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Abstract
In the last years Brain Computer Interface (BCI) technology has benefited from the develop-

ment of sophisticated machine leaning methods that let the user operate the BCI after a few

trials of calibration. One remarkable example is the recent development of co-adaptive tech-

niques that proved to extend the use of BCIs also to people not able to achieve successful

control with the standard BCI procedure. Especially for BCIs based on the modulation of the

Sensorimotor Rhythm (SMR) these improvements are essential, since a not negligible per-

centage of users is unable to operate SMR-BCIs efficiently. In this study we evaluated for

the first time a fully automatic co-adaptive BCI system on a large scale. A pool of 168 partici-

pants naive to BCIs operated the co-adaptive SMR-BCI in one single session. Different psy-

chological interventions were performed prior the BCI session in order to investigate how

motor coordination training and relaxation could influence BCI performance. A neurophysio-

logical indicator based on the Power Spectral Density (PSD) was extracted by the recording

of few minutes of resting state brain activity and tested as predictor of BCI performances.

Results show that high accuracies in operating the BCI could be reached by the majority of

the participants before the end of the session. BCI performances could be significantly pre-

dicted by the neurophysiological indicator, consolidating the validity of the model previously

developed. Anyway, we still found about 22% of users with performance significantly lower

than the threshold of efficient BCI control at the end of the session. Being the inter-subject

variability still the major problem of BCI technology, we pointed out crucial issues for those

who did not achieve sufficient control. Finally, we propose valid developments to move a

step forward to the applicability of the promising co-adaptive methods.

Introduction
Brain Computer Interfaces (BCI) are devices that let the users control a technical device or a
computer application just by using the modulation of the neural activity, without explicit
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muscular output [1–3]. One of the main applications of this technology is the clinical use for
people affected by a severe degree of paralysis, who are not able to move, speak or reliably con-
trol the movements of their eyes [4–10]. In this context, a widely investigated type of BCI is
that based on the modulation of the Sensorimotor Rhythm (SMR) as measured by the electro-
encephalogram (EEG) [11, 12]. The performances and usability of SMR-based BCIs have
improved in the last decades: long training sessions, in which the users had to learn to control
specific brain features, have been replaced by the machine-learning based approach that allows
for an effective performance from the first session [13, 14]. Then, further improvements have
been made to compensate for the non-stationarity of the EEG signal, in particular when transi-
tioning from calibration runs to evaluation runs. Several recent studies proposed adaptive
learning for EEG signals, either based on the update of the feature space [15–18] or of the clas-
sifier [19–22]. The bottleneck of SMR-based BCIs is that a significant percent of users (esti-
mated between 20–50% [23, 24]) is not able to modulate the SMR in a volitional way (BCI
inefficiency) [25, 26]. The causes of this phenomenon are unclear and vary from person to per-
son. For example, it has been observed that for some participants the classifier cannot be suc-
cessfully trained, meaning that no difference in the modulation of the SMR can be found
between motor imagery tasks. In the classical case, which relies on offline calibration data, the
BCI inefficiency may be due to the changes of the brain features between the offline training
session and the online feedback. In this specific scenario the development of co-adaptive BCI
system has been crucial, which lets the people interact with the feedback from the first trials,
removing the transition from offline to online phase. A promising approach is described in two
studies by Vidaurre and colleagues [21, 26], who used adaptive machine learning methods to
eliminate offline calibration. The participants were selected for their categorization of BCI con-
trol after participating in previous studies. For categorization we refer to that of Vidaurre et al.
[27]: for Category I users (Cat I), the classifier can be successfully trained and they gain good
BCI control in the online feedback session. For Category II users (Cat II) the classifier can be
successfully trained but no good performances can be achieved in the feedback phase. For Cate-
gory III users (Cat III), no successful training of the classifier is achieved. The co-adaptation
scheme presented in [21, 26] started with a pre-trained subject-independent classifier operating
on simple features, with which the user interacted continuously from the first run. Then, a sub-
ject-optimized classifier was used along with the supervised co-adaptation, for three runs. In
the last runs, an unsupervised adaptation scheme was adopted to track the drift of the features
during the session. This novel approach let the users who did not show BCI control with the
classical machine learning approach gain BCI control within one session. The BCI users who
were already able to effectively operate the BCI gained accurate control within few minutes.

It is important to develop advanced methods to solve the BCI inefficiency, but also it is use-
ful to identify a priori the potential users that may have difficulties to adopt one particular
approach. It would allow to skip a frustrating experience and to assign them to a different BCI
system (e.g., ERP based). Growing interest in this topic led to investigate neurophysiological
predictors of BCI performances [25, 28–32]. For example, Blankertz and colleagues [25] deter-
mined a neurophysiological predictor from a two minutes recording in condition ‘relax with
eyes open’, using two Laplacian EEG channels over the right and left motor cortex. The predic-
tor was based on the power spectral density (PSD) of the alpha and beta bands. They obtained
a correlation of r = 0.53 (r = 0.61 after outlier rejection) between the proposed predictor and
BCI feedback performance of a database of 80 BCI-naive participants operating an online
SMR-BCI. A different approach is described by Suk et al. [29] in which they investigated a
novel probabilistic framework on the same dataset. The novel method was used to predict the
BCI performance using the 2 min resting-state EEG data and 3 Laplacian channels (C3, Cz,
C4). After clustering the participants based on their spectral feature vector, they built a linear
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regression model based on the grouping. They could predict the participants performances on
the later BCI session with a maximum correlation coefficient of 0.581. A more recent study by
Zhang and colleagues [31] derives the SMR-BCI predictor from resting-state EEG recording
calculating the spectral entropy at different channels. They found that the entropy at channel
C3 for the eyes closed resting-state condition had the high correlation of 0.65 with offline
SMR-BCI performance. They also extended the evaluation of the spectral entropy predictor to
inter-session prediction, achieving classification accuracy up to 89%. The same group further
investigated offline SMR-BCI performance variations through the analysis of EEG resting-state
networks, resulting in a reliable prediction [32]. Other studies extended the investigation of the
correlation between different neurophysiological predictors and BCI performance also on sin-
gle-trial bases, [33–35].

These studies that address the problem of BCI inefficiency, from one side developing new
algorithms to cope with inefficient BCI control and from the other side to predict the success
of the BCI, have been conducted with a relatively low number of participants. In particular, it
has not been assessed yet whether an adaptive system using the state of the art machine learn-
ing technology can be successfully applied in large scale, without the direct intervention of BCI
experts on sensible parameters. In order to tackle this point, a large-scale study has been con-
ducted in two different locations, the Technical University of Berlin and University of Würz-
burg. From the BCI perspective, the two main goals of the study were: first, to achieve the
successful results of the previous studies based on co-adaptive calibration in naive un-catego-
rized users and with a fully automatic system. Second, to test the neurophysiological predictor
in a new larger pool of participants. Therefore, a sample of 168 participants was recruited to
conduct a co-adaptive EEG-based SMR-BCI, in single-session study. The BCI session immedi-
ately started with online feedback, applying the co-adaptive techniquesmethods described in
[21, 26]. However, differently from [21, 26], the proposed system was fully automatized, i.e. the
experimenters did not manipulate the selection of the features or the parameters of the classi-
fier or the adaptation scheme. This approach was meant to simulate a real case in which an
adaptive system would be in-home applied by users not familiar with the sophisticated
machine learning algorithms. Nevertheless, since the participants were totally naive in respect
of BCI technology, it was necessary that BCI experts provided them with the instructions about
how to correctly perform motor imagery. The brain resting state activity of all participants was
acquired prior to the BCI task and allowed a later offline investigation of the neurophysiologi-
cal predictor of BCI performances, according to the methods described in [25]. Moreover, two
different training strategies were adopted which correspond to the psychological factors of
degree of concentration and visuo-motor coordination that were found in [36] to correlate
with BCI performance. In the current study, these training strategies were used as interventions
prior to the BCI session in order to assess their ability to improve BCI performance. The results
are discussed taking into consideration the different training groups, but a more detailed inves-
tigation of the effect of the interventions will be published elsewhere (manuscript in
preparation).

Methods

Participants
Hundred-sixty-eight (168) participants were recruited for the study. 83 experiments were con-
ducted at the Technical University of Berlin and 85 at the University of Würzburg. Participants
were all naive in respect to BCIs. Eight participants were excluded from the analysis for taking
Central Nervous System (CNS)-affecting medication or reporting a psychiatric disorder, e.g.
ADHD or depression. Four participants were excluded because of technical problems in the
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EEG setup and 5 for not complying with the instructions given. So, the final sample was
reduced to 151 participants (96 females, mean age 24.9, SD = 6.5). The study was conducted in
accordance with the declaration of Helsinki, approved by the Ethical Review Board of the Med-
ical Faculty of the University of Tübingen, and written informed consent was obtain prior to
the experiment. Participants received 8 Euro per hour for their participation.

Apparatus
EEG was recorded with the sampling frequency of 1000 Hz using BrainAmp amplifiers and
ActiCap active electrode system with 64 channels (both from Brain Products, Munich, Ger-
many). The electrodes used were: Fp1,2, AF3,4, F1-10, Fz, FC1-6, FCz, FT7,8, CFC1-6, T7,8,
C1-6, Cz, CCP1-6, CP1-6, CPz, TP7,8, P1-6, Pz, PO3,4, O1,2, A2. All the electrodes were refer-
enced to the left mastoid, grounded to the forehead. For offline analyses, electrodes were re-ref-
erenced to linked mastoids. All impedances were kept below 10 kOhm. The stimuli were
shown on a 23” screen with a native resolution of 1920x1080 pixels at a refresh rate of 60Hz.
Participants sat on a comfortable chair at a distance of approximately 80 cm form the display.

Design and procedure
Interventions and pre-measurments. Participants were randomly assigned to one of

three groups, in which different kinds of intervention were performed before the BCI session.
The aim of the interventions was to investigate whether different pre-training could predict or
even enhance SMR-BCI performances. The first group performed a progressive muscular
relaxation (PMR), following the instructions of a Jacobson Progressive Muscle relaxation audio
recording of 23 minutes. The second group practiced a two-hand visuo-motor coordination
task (inspired by the 2HAND test (Schuhfried GmbH), in which they had to steer a ball along
virtual paths, controlling with the right hand the knob that set the horizontal position and with
the left hand the knob of the vertical position [36]. In Würzburg this task was performed for 5
paths of increasing difficulties, with an average duration of 7.6 min (SD = 2.6). In Berlin, the
paths were cycled for a total duration of 23 min. The third group was the control group, and
participants had to spend 23 min reading a text about BCI technology and answer to related
questions. After the intervention, participants started the BCI session. The first measurement
consisted in recording the brain activity during resting state. A recorded voice instructed the
participants to close the eyes for 15 s and open the eyes for an other 15 s. While with open eyes,
they had to look at a geometrical moving shape at the middle of the display. The cycle ‘eyes
open-closed’ was repeated for 10 times. The SMR BCI motor imagery (MI) part followed the
resting state measurement. The total duration of the experiment was approximately 3.5–4
hours, including the preparation of the EEG cap (about 1 hour), intervention and EEG record-
ing (about 1.5 hours), pauses and hair wash in loco.

Design of the BCI feedback. The BCI feedback used in the study consisted of a cursor
with cross shape, which was displayed in the center of the screen for 2 seconds, followed by a
white arrow-shaped cue, those direction indicated the MI to perform: right direction for MI of
the right hand, left direction for MI of the left hand and bottom direction for MI of the feet.
The user was instructed to perform the MI as soon as the cue was displayed and the cross
turned color from black to magenta. After 1 second, the feedback was displayed for 3 seconds.
In this period, the output of the classifier was translated into cursor movement in a rate control
manner, i.e. every 40 ms a fraction of the classifier output was added to the current cursor posi-
tion. When the 3 seconds of feedback were over, the color of the cursor turned black again and
a new trial started. The final position of the cross determined the success or failure of the trial.
For the first three runs, a positively biased feedback was employed. This feedback manipulation
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was not present in previous co-adaptive studies [21, 26] and it will be explained in the next sec-
tion. Here, the cursor could only move from the center position towards the indicated target
direction. The number of trials varied in the different parts of the experiment, but in all the
runs after 20 trials there was a short break of 15 seconds.

Online motor imagery BCI. The motor imagery session consisted of 3 parts: the first part
comprised 3 runs (1–3), of 40 trials each. The second and the third part had 2 runs (here
referred as runs 4–5 and runs 6–7), of 80 trials each (Fig 1). Between the runs there was a short
pause to let the participants relax. In runs 1–3, EEG was preprocessed using three Laplacian
derivations [37] over C3, Cz and C4, calculated from four surrounding channels, equally
weighted and subtracted from the central one. The signal was also frequency-filtered in the
alpha (8–15 Hz) and beta (16–32 Hz) bands using two Butterworth filters of order 10. Three
binary subject-independent classifiers were adopted, one for each pair of classes, left-right, left-
feet and feet-right. They were trained on a dataset of 48 people whose performance was above

Fig 1. Schematic flowchart of the online protocol. The EEG processing and adaptation protocol during runs 1–3 with positive biased feedback are
depicted in blue, in yellow the processing and adaptation during runs 4–5 with real feedback, in green the processing and adaptation during runs 6–7 also
with real feedback. The adaptation applied in runs 1–3 and 4–5 uses supervised methods, the adaptation of runs 6–7 uses unsupervised methods. In
magenta are depicted the phases of subject-specific features selection (e.g. frequency band, CSP filters, etc) and training of the classifier that happened two
times, i.e. after runs 1–3 and after runs 4–5.

doi:10.1371/journal.pone.0148886.g001
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70% in a previous study [25]. The classifier was based on linear discriminant analyses (LDA).
In this phase, the LDA classifier was adapted in a supervised manner after every trial using the
Adaptive Mean Estimation and Adaptive Inverse Covariance Matrix Estimation algorithms
(see [21, 26] for a detailed description). The inverse of the covariance matrix and class mean
values were updated after every trial using the class label (type of motor imagery task) only for
the mean values of the past trial. Feedback was provided to the participants slightly differently
from the procedure previously described. In this phase, the movement of the cursor was posi-
tively biased in the following way. The two binary classifiers including the target class were
evaluated. If one of them had a positive output for the target class, the cursor was moved pro-
portionally towards the target direction. Otherwise, the cursor would slowly move back
towards the center position, but it was never moved in direction of one of the two wrong clas-
ses. The use of a positively biased feedback was motivated by the fact that Cat II and III users
were on average not able to reach significant good performance (over 70% of accuracy) in the
initial phase [21, 26]. This lack of control could therefore irritate the user [38]. Positive feed-
back was already found to be useful in BCI training [39]. Data recorded in runs 1–3 were used
to select subject-specific settings (according to the tutorial in [40]), which were used in runs
4–5. The frequency band in which the classes were better discriminated was selected. A second
LDA classifier with shrinkage of the covariance matrix [41] was trained on log-band power fea-
tures extracted from the Laplacian and Common Spatial Patterns/Filters (CSP/CSF) [42] based
on 24 EEG channels. In this training, the pair of classes that showed the highest classification
accuracy (using cross-validation) was chosen and used for the rest of the experiment. This clas-
sifier was applied in runs 4–5. The CSF were selected automatically for each participant using
the bandpass filtered data of runs 1–3. The number of selected CSF varied between 2 and 6 and
they remained fixed during runs 4–5. In order to allow some spatial adaptation, six Laplacian
derivations were selected for each participant based on their discriminative power (quantified
by the biserial correlation coefficient) and concatenated to the CSP channels, leading to a fea-
ture vector of dimension between 8 and 12. Two Laplacian channels were selected from the left
hemisphere, 2 from the center and 2 from the right hemisphere. In runs 4–5 the adaptation
was performed in supervised manner. After every trial, the selection of the six Laplacian chan-
nels was updated using the last 100 trials and the classifier recalculated. Data recorded in runs
4–5 (160 trials) was used to recalculate the frequency band and new CSP features based on 47
EEG channels, and thereafter to train the LDA. In runs 6–7 no additional Laplacian channels
were used. During these last 2 runs, after each trial the linear classifier was adapted in unsuper-
vised manner, using the adaptation of the pooled mean. The adaptation of the pooled mean
produces a shift of the classifier’s hyperplane, tracking the position of the mean of the features.
The value of the update coefficient used in this study was 0.05, selected according to [43]. In
runs 4–5 and 6–7, the feedback was not biased and the cursor position was update according to
the classifier output as described in the previous section. Thus, the final position of the cursor
reflected the success or failure of the trial.

Pre-processing and data analysis
EEG signal was lowpass filtered from 0 to 40 Hz with a Chebyshev filter of order 10 (3 dB of
ripple in the passband and 40 dB of attenuation in the stopband) and down-sampled to 100
Hz. For ERD/ERS visualization, the class combination chosen in the first calibration after runs
1–3 was selected for each participant. The chosen pair of MI classes did not change during the
following part of the experiment. Data were filtered using the specific band selected during this
calibration. The grand average ERD/ERS was done over the participants having the same com-
bination of selected classes for each adaptation scheme, i.e. runs 1–3, runs 4–5 and runs 6–7.
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For online classification performances we referred to the results of runs 4–7, in which the
actual classifier output was translated into cursor feedback. The percentage of feedback accu-
racy refers to the number of trials in which the final position of the cursor was in line with the
target class. Mean feedback accuracies over 54.69% were considered significantly higher than
chance level [44]. This threshold was calculated with the binomial inverse cumulative distribu-
tion function (cdf), which returns the minimum number of trials such that the binomial cdf is
equal to or exceeds 0.95. Given that the total amount of feedback trials was 320 with 0.5 proba-
bility of success, the result of the the binomial inverse cdf was 175, i.e. 54.69% of successful tri-
als. Two-sample t-test was run between the performances of participants in Berlin and
Würzburg, in order to check if the difference between the average accuracies of the two labora-
tories were statistically significant. The measurement of the brain in resting state was used to
extract the neurophysiological predictor of BCI performances. Two Laplacian derivations, C3
and C4, were calculated from 9 monopolar channels. For each Laplacian derivation, we
concatenated the time intervals in which the participants had eyes opened and divided the con-
tinuous data into 2 s epochs. The power spectral density (PSD) was calculated for the two deri-
vations (between 2 Hz and 34 Hz, with a step of 0.5 Hz) and smoothed with a moving average
filter (window 3 Hz). The PSDs were averaged over epochs. The difference between the maxi-
mum PSD of each derivation and the fit of the 1/f noise spectrum was calculated. The average
of the two values determined the predictor. These values represent the estimate of the strength
of the SMR rhythm over the motor areas. For a more detailed description about the modeling
of the PSD and 1/f curves, please refer to [25]. Three participants were excluded in this analysis
because of the bad quality of the resting state recording. Therefore, the predictor was evaluated
on a pool of 148 participants. Statistical tests run between different intervention groups and
between different runs were done using one way-ANOVA with multiple comparisons to test
which means were significantly different. The assumption of normality distribution of the data
was checked with the one-sample Kolmogorov-Smirnov test. The assumption of equal vari-
ances was tested using Bartlett’s test.

Results

Online performances
The following results refer to classification performances of runs 4–7, in which the feedback
was representing the actual classifier output. We consider as correct trials those in which the
final position of the cross was on the display at the correct side of the target class (right for
right MI, left for left MI and down for feet MI) with respect to the starting point at the center of
the display. The classification accuracies represent the percentage of correct accomplished tri-
als. Fig 2 depicts the feedback accuracies for each participant, sorted in ascendant order. The
black crosses represent the average accuracies of the overall feedback phase and the colored
dots the accuracy of each run. The values of the participants tested at TU Berlin are depicted in
magenta, those of the participants of Würzburg in green. A total of 135 participants had mean
classification performance significantly better than chance. Among these, 90 had mean accu-
racy over the threshold considered necessary for efficient BCI control (i.e. 70% [38]), with a
mean of 85.65% (SE = 0.90), and 45 participants had mean accuracy of 62.47% (SE = 0.70). The
other 16 participants had mean accuracy not significantly higher than chance level, 52.19%
(SE = 0.44). From the plot it is visible that many participants show variable performances
between runs, especially those who have an average accuracy between 60% and 80%. Consider-
ing the whole sample of participants, the variability between runs was not significant
(p = 0.67). However, the participants who performed on average at chance level had a signifi-
cant increase of accuracy at run 6 compared to runs 4–5 (p<0.01), performing significantly
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better than chance in the last two runs. The plot also shows a different distribution between the
average accuracies of the participants recruited in the two universities. Two-sample t-test run
between the accuracies of the two groups showed a significant effect of the location (p<0.05),
with participants of Berlin having higher mean accuracy than participants of Würzburg. There-
fore, the following results are presented considering not only the different intervention groups,
but also the location of the study.

Fig 3 (left) depicts the mean feedback accuracies for the different intervention groups. The
groups are labeled according to the intervention performed (Control, PMR, 2HAND) and to
the location of the experiment (‘B’ for Berlin and ‘W’ for Würzburg). Participants who per-
formed progressive muscular relaxation show the highest average BCI performances, followed
by participants who did motor coordination training and control group, in the respective loca-
tions. In Würzburg, the mean performances are significantly different (p<0.05), and the differ-
ence is significant for the PMR group as compared to the control group, but not for the
2HAND group. Note that the motor coordination training was performed in Würzburg for
about 7.6 min (SD = 2.6) versus the 23 minutes in Berlin. The control group of Berlin has an
average accuracy higher than the control group in Würzburg, so even though the PMR group
has higher performances, the difference is not significant (p = 0.82). Fig 3 (right) depicts in
detail the trend of the classification accuracy run-wise for the corresponding groups. Note that
after run 5 the classifier was re-trained and in the following runs a different adaptation scheme

Fig 2. Overview of BCI performances sorted in ascendent order. For each participant, the black crosses indicate the overall mean feedback accuracy
and the colored stars the accuracies of the four feedback runs (4–7). The participants of Berlin are displayed in magenta and the ones of Würzburg in green.
The accuracies of each participant are connected by colored lines that emphasize the variance of the accuracies between runs. The dotted gray lines
represent the accuracy considered necessary for BCI control (70%) and the threshold for accuracy significantly higher than chance (54.69%).

doi:10.1371/journal.pone.0148886.g002
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was adopted. In general, the groups that begin at run 4 with average classification higher than
70% do not show a great variation of performances between runs. Both PMR groups and Con-
trol B have the same trend, with slightly higher accuracy at run 6 after the second training of
the classifier, and decreasing in the last run. Group 2HAND B instead had the opposite trend,
with decreasing accuracy at run 6. Control W, which had the lowest classification perfor-
mances, had a substantial increase of average accuracy after run 5, reaching the threshold of
70% in the last two runs. Note that the average final performance of all groups is at the thresh-
old of control or higher.

Grand Average ERD/ERS
Fig 4 shows the grand average ERD/ERS across participants whose chosen class combination
was left-right, for the different intervention groups tested in Berlin and different types of adap-
tation used in the experiment. In each column, in the first row is depicted the time evolution of
the ERD/ERS between the onset of the cue on the display indicating the class of the motor
imagery to perform (0 ms) and 6000 ms after. Feedback was displayed between 1000 ms and
4000 ms. The shaded areas divide the whole time course in three areas of interest, one short
interval referring to the 500 ms before the start of the feedback and the other two during the
motor imagery performed in presence of feedback. The average ERD/ERS values in these three
intervals are calculated for each channel and depicted as scalp plots in the second and third
rows. The second row refers to trials in which left motor imagery was done, the third to right
motor imagery. The fourth row pictures the values of the sign-r2 as a measure of discriminabil-
ity between the two classes. The participants of the PMR group show more pronounced class-
wise ERD as compared to the other two groups, which results in high discriminability between
the two classes. The control group shows ERD topographies more localized than the PMR and
visible ERS in the ispilateral hemispheres, especially during the right motor imagery. This leads
to a high discrimination between classes also in this group. In both groups, the interval between
1 s and 2 s of feedback is that one in which the ERD/ERS are more pronounced. Nevertheless
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Fig 3. Mean BCI feedback accuracies for each intervention group (Control, PMR, 2HAND) over runs 4–7 (left) and run-wise (right). ‘B’ refers to
participants of Berlin and ‘W’ to participants of Würzburg. PMRW has significantly higher mean BCI performance compared to Control W (p<0.05), marked
with a star in the bar plot.

doi:10.1371/journal.pone.0148886.g003
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Fig 4. Grand average ERD/ERS for class combination. left-right and intervention groups in Berlin. ‘N’ is the number of participants of each group.
From left to right: runs 1–3, runs 4–5, runs 6–7. The time plots in the first rows picture the evolution of the ERD/ERS for about 6000 ms at C3 (thick lines) and
C4 (thin lines). At time 0 is the onset of the cue, at times 1000–4000 the display of the feedback. Magenta lines refer to leftMI trials, green lines to rightMI
trials. The scalp plots underneath refer to the shaded areas of the time plots and show the distribution of the ERD/ERS. In the second rows, the scalp plots of
the leftMI trials, in the third rows the scalp plots of the rightMI trials and in the fourth the scalp plots of the sign-r2.

doi:10.1371/journal.pone.0148886.g004
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the modulation of the SMR in both classes is already visible 500 ms before the beginning of the
feedback. The 2HAND group shows different patterns. The ERD begins mainly after the begin-
ning of the feedback, and no clear pattern is visible in the preceding 500 ms interval. After 1 s
the ERD becomes pronounced, especially in the last interval of the feedback. Even though
deeper ERD is visible compared to the control group, especially in runs 1–3 and 6–7, the desyn-
chronization appears less localized. Especially in runs 6–7, the ERD of the left motor imagery is
present in both hemispheres, and in the last part of the trial the ERD pattern is similar in the
two motor imageries. This leads to lower discrimination between the two classes compared to
the PMR and control groups.

Fig 5 shows the ERD/ERS for the different intervention groups tested in Würzburg, for class
combination left-right. The PMR group shows clear discrimination between the 2 classes,
depicted in the sign-r2 scalp plots. We can also notice that in in this group the ERS arises 500
ms before the beginning of the feedback in both classes, in the ipsilateral hemisphere in runs
1–3 and in the central hemisphere in the other runs. The difference between the sign-r2 plots of
the control and PMR groups is evident and reflects the significant difference between the
respective classification accuracies. Besides, in the control group the class-wise discrimination
is influenced by muscular artifacts 500 ms before the start of the feedback. The 2HAND group
shows great ERD in all the runs of the experiment for both classes. Anyway, analogous to the
2HAND group in Berlin, the ERD are spread through a wider region than the motor cortex.
This is visible especially in the scalp plots of the first interval in all the runs. In the intervals 2s-
4s instead, the ERD is more focused and also the ERS is visible in the ispilateral motor cortex.
The sign-r2 scalp plots show clear discrimination between the two classes. Comparing the con-
trol groups of Würzburg and Berlin, Control W shows smaller ERD if compared to the Control
B and also the discrimination between the two classes is less pronounced. This can be an expla-
nation for the lower classification accuracy of Control W.

Neurophysiological predictor of BCI performances
The average amplitude of the mu rhythm at rest measured at electrodes C3 and C4 was corre-
lated with the mean BCI performances of each participant. Results are shown in the scatter plot
in Fig 6. The values of the predictor significantly correlate with the feedback accuracies
(p<0.01), with a Person correlation coefficient of 0.53. Participants having the 10% largest
Mahalanobis distances to the data center were considered as outliers [45] and the linear regres-
sion was re-calculated. After the outliers’ removal the correlation increased to 0.66. The same
method was applied separately to the data of the two laboratories, resulting in a coefficient of
0.55 for participants in Berlin (0.68 after outliers rejection) and of 0.52 for participants in
Würzburg (0.60 after outliers rejection). The prediction model derived in [25] was used to esti-
mate the feedback accuracies of the present study. The coefficients of the linear regression were
calculated from the previous dataset, after outlier rejection. The estimated accuracies were
derived by fitting the linear regression model with the new predictor values extracted by the
resting state EEG recording. Pearson linear correlation was then calculated between the esti-
mated accuracies and the real one achieved in the present study, leading to a high significant
correlation of r = 0.53 (p<0.01).

Discussion
The results of our large-scale study run with 151 participants operating a fully co-adaptive
SMR-BCI with online feedback since the first trial showed overall mean accuracies of 78.23%
in Berlin and 72.44% in Würzburg. In particular, among the 72 data sets considered in these
analyses and recorded in Berlin, 50 participants reached mean BCI performances over the
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Fig 5. Grand average ERD/ERS for class combination left-right and intervention groups in Würzburg. ‘N’ is the number of participants of each group.
From left to right: runs 1–3, runs 4–5, runs 6–7. The time plots in the first rows picture the evolution of the ERD/ERS for about 6000 ms at C3 (thick lines) and
C4 (thin lines). At time 0 is the onset of the cue, at times 1000–4000 the display of the feedback. Magenta lines refer to leftMI trials, green lines to rightMI
trials. The scalp plots underneath refer to the shaded areas of the time plots and show the distribution of the ERD/ERS. In the second rows, the scalp plots of
the leftMI trials, in the third rows the scalp plots of the rightMI trials and in the fourth the scalp plots of the sign-r2.

doi:10.1371/journal.pone.0148886.g005
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threshold of efficient BCI control (>70%), 17 reached mean BCI performances significantly
higher than chance level and 5 had performances at chance level. Among the 79 data sets of
Würzburg, 40 participants performed over 70%, 28 significantly higher than chance and 11 at
chance level. All participants were novel to BCI in general and at their first session with the sys-
tem. Our findings show that there is still a not-negligible portion of users who did not reach
the 70% threshold of BCI performances. These results refer to the average performance of runs
4–7. Reporting the percentage of inefficient BCI users after averaging the accuracies of the
whole feedback session is rather pessimistic. In fact, this measure would consider participants
having poor performances at the beginning of the session and reaching the 70% at the end as
suffering from inefficiency even if they learnt and reached control (e.g. participants in group
Control W, Fig 3 (right)). Besides, in previous studies [21, 26] the performance achieved either
at the last level or the last run was used to calculate the rate of BCI inefficiency, since partici-
pants showed a clear learning trend. Our results instead showed high intra-runs variability for
many participants (Fig 2) and the interpretation of the average performances is not straight-
forward. Therefore, it is important to distinguish between the percentage of participants whose
performance was significantly lower than the control level of 70% (threshold of significance
calculated with the binomial test, i.e. 59%) and those who were close to the threshold of control

Fig 6. Predictor of BCI performance. The predictor is calculated from 2.5 minutes of recording of the brain in resting state with eyes open and correlated
with the mean feedback accuracy for each participant (blue dots). The back dashed line pictures the linear regression between the predictors and the
accuracies (r = 0.53). The magenta dots are the values detected as outliers. After the exclusion of the outliers, a higher correlation of 0.66 is reached
(magenta line).

doi:10.1371/journal.pone.0148886.g006
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but did not achieve it on average. Using this statistical threshold, the total number of users suf-
fering from inefficiency in the beginning of the session (run 4) was 41 (27%) and decreased to
34 (22.5%) in the end of the session (run 7).

Our previous large-scale study run with 80 participants [27] led to the categorization of BCI
users into 3 groups as described in the Introduction and identified some causes of failure in the
BCI operation. For some users the problem could be the transition between the offline calibra-
tion of the BCI system and its online use with real-time feedback. Other people might not be
able to generate discriminative motor imagery patters, therefore leading to the failure of the the
system’s calibration. Follow up studies moved a step forward in solving the issue of BCI ineffi-
ciency by developing co-adaptive methods in which user and machine mutually learn from each
other since the very first trial. For example, in [21] 14 participants were recruited. For 10 partici-
pants the separability of brain patterns was not successful in the previous study (Cat III) and 4
participants were novice in respect to BCIs. In one-day session operating a co-adaptive BCI sys-
tem similar to that described in this paper, five Cat III users reached 70% accuracy in run 2 or 3
and maintained it until the end of the experiment. Two Cat III users started at chance level and
significantly improved until the end of the experiment, while the other 3 users performed at
chance level. The session was very successful for the 4 novice users, whose performances were
always above 70%. The authors concluded that machine learning based co-adaptive calibration
was a promising new approach to broaden the applicability of BCI technology. In this study we
applied the co-adapative methods to a large sample of BCI novices. The reasons why a not-neg-
ligible portion of users did not reach the control level before the end of the session can only be
speculated. While it is difficult to explore single-subject reasons for this phenomenon, we can
formulate some general hypotheses. One reason can be due to the fact that in the previous stud-
ies the selection of the subject specific reactive frequency bands and time intervals after runs 1–3
was done in semi-automatic way, while in our study it was totally automatic. Semi-automatic
means that after the automatic selection the BCI expert could visually explore the power spec-
trum and ERD to check that no wrong parameters were selected. For example it could happen
that too narrow time intervals and frequency bands are selected when the classes are not well
discernible. Or it might happen that a too late time interval corresponding to beta-rebound is
selected [46, 47]. In one of these cases the expert could force the choices of the intervals. While
the fully automatic parameters selection would not be a problem for people who are naturally
skilled with motor imagery BCIs, it could bring to a sub-optimal choice for those users who do
not show clear motor imagery patterns. Another difference can be the frequency of subject-spe-
cific parameters update. For example, in [48] the parameters were checked and selected after
every run when necessary, while in this study it was only performed after every co-adaptive
level. If the update of parameters is not performed regularly enough, the system might lose the
chance to identify a change in the parameters that leads to successful performance. Another pos-
sible reason could lie in the choice of the positive biased feedback of run 1–3. The feedback
given to the user plays an important role in BCI performances. Recent studies demonstrated
that visual BCI feedback clearly modulates sensorimotor EEG rhythms [49]. Barber and
Wentrup [39] investigated the effect of feedback design on BCI performances, biasing the belief
that the participants had on their level of control of the BCI system. They concluded that people
who were capable to operate a BCI might be impeded or get frustrated because of inaccurate
feedback, while people who performed at chance level may actually benefit form it. In our
design, The feedback had two aspects which made it positively biased in runs 1–3: (1) From two
binary classifiers that one was chosen (at each time point) which had a better output for the true
target. (2) The cursor was never moved from the center towards a wrong location. As a conse-
quence of the way our feedback was biased, it could occur most of the time that the cursor
moved in the correct direction just due to chance, in absence of any appropriate activation in
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the sensorimotor areas. We assume that the classifier was too positively biased and could hap-
pen that the person had the feeling to perform correct motor imagery even when that was not
the case. Even though participants were aware that the following runs reflected the actual classi-
fier output, the transition between the biased and real feedback could have led to confusion and
frustration in some users. Incompetence fear and mastery confidence are key factors to be con-
sidered when operating a BCI system, as it was related to BCI performances [50, 51].

We found in our data an unexpected significant effect of the study location on BCI perfor-
mance, that is Control B performed significantly better than Control W. This is quite surprising,
since all the phases of the BCI experiment and psychological interventions were identical
(except the duration of 2HAND training) and automatic in the two locations and instruction
given in the same way (written form and oral form by BCI experts). The ERD/ERS plots shown
in Figs 4 and 5 illustrate that the Control B group already had clear class-wise desynchronization
since the first runs. Based on this observation, we speculate that the lab effect might, despite the
large number of participant, be just due to chance, i.e. in Berlin a larger number of participants
naturally skilled with MI were recruited in the control group. The PMR groups had higher accu-
racy compared to the control groups, and this difference became statistically significant in
Würzburg. This trend reflects the differences in the ERD plots, with the PMR groups having
greater desynchronization and better discrimination between classes in respect to control.
Regarding the groups performing the 2HAND test we did not find any significant difference in
performances compared to the control groups. Anyway, the ERD patterns of these groups dif-
fered from the patterns of the other two groups. We could notice a deep desynchronization that
appears to be less focused and more spread over the motor cortices. Since the motor coordina-
tion training implied the control of the knobs with synchronized coordination of both hands, it
caused a simultaneous modulation of the SMR in both motor areas. This effect might temporary
influence the following motor imagery and be the reason for the spread ERD patterns.

Consolidation of the neurophysiological predictor
One goal of this study was to replicate the correlation between the neurophysiological indicator
developed by Blankertz et al.[25] and BCI performances on a new large pool of participants. We
found a significant positive correlation of 0.53, which raised to 0.66 after outliers rejection, con-
firming the results of the previous study. Moreover, results show that the proposed model can
be transferred between twoMI-BCI studies that employ different designs. Indeed, the BCI per-
formances of new participants could be predicted with high significant correlation (p<0.01) by
the prediction model derived from the previous dataset [25]. Rarely the replication of a predic-
tion model is reported in BCI literature. An example is described in [52], in which the authors
aimed at replicating the two psychological predictors of SMR-BCI performances previously
found in [36], in a different BCI setup. They found that the psychological variable ‘visuo-motor
coordination ability’ explained a moderate amount of the variance of the SMR feedback perfor-
mance and could be consolidated as a small predictor of BCI performances. In our study, we
found a high significant correlation (p<0.01) between the neurophysiological indicator and BCI
performances. The replication of the neurophysiological predictor is a major achievement of
this study, since the participants tested were different and also the BCI procedure changed with
the introduction of the online feedback since the first trial. These results consolidate the validity
of the developed prediction model across different participants and experimental procedures.

Limitations of the study and future developments
Our findings showed that a relatively large number of users were close to 70% feedback accu-
racy without reaching it on average over the session. This trend made it difficult to estimate the
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rates of BCI efficiency. Using a statistical threshold level, the rate of people who could not learn
to control the system decreased from 27% to 22.5% in the end of the session. However, this
level is arguable low (59%) and the average performance of the session had also to be reported.
It is important to note that the comparison with previous studies [21, 26], in which only the
final performance was reported, is then not straight-forward. Future developments should pay
closer attention to the aspects that showed the weakness of our study. For example, potential
users not able to operate successfully the BCI after some runs should get closer assistance from
a BCI expert in the calibration of the system and in advising about the motor imagery strate-
gies. Moreover, the positive biased feedback should be revised. For example, we could only bias
the feedback not letting the cursor moving towards the wrong direction, which avoids demoti-
vation, while avoiding to choose the best output for the true class, as it more often falsely sug-
gests good performance. (Assuming two random binary classifiers, at least one of them will
give the correct output in 75% of the cases on average.) The identification of the users who
would potentially need more assistance could be assessed a-priori by the calculation of the
neurophysiological predictor. As last suggestion, the proposed methods should be evaluated
also with the end users, i.e. patients suffering form serious motor impairments. In fact, the
development of new BCI systems must be done always considering that the real beneficiaries of
this technology represent a more complex scenario with even higher inter-subjects variabilities.

Conclusions
Our large scale study conducted with healthy participants showed that about 70% of people
could efficiently and consistently operate the fully automatic co-adaptive SMR-BCI system
with on-line feedback since the first trial. The reasons for the suboptimal performance of a por-
tion of users were speculated. The differences between previous co-adaptive studies and the
system described in this manuscript suggested that the intervention of the BCI expert still plays
an important role in the successful performance of SMR-BCIs. The confirmation of the neuro-
physiological predictor of BCI performance represented an important result that could help in
discriminating potential users not able to achieve efficient control with the standard machine
learning training of the BCI. For these users different protocols should be adopted or maybe, as
the results of the run-wise BCI performances suggested, a longer training would be required to
develop an effective modulation of the SMR and more confidence with the system.
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