proteins (CypA, Hsp90, Hsp70, Hsc70, P53, Raf, and pERK) in 230 precancerous and
cancerous mouse skin tumors using quantitative immunoblotting methods [6–10]. In brief,
tumor extracts (replicated, pre-mixed with denaturing SDS-sample buffer, and stored at -80 C
in small aliquots to maintain their integrity) were run on polyacrylamide gels (SDS-PAGE) to
separate proteins by size and charge, followed by their transfer to nitrocellulose membranes.
To individually probe query proteins of different molecular weights, the membranes were cut
into horizontal strips bracketing size ranges determined by visible molecular weight standards
that were run with each gel. Each strip, usually containing just one, or at most two query pro-
teins of close molecular weight, was probed with the appropriate primary antibody (Spratt
et al., in preparation). This was followed by incubation with secondary antibodies linked to an
infrared fluorophore using the LICOR fluorescent Western blot detection system [11,12]. This
method assured that signal intensity was linear within a large dynamic range.

Calibrating these data was challenging for several reasons. First, immunoblotting is inher-
ently imprecise. Indeed, all of the samples in our study, including those for standards, exhibited
substantial measurement error (after calibration, our average CV was 41%). For this reason, we
analyzed each sample multiple times on different blots so that we could reduce the effects of
measurement noise through averaging. In total, we analyzed 230 tumor extracts on 117 immu-
noblots, each of which held up to 20 lanes (1510 replicated samples total, average of 6 repli-
cates/sample). Secondly, one cannot directly compare fluorescence measurements between
different blots because each blot’s sensitivity is strongly affected by minor experimental differ-
ences [9]. As a result, each blot needed to be treated as its own batch, with its own batch-spe-
cific sensitivity (calibration showed that they varied 27-fold between least and most sensitive).
Finally, we could not use internal standards in this investigation (see [6]), which in this case
would be naturally expressed proteins that are expected to have nearly constant concentrations
such as the products of housekeeping genes, because tumors are very heterogeneous. As a
result, we had to use a separate external standard, which was then subject to independent mea-
surement errors. We created our standard by pooling several samples together to produce a
single sample that included all of our proteins of interest [13].

Our 1-step calibration method is sufficiently straightforward that it would be surprising if
some version of it has not been used previously (see related work in [14–16]). In particular,
many biologists have likely used common samples to connect different batches in an ad hoc
manner. Our method applies this logic systematically over an entire data set, simultaneously
finding the best solution given all of the data.

Our 1-step calibration method is distinct from several other modifications to the classic cali-
bration problem. Of particular note, Krutchkoff showed, nearly 50 years ago, that it can be bet-
ter to fit the experimental results for the standard using the conversion function (Eq 2), rather
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than with the response function (Eq 1), which is called the inverse approach [17,18]. This led
to an active debate about the relative merits of the two methods, along with the development of
inverse regression methods [2,4,19]. From our reading of the literature, this debate appears to
have largely ended by now, although without a clear winner. Other modifications to the classic
calibration problem include Bayesian [20] and non-parametric [3,21] methods. Bayesian meth-
ods are particularly helpful when the instrument is relatively insensitive to analyte variation
(i.e. β is small) and the non-parametric methods when the measurement errors are substan-
tially non-normally distributed. Finally, bootstrapping methods [22,23] can provide more
accurate confidence intervals for the results, particularly for multivariate problems. In contrast
to these developments, our 1-step approach follows the style of the classic calibration approach,
keeping the linear statistical model and the least squares fitting approaches. It extends the clas-
sic calibration approach to optimally account for multiple batches.

Results

Definitions and model
Extending the analytical chemistry example given above, consider the situation in which one is
quantifying the amount of an analyte in each of many samples, where a sample is simply some
quantity of material. Assume this work is performed in batches, where a batch is a collection of
measurements for which the instrument (or experimental method) sensitivity can be assumed
to be constant. Additionally, assume that one or more standards are included in the analysis,
where the standards already have well characterized analyte amounts. If such a standard is not
available, then one simply assigns the role of the standard to one of the unknown samples and
measures the other analyte amounts relative to that one. Our case followed this situation rea-
sonably closely: the different mouse tissue extracts were our samples, the measured protein spe-
cies in these samples were our analytes, the immunoblot gels were our batches, and the pooled
sample served as our standard. This situation generalizes to many other calibration problems,
too.

Assume that the following statistical model accurately represents the experimental data:

yijk ¼ ai þ bixj þ εijk: ð3Þ

On the left side of the equation, each yijk value represents a single measurement, where i is the
batch number, j is the sample number, and k distinguishes between multiple measurements of
a particular sample that are within a single batch. Every measurement can be assigned a unique
set of i, j, and k subscripts and so can be identified in this way. However, this does not necessar-
ily imply that every sample was measured in every batch. To the contrary, most samples are
likely to have been measured only a few times total in the entire experiment, making the yijk
values a relatively sparse dataset (e.g. we had 230 total samples but only analyzed up to 20 at a
time on any given immunoblot). On the right side of the equation, αi and βi are batch-specific
sensitivity coefficients, xj is the amount of analyte in sample j, and εijk is the measurement
error that arose in the k’th measurement of sample j in batch i. Assume that this error is nor-
mally distributed with mean of zero and standard deviation of σ, and that it is independent
between measurements. This statistical model is very simple and builds upon conventional
assumptions (including, importantly, that measurements depend linearly upon analyte
amounts). It was also appropriate for our work because we confirmed that our immunoblot
detection was linear in antigen amounts (and see [12]) and our tests of measurement repeat-
ability showed reasonably independent and normally distributed errors (we found that the dis-
tribution of squared differences between repeated measurements of the same samples on the
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same blots was reasonably exponential, as one would anticipate for normally distributed
errors). Table 1 summarizes the nomenclature introduced here.

The primary data analysis goal, typically, is to estimate the analyte amounts, xj, and their
confidence intervals. Below, we also solve for the sensitivity coefficients, ai and bi, which can
enable one to calibrate any new measurements that were not included in the original data. We
also find the measurement standard deviation, σ, which can be helpful for improving the mea-
surement technique and for identifying any outlier data points.

The 2-step method
We present the conventional 2-step calibration method, focusing on its application to samples
that are measured in batches, to introduce our mathematical notation in a setting that may be
familiar and to show some aspects of the method that are widely overlooked. The left side of
Fig 1 illustrates the 2-step method.

(1) Tabulate data. The measurements need to be tabulated, putting each sample in a sepa-
rate column and each batch in a separate row. Each table site has as many entries as there are
measurements for that specific sample and batch, which may be zero, one, or more than one.

(2) Remove batches with insufficient standards. To enable calibration, each batch needs
to include at least as many different standard measurements as there are unknown sensitivity
coefficients (because of the linear algebra result that one needs at least n equations to solve for
n unknowns). The statistical model (Eq 3) includes two sensitivity coefficients, αi and βi, so
each batch generally needs to include at least two different standard measurements. On the
other hand, if one assumes that measurements do not have a consistent offset, meaning that all
of the αi values are assumed to equal zero, then each batch only needs one standard measure-
ment. Fig 1 illustrates this latter situation. Our work also fit this latter situation because we cor-
rected for background fluorescence before starting our data calibration. Any batches that do
not include as many standard measurements as unknown sensitivity coefficients need to be
removed from the data analysis. In the process, any samples that were only measured in these
batches get removed too.

Table 1. Data analysis nomenclature.

Roman
symbols

ai, bi estimates of batch sensitivity parameters

i, NB batch index and number of batches

j, NS sample index and number of samples

k measurement index within a specific batch and sample

ni,j number of measurements of sample j in batch i (replacing i or j with “All” denotes all
batches or samples)

SDj, SEj standard deviation (data variability) and standard error (precision of estimate of the
mean) of measurements of analyte amount j

T list of standards

xj analyte amount in sample j

yi,j,k measurement value for measurement k of sample j in batch i

Greek
symbols

αi, βi true batch sensitivity parameters

εi,j,k measurement error for a specific measurement

σ standard deviation of measurement noise

χ2 goodness of fit parameter

doi:10.1371/journal.pone.0149575.t001
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Fig 1. Comparison of workflow for 2-step and 1-step calibrationmethods, illustrated for calibrating band intensities on immunoblots. A. Illustration
of samples 1 (the standard) through 7, run on 5 different immunoblots with variable replication. The band intensities shown depend on the sample, blot, and
experimental noise. B. Tabulated data showing assigned band intensities for each sample and blot. C. Direct comparison of the conventional 2-step
calibration method (left) with the 1-step calibration method (right). D. Plots of the calibrated estimates of analyte amounts in each sample using the different
methods. Error bars represent the standard error of the mean (precision of estimate) and numbers above the bars represent the number of calibrated
measurements of each sample.

doi:10.1371/journal.pone.0149575.g001
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Next, it is helpful to define several variables. Define NB as the number of batches (number of
rows), NS as the number of samples (number of columns), and nij as the number of measure-
ments of sample j in batch i (number of entries at site i,j). Generalizing this last definition, nAll,j
is the total number of measurements of sample j (the number of entries in column j), ni,All is
the total number of measurements in batch i (the number of entries in row i), and nAll,All is the
total number of measurements (the number of entries in the table). Also, define T as the list of
standards; for example, there is one standard in Fig 1, which is sample number 1, so T = {1} in
that case. Finally, ni,T is the number of standard measurements in batch i.

(3a) Fit sensitivity coefficients. As the first step of the 2-step method (the calibration
stage), a line is fit to the standard data in each batch using least-squares methods. This provides
best-fit ai and bi values as estimates for the true αi and βi sensitivity coefficients. If the αi sensi-
tivities are not assumed to equal zero, then the ai and bi values are found using the standard
results for simple linear regression [24],

bi ¼
hxjyijkiT;k � hxjiT;khyijkiT;k

hx2j iT;k � hxji2T;k
ð4Þ

ai ¼ hyijkiT;k � bihxjiT;k: ð5Þ

Angle brackets indicate averaging over the indices that are listed in their subscripts. In this
case, the average is over all standards that were measured in any particular batch. For example,

hxjyijkiT;k �
1

ni;T

X
j2T

Xnij
k¼1

xjyijk ð6Þ

hx2j iT;k �
1

ni;T

X
j2T

Xnij
k¼1

x2j : ð7Þ

If the αi sensitivities are assumed to equal zero, then all of the ai values clearly equal zero and
the bi values simplify to

bi ¼
hxjyijkiT;k
hx2j iT;k

: ð8Þ

Note that an intuitively sensible, but incorrect, approach would be to compute the bi values in
the latter case by simply solving yijk� bixj for bi to give bi � yijk/xj and then averaging these val-
ues to give bi = hyijk/xjiT,k. Eq 8 is different in that it weights each term in this average by xj

2.
Doing so correctly emphasizes those data points that are likely to have larger measurement val-
ues and hence lower relative errors (see the derivations in the appendix).

(3b) Compute analyte amounts. In the second step of the 2-step method (the prediction
stage), the amount of analyte in each unknown sample is computed by inverting the statistical
model equation (Eq 3), while using the ai and bi estimates for αi and βi. Then, averaging results
over all analyses of each sample yields the following estimate for the sample’s analyte amount:

xj ¼
hbiyijkiik � haibiiik

hb2i iik
: ð9Þ

As in Eq 8, this solution is weighted to emphasize the data points that have larger measurement
values and hence lower relative errors. In contrast, the intuitively sensible but incorrect
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approach gives the average as xj = h(yijk–ai)/biiik, but this over-emphasizes data points that are
likely to have large errors and under-emphasizes those that are likely to have small errors.

(4) Compute standard deviations (variability) and standard errors (precision). Our sta-
tistical model assumes that measurements have normally distributed errors. To estimate the
standard deviation of those errors, we compute the root mean square (rms) average deviation
of the actual measurements, yijk, away from where we would have expected them, ai+bixj,

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nAll;All � 2NB � NS

XNB

i¼1

XNS

j¼1

Xnij
k¼1

ðyijk � ai � bixjÞ2
vuut : ð10Þ

The denominator represents the number of degrees of freedom, which is one for each of the
nAll,All data points, minus the number of fit coefficients. There are 2NB+NS fit coefficients if the
αi values are not assumed to equal zero (for the ai, bi, and xj values), as shown in Eq 10, and
NB+NS if the αi values are assumed to equal 0. Because we assumed Gaussian distributed noise,
about 68% of the measurements should be within one standard deviation of their expected val-
ues and about 95% within two standard deviations. Measurements that are many standard
deviations away from their expected values are outliers, which may warrant further inspection
and possible removal. Importantly though, if the minimum number of standards was measured
in each batch, which is typical, then it is impossible to determine if any of those measurements
are outliers because the sensitivity parameters were computed directly from them.

Separate standard deviations represent the variability in the different analyte amount esti-
mates, which came from Eq 9. These estimates are weighted means, so their variabilities are
computed as weighted standard deviations, for which the general equation is [25]

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
X

i

wiðzi � �zÞ2

d
X

i

wi

vuuuut : ð11Þ

Here, zi represent the data, wi represent the weights, �z is the sample mean, n is the number of
data points, and d is the number of degrees of freedom. Applying this to the sample analyte
amounts and simplifying gives

SDj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nAll;j

nAll;j � 1
� hðyijk � ai � bixjÞ2iik

hb2i iik

s
: ð12Þ

The number of degrees of freedom is nAll,j-1 because there are nAll,j terms in the sum but the xj
value was constrained through Eq 9.

The standard errors of the means are typically more useful. They reflect how closely the esti-
mated analyte amounts are likely to represent the true analyte amounts. As usual, they are
computed by dividing the standard deviations by the square root of the number of measure-
ments being considered [25]. However, doing so yields a lower bound for the standard error
because the standard deviations were computed while assuming that the ai and bi values
equaled their true values and that the xj value was the only one that needed to be fit to the data.
However, all three of these are estimates, which increases the uncertainty for the analyte
amounts. Thus, the standard errors are

SEj �
SDjffiffiffiffiffiffiffiffinAll;j

p : ð13Þ

The interpretation is that the difference between each computed xj value and the true analyte
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amount for the sample is likely to be a Gaussian distributed random variable with standard
deviation equal to SEj. This result does not apply to the standards because their analyte
amounts are assumed to be known.

1-step method
The 1-step method parallels the 2-step method very closely.

(1) Tabulate data. The 1-step method uses the same data table as the 2-step method.
(2) Remove orphan measurements. The 1-step method relies on standards less than the

2-step method does, but still requires that each measurement can be related to the standard
measurements in some way. More precisely, each batch needs at least as many independent
“connections” to standard measurements as there are sensitivity coefficients; a batch is con-
nected to a standard if (i) it includes a measurement of that standard or (ii) it shares a sample
with some other batch that is connected to that standard. We call measurements that cannot be
connected to enough standard measurements orphans. These orphan measurements need to
be removed from the data analysis, along with the samples and batches to which they belong.
The 1-step method uses the same definitions for the NB, NS, ni,j, T, and other variables as the
2-step method.

(3) Iteratively fit sensitivities and analyte amounts. The single step of the 1-step method
is to simultaneously fit the ai, bi, and xj values to the data while assuming the statistical model
given in Eq 3. This can be accomplished in many ways, including with deterministic and sto-
chastic minimization algorithms [24]. However, we found that computing the sensitivities and
analyte amounts iteratively, using equations derived in the appendix, was particularly simple
and efficient. In this method, one first guesses all of the sensitivities. An adequate approach is
simply to set all of them to 1 initially, but we found that results converged faster when we
guessed as many as possible using Eqs 4, 5 and 8 from the 2-step method and then set the rest
to their means. Next, the unknown analyte amounts are computed from

xj ¼
hbiyijkiik � haibiiik

hb2i iik
; ð14Þ

which is identical to Eq 9. Then, the sensitivities are computed from

bi ¼
hxjyijkijk � hxjijkhyijkijk

hx2j ijk � hxji2jk
ð15Þ

ai ¼ hyijkijk � bihxjijk ð16Þ

if the αi values are not assumed to equal zero, and

bi ¼
hxjyijkijk
hx2j ijk

ð17Þ

if they are. These equations only differ from Eqs 4, 5 and 8 in that they include averages over
all measurements in a batch rather than just the standard measurements. Iterating over Eqs 14
to 17 leads to the best-fit values for the analyte amounts and sensitivities. We continued until
all sensitivity parameter and analyte amount estimates changed by less than 1 part in 105

between subsequent iterations, which never took more than a few hundred iterations (340 for
our immunoblot data and about 70 for most of the validation tests described below).

In the appendix, we show that this iterative approach always converges upon the parameters
that produce the best fit between the statistical model (Eq 3) and the data. However, this does
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not necessarily mean that these parameters are physically reasonable. For example, the model
might fit the data best when some analyte values are zero, negative, or extremely large. These
unreasonable results can be prevented by defining an allowed range for each parameter and
using Eqs 14 to 17 when the respective parameter is within this range, but otherwise fixing the
parameter to the nearest range endpoint.

(4) Compute standard deviations and standard errors. The standard deviation and stan-
dard error equations that are presented above in Eqs 10 to 13 apply here as well. However, the
standard deviation can be used to identify outlier standard measurements in this case, even if
relatively few standard measurements were made, because these sensitivity parameters were
computed from all of the measurements instead of just the standard measurements.

Validation
We validated our method by analyzing artificially generated data sets and comparing the fit
results with the true parameters from which the data were generated. To create one of the artifi-
cial data sets, we first assumed two standard samples with analyte amounts of 5 and 15. We then
generated 18 more random true analyte amounts (Gaussian distributed with mean 10 and stan-
dard deviation 3) to represent 18 unknown samples. Next, we generated 20 random α and β sen-
sitivity values (Gaussian distributed with mean 100 and 10 and standard deviation 30 and 3,
respectively) to represent 20 batches. Finally, we generated 400 artificial measurements. For each,
we chose a random sample and random batch and then used Eq 3 to compute the measurement
value, which included Gaussian-distributed measurement noise (standard deviation 20).

We analyzed these data with the 1-step and 2-step methods. The results, in Fig 2A–2D show
that both analysis methods were able to recover the true parameters from the data reasonably
well, but the 1-step method estimates were generally closer to the true values. There were
enough standard measurements in these data that all analyte amounts could be estimated using
both methods. However, only 8 of the batch sensitivities could be estimated using the 2-step
method because the other batches had insufficient standards and so needed to be removed
from the analysis (note the relatively few gray data points in panels C and D).

Next, we generated 1000 more data sets in exactly the same way and also calibrated those
with both methods. We found that, on average, the 1-step method overestimated analyte
amounts by 0.1% and the 2-step method underestimated them by 2.6% (Fig 2E). Further tests
showed that these offsets arose from the choices of standards, becoming larger when the stan-
dard analyte amounts differed more from typical sample analyte amounts. The offsets were
usually about a factor of 10 smaller for the 1-step method. Fig 2E also shows that the 1-step
method generally computed individual analyte amounts that were closer to the true values: the
root mean square (rms) error for the analyte amounts was 9% for the 1-step method and 15%
for the 2-step method. Similarly, Fig 2F and 2G show that the 1-step method computed sensi-
tivity parameters that were closer to their true values: rms errors were 20% and 30% for the a
sensitivity parameter and 18% and 28% for the b sensitivity parameter, for the two methods
respectively. Thus, the 1-step method consistently estimated all parameters more accurately
than the 2-step method. (To enable meaningful comparisons, this analysis only included
parameters that were, for both methods, not from orphaned samples or batches and less than
2-fold away from the true values; about 0.07% of analyte estimates, 0.1% of a value estimates,
and 0.2% of b value estimates had greater that 2-fold errors, which would have disproportion-
ately affected results).

We also compared the computed standard errors and standard deviations against the true
ones as a way of validating Eqs 13 and 9. The average 1-step and 2-step standard error esti-
mates were 76% and 73% of the actual deviations between the computed and true analyte
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amounts. These show reasonable agreement and are consistent with the inequality in Eq 13.
The average 1-step and 2-step measurement standard deviation estimates were 20.02 and 24.0
units, respectively, while the true value was 20 units, again showing good agreement. This latter
result is particularly significant because the standard deviation estimate quantifies the differ-
ence between the statistical model and the data. The smaller result for the 1-step method shows
that it produced a better fit to the data. Furthermore, the fact that its standard deviation is
essentially the same as the true value, which is a theoretical lower limit for the fit standard devi-
ation (on average), implies that the 1-step method produced essentially the best possible
results.

Upon further analysis, we found that the 1-step method produced more accurate results for
two reasons. First, it included more data points in the calibration due to its decreased depen-
dence on standards (out of the 1000 data sets, none of the batches needed to be removed from

Fig 2. Comparison of the 1-step and 2-step methods using artificial data. A. Sample analyte amounts for an artificial data set. Here and in subsequent
panels, black features represent the true analyte amounts, gray features represent results from the 2-step method, and red features represent results from
the 1-step method. Error bars represent standard errors. (B-D) Comparison of computed sample analyte amounts, a sensitivity coefficients, and b sensitivity
coefficients with their true values for the same artificial data set. (E-G) Histograms of errors between fit values and true values for computed sample analyte
amounts, a sensitivity coefficients, and b sensitivity coefficients for 1000 artificial data sets. Note that the 1-step method yields more accurate data calibration.
See main text for details.

doi:10.1371/journal.pone.0149575.g002
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the analysis in the 1-step method but 60% of them needed to be removed for the 2-step
method). As a result, the 1-step method was able to include more measurements in its averages
and hence better reduce the effects of measurement noise. Secondly, the 1-step method com-
puted the sensitivity parameters more accurately, even when there were sufficient standards for
both methods, due to other samples that were shared between batches. To investigate these
points further, we repeated the validation procedure but used new artificial data sets in which
every batch included every standard. As a result, no measurements needed to be removed from
either calibration method. In this case, rms errors for the analyte amounts were 8% and 9% for
the 1-step and 2-step methods, respectively. The lower value for the 1-step method shows that
its consideration of samples that are shared between batches helps it return more accurate
results.

We performed several additional validation tests to explore other situations. (i) We repeated
our validation test of 1000 artificial data sets but with the true values 100-fold larger, 100-fold
smaller, and negative, to ensure that the method and our software were equally good with very
different parameter values. We found that they worked well and, as before, the 1-step method
was consistently more accurate. (ii) We generated new validation data using 2-fold higher and
2-fold lower measurement standard deviations to explore the effects of experimental noise. We
found that both methods estimated parameters more accurately with lower measurement
noise, as expected, but the 1-step method become more accurate more quickly. This showed
that the 1-step method does not just improve calibration for experiments with high noise but
also improves results for experiments with low noise. (iii) We tested the situation in which
every batch included the standard but batches did not share any other samples (we assumed
that the αi values were zero, so we only needed one standard per batch; this test used 10
batches, 11 standards, and 100 total measurements). In this case, the 1-step and 2-step methods
returned identical results. Subsequent work showed that this is generally true whenever batches
have a common standard but no other shared samples. In this case, the average analyte amount
rms errors were 15% in both cases. (iv) Expanding upon the prior test, we generated data in
which every batch included the standard and one additional common sample, but no other
shared samples. Now, the 1-step method estimates were more accurate than those from the
2-step method (average analyte rms errors were 9% and 14%). (iv) Finally, we generated data
in which every batch included every sample. In this case, both methods returned excellent
results, each with average analyte amount rms errors of 5.6%. However, the results were not
quite the same; the 1-step and 2-step method average sensitivity parameter rms errors were 5%
and 12%, respectively, and they estimated the measurement standard deviations as 10 and 14
units, as compared to an actual value of 10 units.

Protein immunoblot data
We analyzed our experimental immunoblot data using both methods, of which a small portion
of the results are shown in Fig 3. These data are scaled so that the standard (not shown in the
figure) has an analyte amount of 1. As part of the analysis, we automatically removed all mea-
surement results that were 4 or more standard deviations away from their expected values,
which we deemed to be outliers, and then re-calibrated the remaining data repeatedly until
there were no more outliers. This process showed that about 1% of our measurement results
were outliers (for comparison, 0.003% would be expected to be more than 4 standard devia-
tions away from the mean if errors were distributed perfectly normally). After all outliers were
removed, the 1-step method enabled us to use all of the remaining measurements in the final
analysis, whereas we needed to remove about 36% of them with the 2-step method. Results
from both methods showed that the calibrated parameters for our data varied quite widely.
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Sample analyte amounts varied from 0 to about 2, where the standard was defined to have an
amount of 1, and sensitivity parameters varied from 26 to about 700, in units of fluorescence
units per amount of standard analyte. This latter 27-fold sensitivity range illustrates the wide
variability of immunoblotting methods.

Differences between the two methods were more striking with the real data than with the
artificial data that we used for validation. Here, the two methods often returned substantially
different analyte amount estimates. This did not, of course, indicate which estimates were
more accurate because the true analyte amounts were unknown, so the more important differ-
ence was that the model (Eq 3) fit the measurement data much better when using parameters
found with the 1-step method than with those from the 2-step method. As described above, we
observed this by computing the measurement standard deviation, σ (Eq 10), which represents
the quality of the model fit, or more precisely, the average deviation between the model’s esti-
mate of the true value for each data point and the actual value that was measured for that data
point. These standard deviations were 49 fluorescence units for the 1-step method and 82 fluo-
rescence units for the 2-step method (CV of 41% and 68%, respectively).

To better understand these differences, we repeated the 1-step method while only including
batches that had standards, so that it would use the exact same data as the 2-step method. This
increased the 1-step method standard deviation to 57 fluorescence units. In combination with
the prior results, this showed that the 1-step method enabled the model to fit the data better
because it includes more data points in the analysis (creating the difference between 49 and 57
fluorescence units) and because it uses information from samples that are replicated over mul-
tiple batches in the parameter estimates (creating the difference between 57 and 82 fluores-
cence units). We are using the 1-step method results for further investigation of these data.

Discussion
We have described a method for calibrating data to external standards. The conventional
approach to calibrating measurement data, which we call the 2-step method, is justifiably
nearly ubiquitous. It is simple, intuitive, and convenient. As a result, it can be performed by
hand or with spreadsheet software. Also, if there is only a single batch of data, or multiple
batches without shared samples, then it is the optimal approach. In this case, it returns the

Fig 3. Calibrated experimental immunoblot data. This figure shows calibrated analyte amounts for 40 of
our 230 samples that we analyzed with immunoblots. The others were qualitatively similar. Gray bars
represent results from the 2-step method, red bars represent results from the 1-step method, and error bars
represent standard error values. On average, there were 3.4 calibrated measurements for each sample with
the 2-step method and 4.9 for the 1-step method. Note that the 1-step method results have smaller standard
errors.

doi:10.1371/journal.pone.0149575.g003
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maximum likelihood predictors for the analyte amounts (assuming that the statistical model is
correct and that the measurements are weighted properly when averaging, as shown above).
However, it does not return the best possible results if the data include samples that are shared
among multiple batches because it ignores some of the available information. As a result, the
2-step method is highly sensitive to errors in the standard measurements and is also completely
reliant on there being sufficient standards in every batch. On the other hand, our 1-step
method uses information from all of the samples that were measured in multiple batches,
which decreases its reliance on standards and enables it to return more accurate results. These
results are the maximum likelihood predictors, now for the complete data set.

We compared the 1-step and 2-step methods with artificial and real data. Using artificial
data, we found that the 2-step method returned analyte amounts that were systematically offset
from the true values, whereas those from the 1-step method had essentially no offset. More
importantly, analyte amount estimates were typically 50% to 2-fold more accurate with the
1-step method. In addition, the 1-step method invariably returned measurement standard
deviation estimates that were essentially the same as the true standard deviations, indicating
that it fit the model to the data as well as is theoretically possible. Standard deviation estimates
were always larger for the 2-step method. The 1-step method also led to better results with our
immunoblotting data. Immunoblotting is inherently imprecise, with large variation between
gels and high measurement standard deviations. This presents a problem for quantitative com-
parisons between samples when not all samples fit on a single gel (batch). In this case, the
1-step method enabled us to estimate protein concentrations from essentially all of our data,
including from gels that did not have standards. These estimates are almost certainly more
accurate than comparable ones that we calculated using the 2-step method because the 1-step
method computed a smaller measurement standard deviation, indicating a better fit between
the model and the data.

Throughout most of this work, we have focused on the analyte amount estimates because
they are typically of particular interest. However, note that the standard errors of these esti-
mates can be computed as well with minimal additional effort (standard errors indicate the
quality of the analyte amount estimate, such that the true analyte value is likely to be within
one standard error of the estimate). For this reason, we recommend against the common prac-
tice of calibrating multiple runs of an experiment independently and then computing statistics
from the calibrated results. This approach throws away valuable information from samples
that are shared between batches, does not allow for detection of errors in the standard measure-
ments, and does not improve statistics calculations.

A drawback of the 1-step method is that it requires an iterative computation, making it
impractical to perform by hand or in a simple spreadsheet. Nevertheless, this computation is
not particularly demanding. Calibrating our immunoblot data set, which comprises 5966 mea-
surements and requires 340 iterations, takes just over 1 minute on a 2013 MacBook laptop
computer. From inspection of Eqs 14 to 17, the computational demands scale approximately
linearly with the number of measurements, implying that much larger data sets can be cali-
brated reasonably efficiently as well. A second drawback of the method is that it assumes that
instrument or method responses increase linearly with analyte amounts (see Eq 3), which is
often not the case. However, it is relatively straightforward to modify the 1-step method as it is
presented here to specific non-linear relationships by repeating the derivations presented in
the appendix, but for the desired relationship.

The obvious question arises of how to best design experiments so that they yield the most
accurate results while calibrating the data with the 1-step method. Although a thorough treat-
ment was beyond the scope of our work, some aspects are reasonably obvious from the design
of the method and our validation results. First, standards should be measured in as many of the
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batches as possible because that minimizes the number of steps that need to be taken to con-
nect unknown sample measurements with standard measurements. Also, it is better to spread
replicates of sample measurements out over multiple batches, rather than to perform them all
within a single batch, because that improves the ability to cross-calibrate the different batches.
Stated differently, it is best to have as many samples as possible in common between the
batches, ideally with every sample measured in every batch.

Our software for calibrating data using both the 1-step and 2-step methods is written in
Python, is open source, and is in the public domain (i.e. we do not reserve any intellectual
property rights). It is available from the supporting information (S1 Text) and online at http://
www.smoldyn.org/calibration.html. It can also be used at the same website as an online calibra-
tion service.

Appendix
This appendix derives most of the equations presented above. It is shown at a relatively elemen-
tary level to make it widely accessible, so statistics textbooks (e.g. ref. [25]) should be consulted
for more rigorous treatments.

From Eq 3, we assume the statistical model

yijk ¼ ai þ bixj þ εijk: ðA:1Þ

We rearrange the equation and divide both sides by σ, the measurement error standard devia-
tion, to yield the scaled measurement errors,

ε0 ijk ¼
εijk
s

¼ yijk � ai � bixj
s

: ðA:2Þ

Because we assumed that the measurement noise is Gaussian distributed and independent
between data points, the ε'ijk values are independent normally distributed random variables
with zero mean and unit standard deviation. We square both sides of this equation and sum
over all data points to yield

XNB

i¼1

XNS

j¼1

Xnij
k¼1

ε02ijk ¼
XNB

i¼1

XNS

j¼1

Xnij
k¼1

yijk � ai � bixj
s

� �2

: ðA:3Þ

The left side is a sum of squared independent normally distributed random variables, which
means that it is itself a random variable and it obeys the chi-squared distribution.

Looking back at Eq A.1, if we knew the exact values of each αi, βi, and xj but not the yijk val-
ues, then the assumption that the error is normally distributed with a mean value of zero
would imply that the most likely value for yijk is the one that arises if the error equals zero.
However, we actually know the yijk values but not the αi, βi, or xj values. So, we rearrange the
prior statement to claim that the most likely values of αi, βi, and xj, given the known yijk values,
are those that minimize the computed errors (Eq A.2). This rearrangement is not completely
legitimate but is the central ansatz of maximum likelihood estimation and is partially justified
by Bayesian analysis [24]. Without going further into the details, we perform maximum likeli-
hood estimation by replacing the true sensitivity coefficients, αi and βi, in Eq A.3 with the
unknown ai and bi estimated sensitivity coefficients to yield the following “goodness-of-fit”
function,

w2 ¼
XNB

i¼1

XNS

j¼1

Xnij
k¼1

yijk � ai � bixj
s

� �2

: ðA:4Þ
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We then minimize this function with respect to each ai, bi, and unknown xj parameter to find
their most likely values. The parameter values that minimize the χ2 function are called the max-
imum likelihood predictors because they are the most probable values, within the assumptions
of the model.

We find the minimum of χ2 with respect to xj', where j' is the index of a specific unknown
sample, by differentiating χ2 with respect to xj' and setting the result to zero:

@w2

@xj0
¼ @

@xj0

XNB

i¼1

XNS

j¼1

Xnij
k¼1

yijk � ai � bixj
s

� �2

¼ @

@xj0

XNB

i¼1

Xnij0
k¼1

yij0k � ai � bixj0

s

� �2

¼
XNB

i¼1

Xnij0
k¼1

2
yij0k � ai � bixj0

s

� �
� � bi

s

¼ � 2

s2

XNB

i¼1

Xnij0
k¼1

biðyij0k � aiÞ þ
2

s2
xj0
XNB

i¼1

Xnij0
k¼1

b2i :

ðA:5Þ

Setting the result to zero, renaming j' to j, and simplifying yields

0 ¼ hbiyijkiik � haibiiik � xjhb2i iik: ðA:6Þ

This result represents one equation for each unknown sample. Minimizing χ2 with respect to ai
and bi are analogous, yielding

0 ¼ hyijkijk � bihxjijk � ai ðA:7Þ

0 ¼ hxjyijkijk � aihxjijk � bihx2j ijk: ðA:8Þ

These results represent one pair of equations for each batch. In principle, Eqs A.6 to A.8 can be
solved for the unknown ai, and bi, and xj values. However, this appears to be analytically intrac-
table so instead we rearrange them to yield

xj ¼
hbiyijkiik � haibiiik

hb2i iik
ðA:9Þ

bi ¼
hxjyijkijk � hxjijkhyijkijk

hx2j ijk � hxji2jk
: ðA:10Þ

ai ¼ hyijkijk � bihxjijk ðA:11Þ

If it is assumed that the αi values all equal zero, then the ai values are set to zero and the solu-
tions for xj and bi get simplified to

xj ¼
hbiyijkiik
hb2i iik

ðA:12Þ

bi ¼
hxjyijkijk
hx2j ijk

ðA:13Þ

These equations cannot be computed sequentially because each equation requires knowledge
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of the other results. Thus, the approach taken by the 2-step method is to limit the averages in
Eqs A.10, A.11 and A.13 to just those samples which have known analyte amounts, which are
the standards. After this, Eqs A.9 or A.12 can be computed without problems. Alternatively,
the approach taken by the 1-step method is to compute the equations iteratively, which then
yields the best-fit ai, bi and xj values.

This raises the question of whether the iterative solution is certain to converge to the global
minimum χ2 value, or whether it might converge to a different local minimum or even fail to
converge altogether. To answer this, we observe first that the χ2 function, Eq A.4, is a quadratic
function of each unknown parameter with non-negative curvature (e.g. in Eq A.5, the slope of
the first derivative of χ2 with respect to xj is 2hbi2iik/σ2, which is necessarily non-negative). This
implies that χ2 only has a single minimum, which is the global minimum. We also observe that
the χ2 function is everywhere non-negative, from Eq A.4, and that each iteration is certain to
either reduce or maintain the prior χ2 value. This latter argument follows because Eqs A.9 to
A.13 each identify the value that minimizes χ2 for its particular parameter, so each time one of
them changes a parameter, it always reduces χ2. Because χ2 cannot decrease indefinitely, this
implies that the iterative procedure must converge. Finally, every parameter gets optimized, so
the iterative procedure must converge at the global χ2 minimum, as desired. Note however,
that the χ2 function may have zero curvature on some parameters, causing the global minimum
to be not a single point in parameter space but a line or larger region. This would arise from
insufficient data points and hence an underdetermined system of equations. In this case, which
also arises in the 2-step method, the prior arguments showed that the iterative procedure will
return one set parameters that represent the χ2 minimum, but there will also be other parame-
ter combinations that are equally good. To further convince ourselves that the iterative method
leads to the correct solutions, we also minimized χ2 using Mathematica’s “NMinimize” func-
tion for a series of validation data sets. In all cases, results were identical but the iterative
approach was many-fold faster.

To compute the measurement standard deviation, we start with the fact that the mean of a
chi-squared distribution is equal to the number of random variables that are summed. In Eq
A.4, the χ2 sum includes nAll,All terms, suggesting that this would be the mean of the distribu-
tion. However, we don’t know the true αi, βi, or xj values, but only those that we fit by minimiz-
ing χ2, which reduces the mean by 2NB+NS degrees of freedom. Using the assumption that any
specific data set is likely to be reasonably typical, we equate χ2 to nAll,All–2NB–NS, yielding

w2 ¼
XNB

i¼1

XNS

j¼1

Xnij
k¼1

yijk � ai � bixj
s

� �2

¼ nAll;All � 2NB � NS: ðA:14Þ

Solving for the measurement standard deviation then yields

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nAll;All � 2NB � NS

XNB

i¼1

XNS

j¼1

Xnij
k¼1

ðyijk � ai � bixjÞ2
vuut ðA:15Þ

Finally, we solve for the individual sensitivity coefficient and analyte standard deviations.
Both are simply weighted averages, so we use the general equations for a weighted standard
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deviation (main text Eq 11) to yield the results

SDxj
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nAll;j

nAll;j � 1
� hðyijk � ai � bixjÞ2iik

hb2i iik

s
ðA:16Þ

SDai
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ni;All

ni;All � 1
hðyijk � bixj � aiÞ2i

s
ðA:17Þ

SDbi
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ni;All

ni;All � 1
� hðyijk � ai � bixjÞ2ijk

hx2j ijk

vuut ðA:18Þ

Dividing these results by the square root of the number of data points yields estimates for the
standard errors.

Supporting Information
S1 Text. Program for generating and analyzing data. This Python program analyzes data
using the 1-step and 2-step calibration methods. It can import the data from files or generate
synthetic data using the statistical model in Eq 3. It is identical to the online software at http://
www.smoldyn.org/calibration.html. It is open source and in the public domain.
(PY)
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