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Abstract
Oligodendrocyte differentiation and central nervous system myelination require massive

reorganization of the oligodendrocyte cytoskeleton. Loss of specific actin- and tubulin-orga-

nizing factors can lead to impaired morphological and/or molecular differentiation of oligo-

dendrocytes, resulting in a subsequent loss of myelination. Dystonin is a cytoskeletal linker

protein with both actin- and tubulin-binding domains. Loss of function of this protein results

in a sensory neuropathy called Hereditary Sensory Autonomic Neuropathy VI in humans

and dystonia musculorum in mice. This disease presents with severe ataxia, dystonic mus-

cle and is ultimately fatal early in life. While loss of the neuronal isoforms of dystonin primar-

ily leads to sensory neuron degeneration, it has also been shown that peripheral

myelination is compromised due to intrinsic Schwann cell differentiation abnormalities. The

role of this cytoskeletal linker in oligodendrocytes, however, remains unclear. We sought to

determine the effects of the loss of neuronal dystonin on oligodendrocyte differentiation and

central myelination. To address this, primary oligodendrocytes were isolated from a severe

model of dystonia musculorum, Dstdt-27J, and assessed for morphological and molecular

differentiation capacity. No defects could be discerned in the differentiation of Dstdt-27J oli-
godendrocytes relative to oligodendrocytes from wild-type littermates. Survival was also

compared between Dstdt-27J and wild-type oligodendrocytes, revealing no significant differ-

ence. Using a recently developed migration assay, we further analysed the ability of primary

oligodendrocyte progenitor cell motility, and found that Dstdt-27J oligodendrocyte progenitor

cells were able to migrate normally. Finally, in vivo analysis of oligodendrocyte myelination

was done in phenotype-stage optic nerve, cerebral cortex and spinal cord. The density of

myelinated axons and g-ratios of Dstdt-27J optic nerves was normal, as was myelin basic

protein expression in both cerebral cortex and spinal cord. Together these data suggest

that, unlike Schwann cells, oligodendrocytes do not have an intrinsic requirement for neuro-

nal dystonin for differentiation and myelination.
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Introduction
Oligodendrocytes (OLs), the myelinating cells of the central nervous system (CNS), undergo
complex morphological and molecular changes during differentiation and myelination. As oli-
godendrocyte progenitor cells (OPCs), they are migratory, mitotic cells with a relatively simple
morphology. Upon interaction with appropriate environmental signals, OPCs exit the cell
cycle and initiate differentiation to become increasingly branched, non-migratory, post-mitotic
OLs. OL branches are able to contact and wrap their membrane around axons to produce the
compact myelin necessary for saltatory conduction and trophic and metabolic axonal support
[1–3]. Contrary to the myelinating Schwann cells of the peripheral nervous system (PNS),
which myelinate axons in a 1:1 ratio, a single oligodendrocyte can contact and myelinate many
axons simultaneously [4,5].

Requirements for the transition from OPC to OL are numerous and include both cell intrin-
sic and extrinsic factors. A major outcome of the initiation of differentiation is massive reorga-
nization of the cytoskeleton into a progressively ramified arrangement. In OLs, this means
promoting and maintaining the organization of microfilaments and microtubules, as interme-
diate filaments are absent from these cells [6,7]. Initial membrane protrusions are instigated by
microfilament growth to form filopodia, which then expand to form thicker, microfilament-
and microtubule-rich lamellipodia [7]. Multiple actin- and tubulin-organizing factors are nec-
essary and essential to OL differentiation. A loss of OL morphological complexity is observed
in the absence of actin-organizing factors Wiscott-Aldrich syndrome protein (N-WASP),
WASP family verprolin-homologous protein 1 (WAVE1), focal adhesion kinase (FAK) and
integrin-linked kinase (ILK) [8–11], as well as tubulin-organizing factors tubulin polymeriza-
tion promoting protein (TPPP/p25), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase),
Fyn kinase and tau [12–14], amongst others. As morphological differentiation is a requirement
for successful myelination to occur, it is clear that the capacity of an OL for cytoskeletal reorga-
nization is critical to CNS function and health.

One cytoskeleton-organizing factor with an unclear role in OLs is the large cytoskeletal
linker protein dystonin (DST), which is a member of the plakin family [15]. Tissue-specific iso-
forms of Dst are found in neural, muscle and epithelial compartments [16–19]. Dst in neural
tissue can be alternatively spliced to give rise to the three neuronal transcripts, Dst-A1, -A2 and
-A3. The proteins encoded by these transcripts differ only in their N-terminal regions which
localize them regionally within the cell [15]. In common between the neuronal isoforms are
both an actin-binding and a microtubule-binding domain, conferring their function as cyto-
skeletal linkers [17,20]. Loss of dystonin results in ultimately fatal peripheral neuropathies,
namely hereditary sensory and autonomic neuropathy type VI (HSAN-VI) in humans and dys-
tonia musculorum (Dstdt) in mice, characterized by ataxia, dystonic muscle and sensory neuron
degeneration [21,22].

While pathology of sensory neurons is the major contributor to Dstdt pathogenesis, investi-
gation has also been undertaken to assess the effects of neuronal Dst loss in myelinating glial
cells. Two models ofDstdt, Dstdt-Tg4 (lacking Dst-A1 and -A2) andDstdt-27J (lacking all neuronal
isoforms), have peripheral myelination abnormalities that were attributable to intrinsic differ-
entiation defects in Schwann cells [23]. Subsequently, CNS myelination was explored in Dstdt-
Tg4 animals through analysis of optic nerve and spinal cord, and it was suggested that OLs are
unable to myelinate normally in the absence of Dst [24]; however, tools for comprehensive
analysis of the character of these OLs were lacking at the time, leaving conclusions about the
intrinsic role of neuronal Dst in OL differentiation and myelination somewhat ambiguous.

Here, we take advantage of a recently developed method for primary culture of mouse OLs
[25], as well as an assay to measure OLmigratory capacity [26] to characterize the morphological
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and molecular differentiation of OLs from the more severe Dstdt-27Jmodel ofDstdt, which lacks
all neuronal DST isoforms. While we show that both OPCs and OLs do express all three neuro-
nal isoforms ofDst endogenously, OLs isolated fromDstdt-27J animals do not show a deficiency
in morphological or molecular maturity in vitro. Survival is not compromised in OLs lacking
Dst, and OPC migration is unaffected. Further, contrary to previous observations made in the
less severe Dstdt-Tg4model, we found no defects in myelin sheath thickness or MBP expression in
vivo. Taken together, our in vitro and in vivo findings suggest that OLs do not possess a critical
requirement for Dst in differentiation and myelination.

Materials and Methods

Animals
For qRT-PCR experiments, wild-type Sprague-Dawley rats were obtained from Charles River.
The mutant mouse line Dstdt-27J was used for all other experiments. This line arose from a
spontaneous mutation in the Dst allele, which confers phenotype in a recessive manner. The
mutant animals were first identified at the Jackson Laboratory, and were then characterized as
expressing very low levels of neuronal Dst transcript levels relative to wild-type animals [27].
The animals were sacrificed at P0-P1 for primary OL cell culture and at P15 for in vivo analy-
ses. Genotypes were determined by PCR amplification of genomic tail DNA. The University of
Ottawa Animal Care Committee approved all experimental protocols. The protocols con-
formed to or exceeded those defined in the Canadian Council on Animal Care's Guide to the
Care and Use of Experimental Animals, and the Animals for Research Act.

Cell culture
Primary rat OPC and OL cultures were generated from P2 cerebral cortex tissue as described
previously [28]. In brief, cortices were dissociated with 0.01% trypsin (Sigma) in the presence
of 10 μg /mL DNase (Sigma). Mixed glial cultures were plated in DMEM (Wisent) containing
20% fetal bovine serum, 2% Glutamax (Gibco) and 0.5% penicillin/streptomycin (Gibco) on
poly-L-lysine-coated filter cap flasks for 10 days at 37°C and 5% CO2. Flasks were then shaken
overnight at 220 rpm, and medium containing suspended OPCs was removed from the flasks.
Contaminating glial cells were removed from suspension by differential adhesion. To obtain
proliferating OPC cultures, OPCs were plated in SATO medium with 2% Glutamax, 0.1%
bovine serum albumin (Sigma), 50 μg/mL apo-transferrin (Sigma), 5 μg/mL insulin (Sigma),
30 nM sodium selenite (Sigma), 10 nM D-biotin (Sigma) and 10 nM hydrocortisone (Sigma)
supplemented with 10 ng/mL PDGF-AA (Millipore) and 10 ng/mL bFGF (Millipore). To
obtain differentiating OL cultures, OPCs were plated in SATO medium as above but supple-
mented with 5 μg/mL N-acetyl-L-cysteine (Sigma), 15 nM triiodothyronine (Sigma) and 10
ng/mL ciliary neurotrophic factor (CNTF; AbD Serotec).

Primary mouse OL cultures were generated from P0 cerebral cortex tissue as described pre-
viously [25]. Briefly, cortices were dissociated with papain, and mixed glial cultures were plated
in DMEM containing 10% fetal bovine serum, 1% Glutamax, 5 μg/mL insulin and 0.33% peni-
cillin/streptomycin on poly-L-lysine-coated filter cap flasks for 6 days at 37°C and 8.5% CO2.
Medium was further supplemented with 5 μg/mL insulin and cultures were kept at 5% CO2 for
an additional 3–4 days. Cultures were then shaken overnight at 220 rpm, and enriched for
OPCs by differential adhesion. The OPCs were then plated in differentiating SATO medium
with 0.5% fetal bovine serum, 1% Glutamax, 5 μg/mL insulin, 50 μg/mL holo-transferrin
(Sigma), 50 ng/mL CNTF and 0.33% penicillin/streptomycin on coverslips dual-coated with
poly-L-lysine and laminin and kept at 37°C and 5% CO2.
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OPCmigration assay
OPC aggregates were collected and plated as described previously [26]. In brief, following shak-
ing of the mixed glial cultures, medium containing suspended OLs was filtered through
0.45 μmmesh. The mesh was then inverted, and a pipet was used to wash medium back
through the mesh to dislodge isolated OPC aggregates. These were collected in a dish, and a
dissection microscope was used to identify and remove single aggregates to be plated on lami-
nin-coated coverslips. The aggregates were placed in conditioned mixed glial culture medium
(containing insulin) collected from flasks prior to shaking. Cells were left to migrate for 4 and
24 hours prior to fixation. For quantification, concentric circles were overlaid placing the origi-
nal OPC aggregate at the center. Rings were set at 50 μm increments from the aggregate for
migration at 4 hours, and at 100 μm increments for 24 hours migration.

qRT-PCR
RNA was isolated from ~1.5 x 105 primary rat OPCs and OLs using the RNeasy Mini Kit (Qia-
gen). Samples were collected from proliferating OPCs 4 hours post-seeding in proliferation
medium, and from a mixed population of pre-myelinating and myelinating OLs on day 1.5
post-seeding in differentiation medium. Samples were reverse-transcribed with RT2 First
Strand cDNA synthesis kit (Qiagen) using 120 ng total RNA. Relative expression of each of the
three neuronal Dst transcripts in proliferating OPCs and differentiation OLs was determined
by qRT-PCR. Briefly, each 25 μL reaction contained 5–12 μL total cDNA, 12.5 μL SsoFast Eva-
Green Supermix (Bio-Rad), either 0.2 μL 10 μM forward + reverse primers for dystonin-A1,
1 μL 10 μM forward + reverse primers for dystonin-A2 and–A3 transcripts or 0.2 μL 10 μM
forward + reverse primers for actin transcripts, and RNase-free water. All samples were ampli-
fied using the following protocol: 3 min at 95°C, followed by 40 cycles of 95°C for 10 sec, 60°C
for 10 sec and 72°C for 30 sec. Runs were amplified using a Bio-Rad CFX96 and analysed using
qBase+ software. For each primer set, 4–6 biological replicates were analysed (n = 5–6, n = 1
animal) and samples were run in technical quadruplicates. Technical replicates were used for
analysis only when Cq values differed by 0.25 or less. The following primers were used for
amplification: Dst-A1 forward CTA CAT GTA CGT GGA GGA GCA (779 bp), Dst-A2 forward
GAG GGC TGT GCT TCG GAT AG (741 bp), Dst-A3 forward GTC TCC AAG GAT GCA CCT AGG
GAT, Dst-A1/A2/A3 reverse CAT CGT TTG CAC CAA TGC C, actin forward CCG TCA GGC AGC
TCA TAG CTC TTC, and β-actin (actb) reverse CTG AAC CCT AAG GCC AAC CGT. Bands for
each transcript were visualized by running qRT-PCR products in a 1% agarose gel containing
RedSafe™ nucleic acid staining solution.

Immunofluorescence
All samples were fixed in 3% paraformaldehyde. Cells were fixed for 15 min at room tempera-
ture, while OPC aggregates were fixed overnight at 4°C. Following fixation, coverslips were
washed with PBS, permeabilized for 5 min in 0.1% Triton-X (Sigma), and blocked for 1 hour in
10% goat serum. Cells stained for F-actin were additionally blocked with 0.1% bovine serum
albumin (BSA) for 30 min, and incubated with 1:50 rhodamine-phalloidin (Life Technologies)
in 0.1% BSA for 45 min at room temperature. Samples were incubated with primary antibody
in 10% goat serum overnight at 4°C, at the following concentrations: NG2 1:250 (EMDMilli-
pore), MAG 1:50 (EMDMillipore), MBP 1:100 (AbD Serotec), Olig2 clone 211.F1.1 1:50
(EMDMillipore), and cleaved-caspase 3 (CC3) 1:100 (Cell Signaling). Cells were again washed
with PBS, and then incubated with secondary antibodies (Alexa-555, Alexa-488, Alexa-647;
Invitrogen) at 1:200 in 10% goat serum for 2 hours at room temperature. All samples were
counterstained with Hoechst and mounted in Dako fluorescent mounting medium. For
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maturation marker and CC3 analyses, n = 3 for both WT and Dstdt27. For quantification of
cells undergoing caspase-mediated apoptosis, the proportion of CC3+/Olig2+ cells out of all
Olig2+ cells was calculated, to avoid quantification of any contaminating cells. Quantification
was done for 20–30 photographs taken at 20X magnification from at least two separate
coverslips.

Morphological analysis
Sholl analysis was used to quantify branching complexity of DD3 OLs by overlaying concentric
circles at 30 μm increments from the cell body using ImageJ. Branch intersections were
counted at each ring. Cells used for Sholl analysis were co-stained for F-actin to visualize
branches and Olig2 to confirm OL identity. For DD6 OLs, total membrane area was measured
by tracing total cell outline using ImageJ. Cells used for quantification of membrane area were
co-stained with MAG and MBP to visualize both non-compact and compact myelin mem-
brane. For both Sholl and membrane area analyses, n = 3 for WT and Dstdt-27. Sholl analysis
was conducted for 30 cells per n, and membrane area was measured for 60 cells per n. Cells
were deemed membrane positive when they showed any MBP stained region in which
branches were no longer discernible but instead were replaced by flattened membrane sheet of
any size. Membrane negative cells showed no MBP staining and no membrane sheets. The
presence or absence of membrane was quantified for n = 3 for WT and Dstdt-27. For each n, 20–
30 photographs taken at 20X magnification were analysed from at least two separate coverslips.

Western blotting
Cerebral cortex and spinal cord samples were collected from P15 WT and Dstdt-27 animals and
flash-frozen in liquid nitrogen. Tissue from one animal was considered 1 n, and a total of n = 6
was collected. Protein was isolated by gently homogenizing tissue in 1x RIPA lysis buffer
(Sigma) on ice. The lysate was centrifuged at 4°C at high speed to remove insoluble material.
Samples were separated by SDS-PAGE in a 15% gel. Membranes were incubated in 1:1000
CNPase (Abcam), 1:1000 MOG (Abcam), 1:1000 MBP (AbD Serotec) and 1:50,000 alpha-
tubulin (Cell Signaling) primary antibodies overnight at 4°C in Odyssey blocking buffer (Li-
Cor Biosciences). Membranes were washed in 1X TBS, then incubated with secondary antibody
(IRDye 680RD and 800CW; Li-Cor Biosciences) at 1:10,000 in Odyssey blocking buffer for 1
hour at room temperature. Membranes were visualized and bands quantified using the Li-Cor
Odyssey CLx Infrared Imaging System.

Transmission Electron Microscopy (TEM)
P15 WT and Dstdt-27J mice were anesthetized by CO2 and transcardially perfused with 5 mL of
phosphate-buffered saline (PBS) followed by 10 mL of Karnovsky’s fixative (4% paraformalde-
hyde, 2% glutaraldehyde and 0.1 M sodium cacodylate in phosphate-buffered saline, pH 7.4).
Optic nerves were collected and fixed overnight at 4°C in the same fixative. Following fixation,
1 mm segments were cut transversely from the mid-point of each nerve. Segments were subse-
quently washed twice in 0.1 M sodium cacodylate buffer for 1 hour and again overnight at
room temperature. Segments were post-fixed with 1% osmium tetroxide in 0.1 M sodium caco-
dylate buffer for 1 hour at room temperature. These were washed twice in distilled water for 5
min, and then dehydrated twice for 20 min for each step in a graded series of ethanol from
water through 30%-50%-70%-85%-95% ethanol. This was followed by two 30 min washes in
100% ethanol, two 15 min washes in 50% ethanol/50% acetone, and two 15 min washes in
100% acetone. Optic nerve segments were infiltrated in 30% spurr resin/acetone for 20 min
and once overnight, then in 50% spurr resin/acetone for 6 hours, and finally in 100% spurr
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resin overnight. Segments remained in 100% spurr resin, which was changed twice a day for
three days at room temperature. All infiltration steps were performed on a rotator. Specimens
were embedded in fresh liquid spurr resin and then polymerized overnight at 70°C. Ultrathin
sections (80 nm) of the optic nerve segments were collected onto 200-mesh copper grids and
dried overnight prior to staining. Ultrathin sections were stained with 2% aqueous uranyl ace-
tate and Reynold’s lead citrate. Sections were observed under a transmission electron micro-
scope (Hitachi 7100).

Optic nerves were collected from n = 4 for both WT and Dstdt-27J. Quantification of myelin-
ated axons was done for 12 electron micrographs per n taken at 4000X. G-ratio was measured
by calculating the diameter of the axon/diameter of the axon+myelin using ImageJ. For each n,
25 g-ratios were measured for a total of 100 measurements from both WT and Dstdt-27J.

Toluidine blue staining
Semithin transverse sections (0.5 μm) of optic nerves were embedded in resin, mounted on
glass slides, and stained with toluidine blue. Sections were scanned with a MIRAXMIDI
(Zeiss) and viewed using Zeiss MIRAX viewer software. These samples were used for qualita-
tive optic nerve assessment only.

Statistical analysis
All statistics were done using Prism 6 GraphPad software, with the exception of the qPCR data,
which was analysed using qbase+ software (Biogazelle). All two-way comparisons were done
using a two-tailed Student’s t-test. Comparisons for qPCR data were done using one-way
ANOVA followed by Tukey’s post hoc test. Analysis of g-ratios by axon caliber was done by lin-
ear regression analysis. Data shown represent mean ± SEM with the exception of myelinated
axon density and mean g-ratio, which represent mean ± SD.

Results

OPCs and OLs endogenously express all neuronal Dst transcripts
Expression of neuronal dystonin in CNS tissue has previously been demonstrated by both
RNA in situ hybridization and RT-PCR [24,29,30]. However, we wished to confirm expression
of the three transcripts specifically in OLs. Using RNA extracted from primary proliferating
OPCs and differentiating OLs we performed qRT-PCR for Dst-A1, -A2, and -A3. All three tran-
scripts are expressed in proliferating OPCs, and in differentiating OLs (Fig 1). Dst-A1 and -A2
showed similar expression levels between OPCs and differentiating OLs, while Dst-A3 showed
significantly increased expression in differentiation OLs relative to proliferating OPCs.

Loss of neuronal Dst does not affect morphological maturation in vitro
It has been illustrated in many instances that loss of cytoskeleton-interacting proteins bears a
negative effect on OL differentiation and myelin membrane formation. Since Dst is able to
directly interact with both microfilaments and microtubules, we first sought to determine
whether loss of dystonin affects the morphological complexity of differentiating OLs. We iso-
lated mixed glial cultures from Dstdt-27J mice and WT littermates, and then further isolated
OPCs to produce purified cultures as described previously [25]. OPCs were allowed to differen-
tiate on a mixed PLL/Ln2 substrate for three days (DD3) or six days (DD6), representing inter-
mediately differentiated or terminally differentiated time points, respectively. At DD3, Sholl
analysis was used to assess complexity but revealed no significant differences in branch exten-
sion between Dstdt-27J and WT OLs (Fig 2A and 2B). OLs in the two conditions were also
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equally capable of producing membrane at this stage of differentiation, as evidenced by similar
proportions of membrane-positive cells (Fig 2C). This was maintained at DD6, where again
similar proportions of cells were capable of producing membrane (Fig 2F). Cell complexity was
further assessed at DD6 by measuring membrane area, which again revealed no differences
between Dstdt-27J and WT OLs (Fig 2D and 2E).

Fig 1. Proliferating OPCs and differentiating OLs express neuronalDst transcripts. Top.
Representative RT-PCR products from Dst-A1, -A2 and -A3 with actb loading control in primary proliferating
OPCs (left lanes) and differentiating OLs (right lanes). Bottom. qRT-PCR analysis of Dst-A1, -A2 and -A3
expression in primary proliferating OPCs and differentiating OLs. n = 4–6; ΔΔCt, Dst normalized to actb. *
p<0.05, n.s. = p�0.05; two-tailed Student’s t-test. Data represent mean ± SEM.

doi:10.1371/journal.pone.0149201.g001

Fig 2. Dstdt-27JOLs exhibit normal morphological differentiation. A. Immunofluorescence micrographs of WT and Dstdt-27J showing branching at DD3.
B. Sholl analysis of DD3 OLs. Rings were set at 30 μm increments for quantification of intersections. C. Quantification of the percentage of membrane
positive OLs at DD3. D. Immunofluorescence micrographs of WT and Dstdt-27J total membrane production at DD6. E. Quantification of membrane area at
DD6. F. Quantification of the percentage of membrane positive OLs at DD6. B, C, E, F: n = 3; all comparisons non-significant by two-tailed Student’s t-test.
Data represent mean ± SEM. Scale bars = 50 μm.

doi:10.1371/journal.pone.0149201.g002
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Loss of neuronal Dst does not affect molecular OL maturation in vitro
While OL morphological maturity is associated with increased branch complexity and eventual
membrane formation, molecular maturity involves decreased expression of NG2 concurrent
with increased expression first of MAG followed by MBP. To determine whether Dstdt-27J OLs
were able to follow a normal molecular differentiation time course, we assessed proportions of
NG2+ (OPC stage), MAG+/MBP- (intermediate OL stage) and MAG+/MBP+ (terminal OL
stage) cells at both DD3 and DD6. No significant differences were found in the presence of any
of these markers at DD3 (Fig 3A and 3B) or DD6 (Fig 3C and 3D), indicating that OLs lacking
DST are able to follow a normal molecular differentiation pattern in vitro.

Apoptosis is not induced in OLs in vitro in the absence of neuronal Dst
To ensure that the apparent health of Dst-deficient OLs was not isolated to a subpopulation of
surviving cells, we assessed OL cultures at both DD3 and DD6 for apoptosis. Differentiating
OLs were not undergoing significantly more apoptosis at either DD3 or DD6, as assessed by
the presence of apoptotic marker cleaved-caspase 3 (Fig 4).

OPCs lacking neuronal Dst migrate normally in vitro
While the effects of loss of neuronal Dst have been little investigated, loss of muscle dystonin
has been found to impair migration in myoblasts [31]. Since OPCs are also highly migratory
cells, we sought to determine if their motility is affected by a lack of neuronal dystonin. Using a
recently established method (ROM unpublished) OPC aggregates were isolated from OPCs in
suspension and plated on laminin-2 substrate. Aggregates of roughly equal size were selected
and allowed to migrate for 4 or 24 hours. Migration was assessed by quantifying the proportion
of total NG2+ cells found at set distances from the original aggregate after 4 and 24 hours post-
seeding. Migration ability was similar between Dstdt-27J OPCs and WT OPCs at both 4 hours
and 24 hours (Fig 5).

CNSmyelination is normal in mice lacking neuronal Dst
In vitro analyses revealed no intrinsic differentiation or migration defects in OPCs/OLs lacking
DST; however, this does not preclude myelination deficiencies from occurring in vivo. Thus,
we assessed myelination of the optic nerve in P15 Dstdt-27J mice along with WT littermates for
comparison. In this model, P15 is end-stage phenotype, and all Dstdt-27J animals exhibited typi-
cal Dstdt symptoms of ataxia, hind-limb clasping and twisting of the trunk [15].

No obvious size difference or myelination defects could be observed on examination of tolu-
idine blue-stained optic nerves (Fig 6A). A more detailed analysis was performed in optic
nerves by transmission electron microscopy (TEM; Fig 6B). WT and Dstdt-27J optic nerves con-
tained similar numbers of myelinated axons (Fig 6C). Further assessment of myelin sheath
thickness by TEM revealed no overall difference in g-ratio between WT and Dstdt-27J optic
nerves (Fig 6D), nor was there any shift in myelin distribution based on axon caliber (Fig 6E).
Finally, assessment of myelination status was done outside of the optic nerve by quantifying
CNPase, MOG and MBP levels in both cerebral cortex and spinal cord, also revealing no
change in any of these markers of mature myelin between WT and Dstdt-27J (Fig 6F–6M).

Discussion
The loss of functional neuronal Dst isoforms results in a severe phenotype characterized by
ataxia, dystonia and death [21,22]. While the phenotype is largely a consequence of sensory
neuron degeneration, previous work has implicated myelinating cells in both the PNS and
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CNS as contributors to, if not instigators of, the Dstdt phenotype [23,24]. Specifically in the
CNS, it has been argued that minor myelination pathologies are in fact early signs of OL-intrin-
sic defects in the CNS, and that further deterioration would occur if longevity of the animal
model was not so limited [24]. However, tools to investigate this hypothesis were wanting at
the time. With our present study, we sought to clarify the effects of Dst loss on OLs using the
severe Dstdt-27J model lacking all neuronal Dst isoforms. By employing methods to isolate and
culture Dstdt-27J OPCs and OLs in vitro, we were able to divorce OLs from not only the short
phenotypic lifespan of the animal model but also from the influence of Dstdt-27J neurons. This
allowed us to observe OL-intrinsic behaviors in the absence of neuronal Dst.

Our results suggest that even lacking all three neuronal Dst isoforms, no intrinsic defects
exist in OL differentiation at the morphological or molecular levels. This apparent regularity in
OL behavior was not limited to a subpopulation of surviving healthy cells, as apoptosis was not
increased in Dstdt-27J. Further, in vivo analysis revealed no deficits in CNS myelination of axons
or in myelin sheath thickness in optic nerve, and no loss of CNPase, MOG or MBP in spinal
cord or cerebral cortex. These findings are dissimilar to what was previously found in the less
severe Dstdt-Tg4 model, which retains functional Dst-A3 [24]. While our results do not disqual-
ify the existence of myelination defects in that model, it seems intuitive that if CNS myelination
defects are indeed part of Dstdt pathology then the more severe model would exhibit more
severe CNS myelination problems. It must also be noted that while some qualitative in vitro
analyses of OLs was undertaken in the initial study (revealing no obvious morphological
defects in Dstdt-Tg4 OLs) [24], the tools to isolate and culture primary mouse OLs were limited

Fig 3. Dstdt-27JOLs exhibit normal molecular differentiation. A. Immunofluorescence micrographs of WT and Dstdt-27J showing maturation marker
expression at DD3. B. Quantification of the proportion of NG2+, MAG+/MBP-, and MAG+/MBP+ OLs at DD3. C. Immunofluorescence micrographs of WT and
Dstdt-27J showing maturation marker expression at DD6. D. Quantification of the proportion of NG2+, MAG+/MBP-, and MAG+/MBP+ OLs at DD6. B, D: n = 3;
all comparisons non-significant by two-tailed Student’s t-test. Data represent mean ± SEM. Arrowheads: yellow = NG2+, orange = MAG+/MBP-, grey = MAG+/
MBP+, white = contaminating cell. Scale bars = 50 μm.

doi:10.1371/journal.pone.0149201.g003
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and thus restricted the ability for a more comprehensive analysis of intrinsic OL biology, as we
have done here.

We must also acknowledge that while this study provides fairly detailed molecular and mor-
phological analyses, these assessments were done at a single pre-myelinating time point and at
a point where terminal differentiation is known to occur for these cells in vitro. Thus, it is pos-
sible that differences in morphological and/or molecular development may occur at time points

Fig 4. Apoptosis is not increased inDstdt-27JOLs. A. Immunofluorescence micrographs of WT and Dstdt-27J showing colocalization of nuclear CC3 and
Olig2 in apoptotic OLs at DD3. B. Quantification of the proportion of CC3+/Olig2+ relative to total Olig2+ OLs at DD3. C. Immunofluorescence micrographs of
WT and Dstdt-27J showing colocalization of nuclear CC3 and Olig2 in apoptotic OLs at DD6. D. Quantification of the proportion of CC3+/Olig2+ relative to total
Olig2+ OLs at DD6. A, C: Arrowheads represent CC3+/Olig2+ OLs. B, D: n = 3; all comparisons non-significant by two-tailed Student’s t-test. Data represent
mean ± SEM. Scale bars = 50 μm.

doi:10.1371/journal.pone.0149201.g004
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prior to terminal differentiation, which we did not investigate. However, since terminal differ-
entiation is achieved with equal success in both WT and Dstdt-27J OLs in vitro within the
expected time line, any differences in their development prior to this point must be transient
and are unlikely to affect their biological function as mature OLs. This is supported by our in
vivo data, which reveal no defects in optic nerve myelination, cerebral cortex myelin protein
expression or spinal cord myelin protein expression even at end-stage of the dystonia muscu-
lorum disease. Again, differences in developmental timing in OL maturation and myelination
prior to this point cannot be ruled out in vivo, but if they do occur these too must be temporary
as even end-stage Dstdt-27J animals exhibit myelin status and health that is indistinguishable
fromWT animals. While our study is primarily concerned with the biological relevance of the
loss of Dst in OPCs and OLs, additional investigation would need to be undertaken to clarify
whether any transient differences in differentiation dynamics arise when Dst is absent.

Interestingly, intrinsic differentiation and myelination defects do exist in Schwann cells in
both the Dstdt-Tg4 and Dstdt-27J models, and are more severe when all three neuronal isoforms
are absent [23]. This was illustrated in in vitro primary cultures and in vivo transplant experi-
ments in which Dstdt-tg4 and Dstdt-27J Schwann cells failed to differentiate or myelinate nor-
mally. While many similarities exist between Schwann cells and OLs—most obviously their
function as producers of myelin—there are also many differences that may account for their
apparent disparate requirement for neuronal Dst. First, intermediate filaments are present in
Schwann cells and play a role in peripheral myelination, while OLs do not contain intermediate
filaments [2,6,7,32]. Dst can bind some intermediate filaments in addition to microfilaments
and microtubules, and loss of Dst leads to disorganization of intermediate filaments α-

Fig 5. Migration is normal inDstdt-27JOPCs. A. Immunofluorescence micrographs of WT and Dstdt-27J of OPC aggregates 4 hours post-seeding. B.
Quantification of the proportion of NG2+ OPCs migrated at 4 hours within rings set at 50 μm increments from the aggregate. C. Immunofluorescence
micrographs of WT and Dstdt-27J of OPC aggregate 24 hours post-seeding. D. Quantification of the proportion of NG2+ OPCs migrated at 24 hours within
rings set at 100 μm increments from the center of the aggregate. B, D: n = 3; all comparisons non-significant by two-tailed Student’s t-test. Data represent
mean ± SEM. Scale bars = 50 μm.

doi:10.1371/journal.pone.0149201.g005
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Fig 6. Myelination occurs normally in vivo inDstdt-27J animals. A. Light microscope images of transected toluidine blue-stained optic nerves from P15
WT and Dstdt-27J mice. B. Electron micrographs of transected optic nerves from P15WT and Dstdt-27Jmice. C. Quantification of the number of myelinated
axons per field of view (FOV) in optic nerves from P15WT and Dstdt-27Jmice. D. Quantification of average g-ratio of all myelinated axons per FOV in optic
nerves from P15WT and Dstdt-27Jmice. E. g-ratios plotted by axon caliber in optic nerves from P15WT and Dstdt-27Jmice. F, G. FluorescenceWestern blot
analysis of CNPase, MOG, MBP and α-tubulin (α-tub) from cerebral cortex (CC—top panels) and spinal cord (SC—bottom panels) from P15WT and Dstdt-
27J mice. Protein sizes—CNPase: 48 kDa; MOG: 27 kDa; MBP isoforms, from top to bottom: 21.5 kDa, 18.5 kDa, 17.0 kDa, 14.0 kDa. α-tub: 52 kDa. H, I.
Quantification of total CNPase normalized to α-tub (from blots pictured in F, G). J, K. Quantification of total MOG normalized to α-tub (from blots pictured in F,
G). L, M. Quantification of total MBP normalized to α-tub (from blots pictured in F, G). C, D: n = 4; H-M: n = 6; all comparisons non-significant by two-tailed
Student’s t-test. C, D: data represent mean ± SD. H-M: data represent mean ± SEM. E: n = 100; data represent individual measurements, comparison non-
significant by linear regression analysis. A: scale bar = 50 μm. B: scale bar = 2 μm.

doi:10.1371/journal.pone.0149201.g006
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internexin, neurofilament and peripherin in sensory neurons [33,34]. A second key difference
between OLs and Schwann cells is the production of a basement membrane. Following contact
with an axon, Schwann cells surround their exterior layer with a basement membrane, the
mechanical integrity of which is required for continued wrapping of the axon and subsequent
myelin production [35,36]. Further, OLs and Schwann cells express a different complement of
integrins, transmembrane heterodimeric complexes that convey signals between the extracellu-
lar matrix and intracellular space largely to elicit cytoskeletal reorganization [11,37,38]. It has
been speculated that Dst may interact with some integrins to mediate cytoskeletal organization
[23,24]. Thus it is possible that in Schwann cells, Dst is involved in any or all of intermediate
filament organization, basement membrane formation and mediation of signaling of specific
integrin complexes—none of which are present in OLs.

Further explanation may exist for the seemingly disposable nature of neuronal Dst in OLs.
In mammals, a second member of the spectraplakin exists: microtubule-actin crosslinking fac-
tor 1 (Macf1; variantly actin crosslinking family 7/Acf7). Two isoforms of Macf1 are preferen-
tially expressed in CNS tissues with little expression in PNS tissues, and share significant
homology with neuronal Dst [39,40]. Macf1 can regulate cytoskeletal dynamics, and has both
actin-binding and microtubule-binding domains, similar to Dst [40–42]. This raises the possi-
bility that neuronal Dst does serve a function in the CNS, which may be compensated for by
Macf1 if the former is lost. However, this idea was previously investigated in the Dstdt-27J

model; no increase in Macf1 was observed in brain or spinal cord from Dstdt animals, as would
be expected if additional Macf1 were required to fill a role normally played by Dst [40]. While
this does not preclude a compensatory function for Macf1, it does suggest that—much like OLs
and Schwann cells—Macf1 and neuronal Dst serve similar functions that are likely restricted to
their respective nervous system compartments.

Finally, though the lack of Dst does not appear to be biologically relevant to the terminal dif-
ferentiation of OLs during developmental myelination, it may be required for remyelination
following a demyelinating injury. In the healthy CNS, any damage to mature myelin that may
occur can be repaired by the differentiation of resident OPCs into new myelinating OLs, which
subsequently ensheathe denuded areas of an axon. Though this process is believed to largely
mimic the processes of developmental myelination—the so-called recapitulation hypothesis
[43,44]–the final product of remyelination includes both thinner sheaths and shorter inter-
nodes than expected. This raises the possibility that different mechanisms are involved in
remyelination than in developmental myelination, and this remains an important open ques-
tion in OL biology. Interestingly, it has also been noted that in some instances of CNS demye-
lination, remyelination is carried out not by OLs but by Schwann cells[45]. These Schwann
cells are not emigrated from the PNS, but surprisingly arise from CNS glial progenitors in spe-
cific circumstances when the injury results not only in demyelination but also in depletion of
astrocytes at the injury cite [45,46]. The expression of dystonin has not been investigated in the
context of remyelination. Future work should include the use of remyelination models applied
to Dstdt animals—such as organotypic brain slice culture—to explore the role of neuronal Dst
in this important process, particularly when Schwann cells are implicated in CNS recovery
from demyelination.

Conclusions
Here, comprehensive in vitro and in vivo analyses were performed to better understand the
role of neuronal Dst in OLs using the Dstdt-27J animal model. Our results revealed that even in
the absence of all three isoforms of Dst, OLs are able to differentiate normally both morpholog-
ically and molecularly. Survival of OLs lacking Dst is not compromised, nor is migration of
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OPCs. In vivo assessment of optic nerve myelination at disease end-stage showed normal den-
sity of myelinated axons and myelin thickness in optic nerve, as well as normal expression lev-
els of CNPase, MOG and MBP in both spinal cord and cerebral cortex in animals with dystonia
muscolorum. While we cannot rule out the occurrence of transient differences in OL maturity
or that other cellular processes may be affected in OPCs and OLs in the absence of Dst, these
data suggest that neuronal Dst is not essential for proper terminal OL differentiation or func-
tional myelin development in the CNS.

Supporting Information
S1 Fig. Proliferating OPCs and differentiating OLs express neuronal Dst transcripts.
Whole-gel view of RT-PCR Dst-A1, -A2 and -A3 with actb loading control in primary prolifer-
ating OPCs and differentiating OLs. L = ladder; bp = base pairs.
(TIF)

S2 Fig. CNPase, MOG, and MBP expression is unchanged in Dstdt-27J cerebral cortex and
spinal cord.Whole-membrane view of all CNPase, MOG, and MBP isoforms, as well as α-
tubulin (green) in cerebral cortex (CC) and spinal cord (SC) from P15 wild-type (WT) and
Dstdt-27J mice. L = ladder; kDa = kilodaltons.
(TIF)
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