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Abstract

We examined whether the abilities of observers to perform an analogue of a real-world mon-
itoring task involving detection and identification of changes to items in a visual display
could be explained better by models based on signal detection theory (SDT) or high thresh-
old theory (HTT). Our study differed from most previous studies in that observers were
allowed to inspect the initial display for 3s, simulating the long inspection times typical of
natural viewing, and their eye movements were not constrained. For the majority of observ-
ers, combined change detection and identification performance was best modelled by a
SDT-based process that assumed that memory resources were distributed across all eight
items in our displays. Some observers required a parameter to allow for sometimes making
random guesses at the identities of changes they had missed. However, the performance of
a small proportion of observers was best explained by a HTT-based model that allowed for
lapses of attention.

Introduction

Operators in many work environments (e.g., air traffic control) are required to monitor and
detect changes in visual displays. Where such changes are not signalled by transients, their
detection depends in part on the operator’s ability to encode the information presented in the
display and retain it in memory until the display can be resampled.

In laboratory settings, change-detection paradigms have commonly been used to study the
architecture and capacity of visual short-term memory (VSTM). It is well established that
VSTM is capacity limited but the literature is divided with regard to the nature of the limitation
(see [1] for a review). Some models of VSTM postulate that it is limited in the number of dis-
crete representations it can hold to around three or four "slots" [2-6]. Other models suggest
that VSTM is a limited but continuous resource that can be distributed across a large, and per-
haps unlimited, number of representations. As the number of representations is increased, the
amount of resource available for each is reduced, resulting in less precise representations [7-9].

As most studies of VSTM have employed very short display inspection times (typically 100
to 500 ms), it is not clear whether these models will translate well to real-world settings where
display inspection times are of the order of a few seconds and eye movements are not con-
strained. Longer inspection times will allow more eye movements during the inspection period
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and increase the probability that visual information is recoded and stored in a more durable
form, e.g., as verbal labels. Where such recoding occurs, human performance may be better
modelled by robust, noiseless representations than by noisy ones.

We examined the detection of changes in displays modelled on military tactical displays
that were viewed for three seconds. We compared discrete-resource memory models based on
high threshold theory (HTT) and continuous-resource models based on signal detection theory
(SDT). We included a contemporary variant of HT'T which allows for lapses of attention [5]
and a variant in which limitations in the precision of memory representations [10] result in
imperfect change detection for stimuli held in memory. We then examined whether these mod-
els could parsimoniously describe both change detection and change identification perfor-
mance. The abilities to detect and identify changes are both of relevance in many real-world
settings. For example, it is not normally sufficient for an air traffic controller to detect a change
to his/her display—he/she must also be able to identify the changed symbol. Requiring models
to fit change identification data in addition to change detection data provides a stronger test of
their relative validities.

Methods
Participants

Ten observers (6 male, 4 female) participated in this study. Their average age was 22.1 (s.d. =
1.4) years. Eight had normal vision and two had corrected-to-normal vision. All gave informed
written consent. The project was given ethics approval (number AOD 02-09) by the Chief of
Air Operations Division, Defence Science and Technology Organisation, in accordance with
the National Statement on Ethical Conduct in Human Research [11].

Task

Observers performed a change detection task for symbol shape while viewing displays mod-
elled on military tactical displays in each of which eight symbols from the Hostile, Ambiguous,
Friendly, Unknown (HAFU) symbol set [12] were presented (Fig 1). Observers were naive with
respect to the semantic content of these symbols. Each symbol subtended approximately 0.6°
in height and width and had a white line of length 1.3° emanating from its centre in a random
direction. The location of each symbol was selected at random with the constraint that symbols
did not overlap. Both symbol shape and symbol colour were selected at random with replace-
ment from a set of three (open triangle, open rectangle, open semi-circle and blue, red, yellow,
respectively). On each trial, an initial display was presented for 3 seconds and followed by a
uniform grey mask of 0.25-second duration. A second display was then presented until the
observer responded with his/her detection, confidence and identification decisions (see below).
The second display was identical to the first except that on a proportion of trials (either .25 or
.75) the shape of one randomly selected symbol had been changed to another in the set. Dis-
plays were presented on a 24" LCD monitor (Hewlett Packard 2465) at a viewing distance of
approximately 60 cm.

Data were collected in 12 blocks of 40 trials. The two conditions of change probability (.25
and .75) were presented in separate blocks. The order of presentation of these conditions was
counterbalanced within and across observers. Observers were naive with respect to the proba-
bilities of change.

The observers' task was to indicate with a mouse whether or not one of the symbols had
changed shape between presentations of the first and second displays. Observers then indicated
their levels of confidence in their change detection decisions on a scale that was divided into
5 segments ranging from guess to certain. These confidence ratings were used to generate
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Fig 1. Time course of a trial. There were eight randomly placed symbols. Each symbol was of one of three
shapes and one of three colours, and had a random line orientation. On a proportion (.25 or .75) of trials, the
shape of one symbol changed between the first and second displays. Observers made a yes/no change
detection response and then rated their confidence in that response using five confidence bins ranging from
guess (.5 correct) to certain (1.0 correct). Following the confidence rating, observers indicated with a mouse
the symbol that they believed was most likely to have changed.

doi:10.1371/journal.pone.0149217.g001

9-point receiver operating characteristics (ROCs, following [13]). Observers were then asked to
indicate with the mouse the item they believed was most likely to have changed. This change
identification decision was made for all trials, including those where observers indicated they
thought a change had not occurred. No feedback was given in regard to the accuracy of detec-
tion or identification responses.

Models tested

Noiseless slots (HTT). This model is based on HTT and incorporates a limited number of
noiseless memory representations. According to this model, when the number of items (N)
exceeds the capacity of memory (k), only a proportion (k/N) of items is represented in memory.
A change is correctly detected (i.e., a hit occurs) if, and only if, either of the following two
mutually exclusive events occurs: (i) the changed item is held in memory or (ii) the changed
item is not held in memory but the observer guesses that there was a change. An observer
guesses that there was a change when a changed item is not held in memory at his/her false-
alarm rate. The hit rate (H) is therefore given by

H—£+ 1—5 F
N N

where F is the false-alarm rate.
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Where a hit occurs, the changed item is correctly identified when it is held in memory.
When it is not held in memory, its identity is guessed at from the set of items not held in mem-
ory. The correct identification rate for hits (HID) is therefore given by

1k (1-%F
HID_E[N*W}

Where a change is missed, the identity of the changed item is guessed at from the set of
items not held in memory. The correct identification rate for misses (MID) is therefore given

by

Memory capacity is a free parameter.

The HTT model generates linear ROCs which pass through the point 1,1 and have a y-inter-
cept of k/N.

Noiseless slots with lapses of attention (HTTa). This model is a variant of HTT that
allows for lapses of attention [5]. For this model, the observer is attentive on a proportion of tri-
als (a) and inattentive on all others. Attended trials are processed according to standard HTT
but on unattended trials no information is stored in memory, changes are detected at the false
alarm rate for unattended trials, and identity is guessed at from the set of all items (Fig 2).

The total false—alarm rate (F) reflects the false—alarm rates on attended trials (f;) and
unattended trials (f,), which are both assumed to be proportional to the number of items about
which no information is held in memory. It is given by

a) AN

F=afi+(1-alf, =af+ (1 -a)3—

A hit occurs on an attended change trial if, and only if, either of the following two mutually
exclusive events occurs: (i) the changed item is held in memory or (ii) the changed item is not
held in memory but the observer guesses that there was a change (which he/she does at rate f;).
A hit occurs on an unattended change trial if the observer guesses that there was a change
(which he/she does at rate f,). The hit rate is therefore given by

H:a{g—F(l—%)fl]‘i‘(l_“)fz

Where a hit occurs, the changed item is correctly identified when it is held in memory
(which is the case only on attended trials). When it is not held in memory, its identity is
guessed at from the set of items not held in memory (which in the case of unattended trials is
the set of all items). The correct identification rate for hits is therefore given by

-4+ 3 -0

Where a change is missed, the identity of the changed item is guessed from the set of items
not held in memory. The correct identification rate for misses is therefore given by

1 [a(l -5 —f) L1-a —f»]

MID =
1-H N—k N

Memory capacity and attention rate are free parameters.
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Fig 2. HTTa model. Decision tree for the HTTa model for trials on which a change occurred.

doi:10.1371/journal.pone.0149217.g002

The HTTa model generates linear ROCs which are not constrained to pass through the
point 1,1, and have a y-intercept of ak/N.

Noisy slots (HTTn). This model is a variant of HTT in which memory representations are
limited in both number and precision [10]. For this model, memory representations may be
less precise than required to support accurate task performance. In the context of this study, an
insufficiently precise representation would be one that results in the incorrect retrieval of a
symbol's shape (e.g., the retrieval of a triangle or a rectangle when a semi-circular symbol was
displayed). Obviously, a very imprecise representation would be required for that to occur, but
this model was included as it is an implementation of a contemporary theory of VSTM [10].
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A change to an item represented in memory is correctly detected if, and only if, any of the
following four mutually exclusive events occurs: (i) the before-change shape of the changed
item is correctly retrieved from memory, (ii) the before-change shape of the changed item is
incorrectly retrieved from memory and the retrieved shape differs from the after-change shape
of that item, (iii) the before-change shape of the changed item is incorrectly retrieved from
memory as the shape that matches the after-change shape of that item but the shape of at least
one of the non-changed items is incorrectly retrieved from memory, or (iv) the observer
guesses that there was a change when he/she does not perceive a change to any of the items rep-
resented in memory (i.e., when the retrieved shapes of all items represented in memory match
the shapes of the corresponding items in the second display).

The probability that a change to an item represented in memory is correctly detected is
therefore

d-2)(1-r) 1-r 1 1-—
r+ 1 +d71(1 r )+d71

.
it

where 7 is the probability that the shape of an item represented in memory is correctly retrieved,
d is the size of the set of possible item shapes, and t is the rate at which the observer reports
change when he/she does not perceive a change to any of the items represented in memory.

A change to an item not represented in memory is correctly detected if, and only if, either of
the following two mutually exclusive events occurs: (i) the shape of at least one of the items rep-
resented in memory is incorrectly retrieved or (ii) the observer guesses that there was a change
when he/she does not perceive a change to any of the items represented in memory. The proba-
bility that a change to an item not represented in memory is correctly detected is therefore

(1 —7r*) +r't

The hit rate is therefore given by

k(r+(d—2)(1—r)+1—r

H=% d—1 d—1

1_
N (11— + d

1 N—k k k
- 1=
1/‘ t)+ N ( r 4+ r*t)

Where a change is perceived, the identity of the changed item is guessed at from the set of
items perceived to have changed. Only if a changed item is included in this set, therefore, can
its identity be correctly guessed. When it is included in this set, the probability of its identity
being correctly guessed depends on the size of this set (s). The probability that a changed item
is included in the set of items perceived to have changed and that its identity is correctly
guessed is

K L k-1 1
Z(N’(l_’) TG Dk—9) s

k (d-2)(1-r) o1 (k=1)! 1
o T )
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k
_d—2+r s—1 ks k'
_(d—l)NZ(l D k=)

s=1

d—24r 1-1*
S (d—1)N 1-r

Where no change is perceived, the identity of the changed item is guessed at from the set of
items not held in memory. Only if a changed item is not held in memory, therefore, can its
identity be correctly guessed. The probability that a changed item is not held in memory, no
change is perceived but the observer guesses that there was a change, and the identity of the
changed item is correctly guessed is

N—k, 1

Y 2 T—

.
N N-—-k
The correct identification rate for hits is therefore given by

1/d—24+r1—rk ikt
HD=— (> """2—T 1
H\@d-ON1-r N

Where a change is missed, the identity of the changed item is guessed at from the set of
items not held in memory. Only if the changed item is not held in memory, therefore, can its
identity be correctly guessed. The probability that a changed item is not held in memory, the
change is missed, and the identity of the changed item is correctly guessed is

N-—-k 1

k — —_—
N (1 t)N—k

The correct identification rate for misses is therefore given by

MID = 1 rfd-y
1-H N

Memory capacity and the probability that the shape that an item represented in memory is
correctly retrieved are free parameters.

Where the precision of memory representation is always sufficient for the shape of an item
to be correctly retrieved (i.e., r = 1), the model reduces to the standard HTT model.

The HTTn model produces linear ROCs which pass through the point 1,1 and have a y-
intercept equal to

k(dr — 1)r!

k
— 1
CEE

Continuous resources (SDT). Eight independent, noisy change detectors (i.e., one for
each symbol on the display) were modelled with unequal-variance SDT. For this model, a
change is detected when the activation of at least one change detector exceeds criterion. A false
alarm is made when this occurs on a no-change trial. The item associated with the detector
with the highest activation is identified as having changed.

According to this model, no change is reported on a no-change trial (i.e., a correct rejec-
tion occurs) where the activity in none of the change detectors reaches criterion. The correct-
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rejection rate (CR) is therefore given by
CR = [0(c)]"

Where ¢ is the standard normal cumulative distribution function and c is the criterion mea-
sured in standard deviations of the noise distribution from its the mean.

A miss occurs where the activity in the stimulated change detector fails to reach criterion
and the remaining change detectors correctly reject. The miss rate (M) is therefore given by

m=0( Yo

N

where d’is detector sensitivity measured in standard deviations of the noise distribution, and s
is the ratio of the standard deviations of the signal-plus-noise and noise distributions.

The HID and MID rates for this model were estimated by Monte Carlo simulation of ten thou-
sand trials for each combination of parameters evaluated during model parameter estimation.

Detector sensitivity and the ratio of the standard deviations of the signal-plus-noise and the
noise distributions are free parameters.

This multidimensional SDT model generates asymmetric, nonlinear ROCs which are con-
strained to pass through the points 0,0 and 1,1. When expressed in z coordinates, the ROCs are
linear if the variances of the noise and signal-plus-noise distributions are equal and nonlinear if
they are not.

Model fitting

Each model process was programmed in Matlab (Mathworks) and fitted to data for each
observer and condition of change probability. For each model, the free parameters discussed
above define its ROC. Nine response biases are additional free parameters that define the
points on the model’s ROC that correspond to the observed ROC hit and false-alarm pairs.
Maximum likelihood estimates of model parameters were first obtained by minimising the
summed deviance from the set of observed hit and false-alarm pairs using a simplex gradient
descent algorithm [14]. As ROCs describe change detection performance, models based on
these parameter estimates are best fits to the change detection data. We then examined whether
the models could parsimoniously predict both change detection and change identification per-
formance. Model parameters were re-estimated by minimising summed deviance from the
observed identification rate for hits (HID) and for misses (MID) in addition to the set of
observed hit and false-alarm pairs. For all models it was necessary to estimate the average
response criterion when fitting identification data. This was done by including the observed
false-alarm rate as a fixed parameter.

Models were compared by calculating the Bayes Information Criterion (BIC; [15]) to allow
for differences in model flexibility arising from differences in the number of free parameters.
The model with the lowest BIC is that with the highest posterior probability given the observed
data. If all models are assigned equal prior probability, the posterior probability of each model
relative to the most likely model is given by the Bayes factor (BF). Model comparison was con-
ducted for each individual observer.

Results

Several measures of change detection and identification performance averaged across observers
are shown in Table 1 for each of the two conditions of change probability. For both conditions,
detection accuracy was close to 80%, the hit rate was around 75%, the false-alarm rate was
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Table 1. Change detection and identification performance in each condition of change probability (.25
and .75).

25 .75 t(9) P
Detection accuracy (%) 80.6 (2.3) 77.4 (3.4) 1.63 14
Hits (%) 76.0 (3.9) 75.7 (4.2) 0.14 .89
False alarms (%) 17.8 (2.2) 17.7 (3.4) 0.06 .95
Hits correctly identified (%) 83.7 (3.8) 86.6 (3.4) 1.24 .25
Misses correctly identified (%) 23.8 (4.1) 24.1 (1.8) 0.09 .93

Note: Standard errors of the means are shown in parentheses.

doi:10.1371/journal.pone.0149217.t001

around 18%, the HID rate was close to 85%, and the MID rate was around 24%. None of these
measures differed significantly between the change probability conditions.

ROC:s were generated for each observer from his/her detection data (Fig 3a). There was a
range of sensitivity across observers, reflected in the differences in the distances of the ROCs
from the positive diagonal. Six of the ten ROCs were nonlinear with the regression of hits
against false alarms containing a significant quadratic component t > 3.1, p < .02, which is
often considered to be inconsistent with a HTT process [13]. When plotted in z coordinates,
six of the ten ROC:s (Fig 3b) were nonlinear with a significant quadratic component, t > 3.7,

p < .01. This has been argued to be inconsistent with a purely SDT process [16].

To enable comparison with previous studies of change detection, we first fitted models to
detection data only. The fit of each model to the ROC for one observer in the .25 change condi-
tion is shown in Fig 4. When model predictions were pooled across observers and conditions
of change probability, all models were able to fit the observed ROC points very well. Intraclass
correlations for absolute agreement between observed and fitted hits and false alarms are pre-
sented in Table 2 for each model. However, rather than formally comparing model fits with
regard to these correlations, we compared them with regard to BICs and BFs.

For 9/10 observers, the SDT model was the most likely, as indicated by the lowest BIC
(Table 3). The evidence favouring the SDT model was strong (BF ratio > 10; [17]) for six
observers and moderate (BF ratio > 3) for one (Table 4). There was also moderate evidence
favouring the HTTa model for one observer.

For the nine observers for whom the SDT model was most likely, we examined whether it
predicted the observed HID and MID rates. The average predicted HID rate (.92) was close to
that observed (.86), but the average predicted MID rate (.55) was much higher than observed
(.:24). As the SDT model substantially over-predicted MID rates, we included a variant of the
SDT model (SDTg) in which the identity of missed changes was sometimes guessed at from the
set of all items when fitting models to identification and detection data combined. Whereas the
SDT model assumes that the observer always identifies the item associated with the most highly
activated detector, the SDTg model assumes he/she adopts this strategy on all trials in which a
change is detected, but on only some of the trials in which a change is missed. The SDTg model
assumes that on other trials in which a change is missed, the observer chooses to make random
guesses at the identities of the changed item without reference to detector activations. For the
SDTg model, detector sensitivity, the ratio of standard deviations of the signal-plus-noise and
noise distributions, and the rate at which guesses are made at the identities of missed changes
(g) are free parameters.

For 7/10 observers, one of the two SDT models was the most likely, as indicated by the low-
est BIC (Table 5). The evidence favouring the SDT class of model, compared with the HTT
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Fig 3. Individual ROCs. ROC for each observer for the change detection task in linear coordinates (a) and z
coordinates (b).

doi:10.1371/journal.pone.0149217.g003
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Fig 4. Example model fits. ROC for one observer in the .25 change condition (circles) and the best fitting ROC for each model (crosses). Dev = deviation.

doi:10.1371/journal.pone.0149217.9004

class, was strong for six observers (Table 6). There was moderate or strong evidence favouring
the SDTg model for four observers and moderate evidence favouring the SDT model for one
observer. There was also strong evidence favouring the HTTa model for two observers.
Parameter estimates for the most likely model (when fitted to the combination of change
detection and identification data) for each observer and condition of change probability

PLOS ONE | DOI:10.1371/journal.pone.0149217 February 16, 2016
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Table 2. Intraclass correlations between observed and fitted hits and false alarms for each model.

Model

HTT
HTTa
HTTn
SDT

Note: All correlations are significant, p <.001.

doi:10.1371/journal.pone.0149217.t002

Hits
.909
.947
.907
.999

Table 3. BICs for models fitted to detection data from individual observers.

O1
02
03
04
05
06
o7
08
09
010

Note: The smallest BIC for each observer is indicated in bold.

doi:10.1371/journal.pone.0149217.t003

HTT

264.4
792.6
258.6
523.6
411.8
266.8
272.5
394.4
314.7
457.3

HTTa

239.8
647.3
247.2
4721
317.6
252.8
257.0
375.3
272.7
369.5

HTTn

271.6
799.8
265.8
530.8
419.0
273.9
279.6
401.6
321.9
465.1

False alarms

979
972
.980
.999

SDT

235.5
177.2
245.1
224.8
232.2
252.6
259.4
2245
231.4
227.4

are shown in Table 7. For each observer, there is broad agreement across the two conditions
of change probability with respect to the estimated parameter values. For observer 6, capacity
estimates are somewhat higher than typically reported and estimated attention rates are

rather low.

Table 4. BFs for models fitted to detection data from individual observers.

HTT HTTa HTTn SDT

o1 .00 A2 .00 1.00
02 .00 .00 .00 1.00
03 .00 .36 .00 1.00
04 .00 .00 .00 1.00
05 .00 .00 .00 1.00
06 .00 .91 .00 1.00
o7 .00 1.00 .00 .30
08 .00 .00 .00 1.00
09 .00 .00 .00 1.00
010 .00 .00 .00 1.00
Note: BFs for models with moderate (BF ratio > 3) or strong (BF ratio > 10) favouring evidence are
indicated in bold.
doi:10.1371/journal.pone.0149217.t004
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Table 5. BICs for models fitted to combined detection and identification data from individual

observers.

O1
02
03
04
05
06
o7
08
09
010

HTT

294.3
830.0
291.2
552.4
448.2
339.0
301.4
454.3
361.8
507.1

HTTa

269.4
745.6
269.8
532.5
368.0
284.0
285.9
425.1
280.9
405.6

HTTn

301.7
826.6
298.3
555.8
454.4
327.5
308.0
451.2
365.3
497.8

Note: The smallest BIC for each observer is indicated in bold.

doi:10.1371/journal.pone.0149217.t005

Table 6. BFs for models fitted to combined detection and identification data from individual

observers.

O1
02
03
04
05
06
o7
08
09
010

Note: BFs for models with moderate (BF ratio > 3) or strong (BF ratio > 10) favouring evidence are

indicated in bold.

doi:10.1371/journal.pone.0149217.t006

Discussion

HTT

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

HTTa

.60
.00
1.00
.00
.00
1.00
1.00
.00
.00
.00

HTTn

.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

SDT

268.3
266.9
277.4
257.6
272.3
310.4
287.6
265.2
266.6
285.1

SDT

1.00
.00
.02
.46
.05
.00
.43
.01

1.00
A7

SDTg

270.8
218.5
283.8
256.1
266.4
310.7
293.2
255.7
269.7
281.6

SDTg

.30
1.00
.00
1.00
1.00
.00
.03
1.00
.21
1.00

The present study found that of the models tested to account for change detection performance

in isolation, that based on SDT was supported by the evidence for most (i.e., 7/10) of the

observers. This model assumed that task performance was supported by a continuous memory

resource that was distributed across all items in our displays to form eight, noisy representa-
tions. The SDT class of model was in the majority of cases (i.e., 6/10) also able to account for
change identification performance. For some observers, an additional parameter to allow for
guessing at the identity of missed changes was required because the standard SDT model over-
predicted the MID rate. According to SDT, the relative activation of detectors carries informa-
tion about the identity of a change, even when the activation does not reach criterion for detec-

tion (i.e., when a change is missed). It is presumed that some observers adopted a strategy on

some miss trials that did not take advantage of this information.

For a small number observers (i.e., 1/10 in the case of fitting models to detection data in
isolation and 2/10 in the case of fitting them to detection and identification data combined),
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Table 7. Best fitting parameters for the best fitting model for the combination of detection and identification data for each observer and condition

of change probability.

Observer
O1

02

03

04

05

06

o7

08

09

010

Model
SDT

SDTg

HTTa

SDTg

SDTg

HTTa

HTTa

SDTg

SDT

SDTg

doi:10.1371/journal.pone.0149217.t007

p(change) k a d s g
.25 - - 2.1 4.3 -
.75 - - 2.2 2.4 -
.25 - - 3.0 0.9 .81
.75 - - 2.6 0.4 1.0
.25 48 .69 - - -

.75 4.1 .80 - - -
.25 - - 3.1 1.6 .93
.75 - - 3.0 1.8 .75
.25 - - 3.0 1.1 77
.75 - - 3.1 1.3 74
.25 8.0 .40 - - -

.75 5.9 .66 - - -

.25 5.0 .83 - - -

.75 4.6 .73 - - -
.25 - - 3.7 0.9 1.0
.75 - - 3.4 1.0 .73
.25 - - 2.9 1.3 -
.75 - - 3.8 1.7 -
.25 - - 3.2 1.9 .02
75 - - 3.0 1.3 71

however, it was found that the evidence supported the HTT-based model that allowed for
lapses of attention. This model assumed that task performance was supported by a discrete
memory resource capable of maintaining a limited number of noiseless representations.

Although it is possible, it seems unlikely that the fundamental architecture of short-term
memory differs across individuals. The inconsistency across observers in our study with regard
to preferred model, therefore, more probably stemmed from other inter-observer differences.
One possibility is that some observers made use of verbal short-term memory to form robust
(i.e., HTT-like) representations of a subset of the items in our displays. Capacity limitations
associated with this memory system, such as those imposed by the time required to recode
visual information into a verbal form, may have restricted the number of items that could be
represented verbally to fewer than eight.

A second possibility is that the three-second display inspection time in our study was too
short for some observers to fixate on each of the eight items. Although eye movements were
not measured, it is clear that most observers inspected the items in our displays in a serial fash-
ion, fixating briefly on each. It is likely that fixated and non-fixated items would be processed
to different extents and represented in memory with vastly different degrees of robustness. In
tests conducted subsequent to this study, in which eye movements were measured, we found
that three additional observers fixated on an average of 7.8 items while performing our change
detection and identification task. This suggests that a three-second inspection time is adequate
for observers to fixate on all eight items on most trials, but it remains possible that it is inade-
quate for some. Evidence favouring a HTT- over a SDT-based model of VSTM was previously
reported in a study where observers were allowed to move their eyes while they inspected the
initial display in a change-detection paradigm but restricted inspection time to 500 ms [5]. An
inspection time of this duration would have provided sufficient time for observers to make one
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or two saccades [18], and thus fixate on some but not all items except in the smallest array size
condition.

We cannot exclude the possibility that observers with ROCs that were well fitted by SDT
also engaged in verbal labelling. Recognition memory for words is commonly modelled using
SDT [16]. In the Introduction, we suggested that item representations based on verbal labels
may be more robust than those held in VSTM. Verbally based representations, however, need
not necessarily be entirely noiseless, and it is possible that they are sometimes well modelled by
SDT. If some of the observers in our study held some display items in verbal memory and oth-
ers in VSTM, their detection performance may reflect that of an array of detectors of differing
sensitivity. It is possible that the performance of such an array would be well modelled by a
standard (i.e., fixed detector sensitivity) unequal-variance SDT model that accommodates the
variance in actual detector sensitivity in the model signal-plus-noise variance. We confirmed
this by simulating the performance of an eight-detector array in which four detectors had a d’
of 1 and the other four had a d' of 3. The standard deviation of the noise in all detectors was set
to 1. An unequal-variance SDT model with a d’ of 2 and a signal-plus-noise standard deviation
of 1.7 was found to provide an excellent fit to the ROC of this mixed sensitivity array (devi-
ance = 59.6, which is similar to the smallest deviances observed in this study). The corollary
of this result is that previous studies that have found evidence for multidimensional unequal-
variance SDT could alternatively be interpreted to have found evidence for a mixture of
detector sensitivities across items, which may reflect differences in levels of processing across
those items.

In conclusion, the present study has extended on previous studies by examining visual
change detection and identification performance under free viewing conditions akin to those
usually present in real-world settings. The visual eccentricity of items was not constrained and
the stimulus duration allowed serial fixation. We found that for the majority of observers, both
change detection and identification performance could be parsimoniously described by a single
underlying SDT-based process. However, for a small number of observers, there was strong
evidence in support of a HTT-based model that allowed for lapses of attention.
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