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Abstract

Objectives

Simultaneous Non-contrast Angiography and intraPlaque hemorrhage (SNAP) technique

was recently proposed for joint MRA and intraplaque hemorrhage (IPH) imaging. The pur-

pose of this study is to validate SNAP’s MRA performance in patients with suspected intra-
cranial artery disease.

Methods

SNAP and time-of-flight (TOF) techniques with matched field of view and resolution were
applied on 15 patients with suspected intracranial artery disease. Both techniques were
evaluated based on their detection of luminal stenosis of bilateral middle cerebral arteries
(MCA) and the delineation of smallest visible branches (SVB) of the MCA. Statistical analy-
sis was conducted on the artery level.

Results

The SNAP MRA was found to provide similar stenosis detection performance when com-
pared with TOF (Cohen’s k 0.79; 95% Confidence Interval: 0.56—0.99). For the SVB com-
parison, SNAP was found to provide significantly better small artery delineation than TOF (p
=0.017). Inter-reader reproducibility for both measurements on SNAP was over 0.7. SNAP
also detected IPH lesions on 13% of the patients.

Conclusions

The SNAP technique’s MRA performance was optimized and compared against TOF for
intracranial artery atherosclerosis imaging and was found to provide comparable stenosis
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detection accuracy. Along with its IPH detection capability, SNAP holds the potential to
become a first-line screening tool for high risk intracranial atherosclerosis disease
evaluation.

Introduction

Both luminal stenosis and intraplaque hemorrhage (IPH) have been identified as key imaging
biomarkers of atherosclerotic disease which can be used to stratify patients by the risk of devel-
oping ischemic cardiovascular events. Luminal stenosis is widely adopted in clinics as a surro-
gate marker of the disease for clinical decision-making [1,2]; on the other hand, as an emerging
biomarker, IPH occurred in extracranial carotid arteries and intracranial arteries has been dem-
onstrated to be associated with increased risk for clinical events [3-5]. Additionally, it is well evi-
denced that the IPH will stimulate the progression of the carotid plaques [6,7]. An imaging
technique that can reliably detect both biomarkers suggests significant clinical potential.

The Simultaneous Non-contrast Angiography and intraPlaque imaging (SNAP) sequence
was recently proposed as a candidate technique to address this need [8]. The SNAP approach
can provide a full 3D luminal MRA and a naturally registered 3D IPH image in a single acquisi-
tion. Theoretical analysis indicates that SNAP is more sensitive to IPH than any existing imag-
ing techniques [8]. When compared with established techniques in carotid artery imaging,
SNAP was found to provide comparable lumen size measurements and IPH detection rates [8].

Intracranial atherosclerosis disease is a significant but often overlooked contributor to ische-
mic strokes. Previous reports suggest that it represents 9-15% of all the ischemic strokes in US
[9]and that the prevalence can be even higher, sometimes even over 50% [10,11], in certain
racial groups [12]. Intracranial atherosclerosis has even been suggested as one of the most com-
mon causes of stroke worldwide [13]. It is therefore clinically meaningful to explore whether
the combination of luminal stenosis and IPH can serve as a better marker for intracranial dis-
eases as well.

Although SNAP has been used to image intracranial arteries, the luminal stenosis detection
accuracy of SNAP has not been validated in any vascular beds. The aim of this study is to evalu-
ate SNAP MRA performance by comparing with the clinically more commonly used Time-of-
Flight (TOF) technique on a group of patients with clinically suspected intracranial disease. In
addition to comparing luminal stenosis of major arteries, the capability of SNAP MRA to
resolve small arteries will also be compared with that of TOF.

Materials and Methods
Study population

Three healthy volunteers (all male, age range: 26-33) were recruited for sequence optimization.
Subsequently, for sequence validation, 15 consecutive patients with suspected intracranial dis-
ease and agreement to participate in the study were recruited. The study protocol was approved
by the institutional review board of Tsinghua University School of Medicine and the written
informed consents were obtained from all subjects.

Sequence optimization

The SNAP sequence [8] is an inversion recovery magnetization prepared gradient echo
sequence, followed by a series of low flip angle acquisition serving as the reference. The
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reference acquisition is essential for phase-sensitive reconstruction [14]. SNAP MRA is gener-
ated based on the naturally long T, property of the blood: once inverted, it typically takes
much longer time for blood to relax back towards thermal equilibrium compared to other tis-
sues. Consequently, when imaged at the proper TI, blood will be the only tissue that remains
negative in the phase-sensitive images. This allows the generation of an ideal MRA image when
only the negative magnetization is visualized. As detailed in the original papers [8,15], two con-
ditions are usually required to achieve SNAP MRA with reasonable quality: the blood is prop-
erly inverted and the acquisition time is properly selected.

For the latter condition, assuming all the key tissues involved in intracranial artery imaging
(blood in the lumen, IPH, and vessel wall) possess similar T relaxation times as in the carotid
arteries, the optimal image contrast for carotid artery was considered reasonable for intracra-
nial arteries. Therefore, the T and inversion recovery interval times were not further optimized
in this study.

To make sure blood is properly inverted, the original SNAP paper proposed two criteria to
optimize the inversion pulse coverage in the foot-head direction based on estimated upper/
lower boundary of flow velocity [15]. For the carotid artery, it is relatively straightforward to
estimate the upper and lower boundary of blood velocity along the inversion direction as the
overall flow direction is uniform. However, given the tortuous nature of intracranial arteries
and the heterogeneous flow direction in the region, it would be difficult to estimate inversion
coverage using the same criteria. In vivo optimization of the inversion coverage is therefore
needed to adequately optimize SNAP for intracranial artery imaging.

For in vivo optimization, a whole body 3T scanner (Philips Achieva R3.21, Best, the Nether-
lands) and an 8-channel phased-array brain coil were used for image acquisition. After scout
scans, a set of axial SNAP images were acquired around the MCA section. Among the SNAP
acquisitions, all imaging parameters were the same except the inversion slab thickness. Slab
thicknesses of 150mm, 300mm and 450mm were considered, as was a non-selective excitation.
The rest of the imaging parameters were: Phase-sensitive Inversion-recovery enabled 3D inver-
sion recovery turbo field echo, inversion recovery interval time 1970ms, TR/TE 10/5.5ms, flip
angle 11°, FOV 160x160x50mm”, acquired matrix size 1.2x1.2x1.2mm’, interpolated to
0.6x0.6x0.6mm>, SENSE factor 2, scan time 1min06sec.

As the inversion slab thickness has no impact on the IPH contrast, MRA quality will be the
sole point of comparison for parameter selection. The thickness which presented the highest
MRA quality was selected as the optimal imaging parameter.

Validation

Multi-slab TOF MRA was used as the reference technique for SNAP validation as it has been
commonly used in clinical intracranial scans due to its robust performance in the region [16].
Furthermore, its acquisition time is not limited by the first pass duration, so a relatively high
imaging resolution can be achieved, and it is a non-contrast MRA technique like SNAP.

In consideration of the scanning efficiency, only a thin slab of a multi-slab TOF protocol
was used in this study. By using only one thin slab, the scan time can be substantially reduced
without compromising the image quality. The same imaging hardware was used as in the
sequence optimization study. The imaging parameters for SNAP were: Phase-sensitive Inver-
sion-recovery enabled 3D inversion recovery turbo field echo, inversion recovery interval time
1970ms, TR/TE 10/5.5ms, flip angle 11°, FOV 160x160x50mm?, acquired matrix size
1x1x1mm?, interpolated to 0.5x0.5x0.5mm?, scan time 2min40sec. The optimal inversion slab
thickness identified in the previous section was used. The geometric parameters for TOF were
identical to SNAP and the other parameters were: 3D fast field echo, TR/TE 26/3.5ms, flip
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angle 20°, scan time 1min40sec. Matched SNAP and TOF imaging volumes were placed cen-
tered at the MCA arteries in the foot-head direction. Due to the thin slab coverage, only the
MCA MRA was evaluated.

Image analysis

After the SNAP images were obtained, they were first processed to realize the traditional 3D
maximum intensity projection (MIP) MRA view as previously described [8].

A neuroradiologist with over 5 years of experience in neuroradiology reviewed all images.
To ensure a fair comparison, all images were grouped into two sets: one set contained a ran-
domly selected image (SNAP or TOF) from each subject; the other set contained the other
images from the same subjects. The number of SNAP and TOF images was balanced between
the two sets and each image was given a random number so the paired SNAP and TOF images
could not be linked during review. The two sets of images were reviewed separately with a
2-week interval in between to avoid memory bias. Both the left and right MCA were analyzed
in every image.

To evaluate luminal stenosis detection accuracy, the M1 segment of each MCA was assessed
by the neuroradiologist. Stenosis was defined as segmental reduction of lumen with a residual
flow or signal loss on MIP images; otherwise the artery will be deemed normal [17]. The sever-
ity of stenosis measurement is heavily impacted by the window/level settings. To ensure a fair
comparison, two dataset need to have identical settings. This is however impossible to achieve
in our study. SNAP images take the advantage of doubled dynamic ranges from phase sensitive
images. SNAP MRA, in particular, was reconstructed from negative signals from phase sensi-
tive images, which is drastically from the more traditional magnitude image based TOF images.
Through our testing implementation in getting a comparable window/level settings between
SNAP and TOF, we found a bias will invariably introduced between the two techniques no
matter how the levels were set. We therefore decided to compare only the existence of stenosis
in our study.

To evaluate the capability of SNAP to resolve small arteries, the Smallest Visible Branch
(SVB) of the MCA artery was also recorded by the radiologist. In this comparison, the smallest
branch that could still be fully delineated on the MR image was defined as the SVB of this par-
ticular artery. To facilitate the comparison, MCA segments were named as M1- M4 based on
the established method [18]. It was also demonstrated in Fig 1.

The presence or absence of intraplaque hemorrhage and/or thrombosis was also evaluated
on all subjects using dual-contrast MIP images that can simultaneously show luminal MRA
and IPH and thrombosis (IPH/T). IPH/T was not differentiated in this study due to the finer
caliber of intracranial arteries and the spatial resolution achievable in a reasonable scan time.
The presence of IPH/T was defined as a hyperintensive red (positive) signal as described in [8].

Statistical analysis

Luminal stenosis comparison between SNAP and TOF was evaluated by Cohen’s Kappa (),
and the SVB comparison was evaluated by Wilcoxon’s signed-rank test. Dependence between
arteries from the same subject was accounted for in two ways. A 95% confidence interval for
was computed using the non-parametric bootstrap, where resampling was done by subject
[19]. The Wilcoxon signed-rank test was adapted to handle paired arteries by implementing a
permutation test where the arteries from the same subject were always permuted together [19].
A p value of <0.05 was considered as statistically significant. All statistical analysis was con-
ducted by SPSS 15.0 (SPSS Inc, Chicago, IL, USA).
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Fig 1. Definition of MCA segments for SVB comparison. The orange dots identify the bifurcations and the
dotted lines delineate the different segments (M1-M4) of the MCA artery. Note that the oblique projection
direction is used to better visualize the different segments.

doi:10.1371/journal.pone.0149130.g001

Results
Sequence optimization

The performance of SNAP MRA was found to vary by the inversion slab thickness (Fig 2). A
non-selective inversion provided the optimal MRA view among all parameters: more small-
branches can be visualized (arrows). This may have been due to two characteristics of the
sequence: non-selective inversion pulses allow for more complete excitation and the long delay
between inversion pulses avoids severe signal saturation. As a result, the non-selective inver-
sion pulse was used for the subsequent validation scans.

In vivo validation

A total of 15 patients were recruited for the validation study. Both TOF and SNAP were suc-
cessfully acquired in all patients and the image quality of all images was found to be satisfactory
for review.
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Fig 2. Optimization of inversion slab thickness for SNAP imaging. It is clear that the SNAP MRA
performance is best when the inversion pulse was non-selective (NS) compared to the inversion slab
thicknesses considered. This implementation was used for the subsequent validation scans.

doi:10.1371/journal.pone.0149130.g002

Compared to TOF, 3D SNAP MRA was found to provide improved visualization of the
intracranial artery vascular tree, particularly on smaller branches (Fig 3). This was consistently
observed across the group.

Of the 30 arteries reviewed, M1 stenosis was identified in 18 (60%) arteries by SNAP and 19
(63%) arteries by TOF. SNAP and TOF agreed on the presence of stenosis in 17 arteries and
disagreed on three arteries, resulting in excellent agreement (Cohen’s k = 0.79; 95% Confidence
Interval: 0.56-0.99). One stenotic artery was identified as a total occlusion by both SNAP and
TOF.

A comparison of the smallest visible branch (SVB) review results by SNAP and TOF is
shown in Fig 4. The most common SVB was M3 for SNAP (33% of arteries) and M2 for TOF
(44% of arteries). Five arteries with SVB = M1 were identified because the M1 segments were
found to be occluded on both techniques. SNAP was able to visualize a more distal branch than
TOF in 11 (37%) arteries and less distal in 2 arteries (7%) while the SVB was the same for both
in the remaining 17 arteries. Statistically, SNAP was found to visualize significantly more
branches than TOF (p = 0.017).

TOF

SNAP

Patient 1 Patient 2

Fig 3. Visual comparison between SNAP and TOF MRA on the same subjects. SNAP and TOF make
same detection on stenotic lesions on both subjects (dotted circles). The small artery visualization on SNAP
MRA is significantly improved (arrows).

doi:10.1371/journal.pone.0149130.g003
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mca
SVB review Comparison between SNAP and TOF
SNAP
M1 M2 M3 M4 Total
M1 5 - 1 - 6 (20%)
M2 - 5 7 1 13 (44%)
e M3 - 2 2 2 6 (20%)
M4 - - - 5 5(17%)

Total 5(17%) 7(23%) 10(33%) 8 (27%) N=30

Fig 4. Cross-tabulation of MCA smallest visible branch (SVB) review results by SNAP and TOF MRA.
Rows show the number of arteries with the corresponding SVB by TOF and columns show the number of
arteries with the corresponding SVB by SNAP. A dash indicates that no arteries had that pair of results. The
diagonal shows the number of arteries with the same SVB on both SNAP and TOF (green), while the cells
above (yellow) or below (red) the diagonal show the number of arteries where SNAP or TOF was better than
the other, respectively. SNAP visualizes more distal branches than TOF in 11 arteries, less in 2 arteries and
performs equally in the remaining 17 arteries.

doi:10.1371/journal.pone.0149130.g004

It is also noteworthy that 3 IPH/T lesions were identified on 2 patients, giving an observed
incidence rate of ~13% in this patient population. Using the dual-MIP display method
described before [8], a color-coded 3D SNAP image allows for easy simultaneous visualization
of both luminal stenosis and IPH in the same review session. An example was shown in Fig 5.

Discussion

The SNAP sequence has potential for future clinical evaluation of atherosclerotic disease due to
the simultaneous MRA and IPH/T visualization obtained in one scan. The sequence was origi-
nally developed and tested in the carotid artery [8]. In this study, the SNAP sequence was opti-
mized for intracranial artery imaging and, for the first time, validated for luminal stenosis
detection accuracy against an established technique of TOF.

SNAP MRA’s improved visualization of smaller arteries was demonstrated in this study,
both qualitatively and quantitatively. This improvement is likely caused by two factors: the
improved background suppression and the reduced dependence on flow velocity. In terms of
background suppression, as explained in the ‘Materials and Methods’ section, the SNAP tech-
nique is optimized to maintain negative magnetization only for blood. In the SNAP MRA view,
all the other tissues are automatically masked so that theoretically, complete background sup-
pression can be achieved. In TOF, on the other hand, unsuppressed tissues like fat contribute
to a significant portion of the background signal, making the visualization of smaller arteries

Original image

SNAP MRA SNAP IPH SNAP - joint

Fig 5. The simultaneous visualization of MRA and IPH/Thrombosis using the SNAP sequence. On the
left are reformatted SNAP MRA, IPH/T and joint MIP view to facilitate image review. One the right is the
original image at the cross-section of the MCA artery. Obvious contrast between IPH/Thrombosis (positive
magnetization) and luminal (negative magnetization) signal can be found.

doi:10.1371/journal.pone.0149130.g005
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more challenging. In terms of reduced reliance on flow velocity, any incoming blood that flows
into the FOV between two inversion pulses (1.97 seconds) can be properly imaged in SNAP
MRA while TOF MRA usually saturates after ~10 TR (depending on the parameters used),
which corresponds to roughly 0.26 seconds in our study. This much longer in-flow time also
makes SNAP a more robust technique in visualizing smaller arteries.

The incidence of intracranial IPH has only been occasionally reported in the literature
[4,20-22], which may be due to a possibly low incidence rate and/or the lack of suitable imag-
ing techniques. The assessments of IPH by MR T1 imaging in intracranial arteries remain
uncertain until a histology validation study was performed recently [23]. The T1 weighted
image derived from SNAP imaging makes it possible to detect intracranial IPH. Compared to
other IPH detection techniques, SNAP provides the highest sensitivity because of the much
improved dynamic range offered by the phase-sensitive reconstruction technique [8]. In this
study population, a 13% IPH incidence rate was identified by the SNAP sequence. Our findings
are in line with previous reports of 19.6% prevalence in symptomatic and 3.2% in asymptom-
atic populations [4]. As IPH has been reported as a high-risk feature in carotid artery disease,
its clinical risk in intracranial atherosclerosis needs to be better understood. SNAP may become
a powerful tool in detecting intracranial IPH.

Contrast enhanced MRA and CT angiography are commonly regarded as more robust than
non-contrast MRA techniques in non-invasively detecting luminal stenosis. However, in this
study, contrast enhanced MRA and CTA were not used for comparison as they are less com-
monly prescribed in our center because Gd-based and iodine-based contrast agents make con-
trast enhanced MRA and CTA less favorable for patients with potentially impaired renal
function. TOF MRA is often used as a non-contrast alternative technique for intracranial MRA
imaging. Its performance has repeatedly been found to be sufficient in this region [24,25]. In
this study, in an effort to reduce the overall imaging time, only a thin slab of imaging volume
was used for both SNAP and TOF to ensure a fair comparison. The overall findings are
expected to be the same should a multi-slab protocol be adopted for both techniques.

The stenosis detection comparison in this study focused only on lesions in the M1 segments
of intracranial arteries. This was intentional as to avoid potential detection discrepancies
caused by the small artery visualization difference between the two techniques. As shown in
the SVB comparison, TOF may provide suboptimal characterization for arteries in M2-M4 seg-
ments, which can confound stenosis detection in those distal segments.

This study has several limitations. First, TOF MRA was used for validation of SNAP imag-
ing in evaluation of intracranial artery stenosis. Clinically, catheter angiography is the gold
standard in measuring luminal stenosis of intracranial arteries. Validation of SNAP imaging by
catheter angiography in future studies is warranted. Second, the relatively low spatial resolution
(1x1x1 mm?, interpolated to 0.5x0.5x0.5 mm?>) used by both SNAP and TOF, as higher resolu-
tion images are more commonly used in clinical scans. The implementation of a higher resolu-
tion SNAP would require acquisition bandwidth that cannot be afforded by the current
gradient systems. Improved receiver technology can potentially help improve the resolution
achievable by SNAP without compromising image contrast. This resolution challenge, how-
ever, is not expected to impact the findings of this study as SNAP and TOF are still compared
at exactly matched scan geometries. Similar findings are expected should higher resolution pro-
tocols be adopted by both techniques.

In conclusion, the SNAP technique’s MRA performance was optimized and compared
against TOF for intracranial artery atherosclerosis imaging and was found to provide compara-
ble stenosis detection accuracy. The combined high stenosis detection accuracy and high sensi-
tivity to intraplaque hemorrhage lesions paves the way for SNAP’s potential clinical
application in intracranial artery imaging.
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