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Abstract
MicroRNAs (miRNAs) play an important role in the development and progression of human

diseases. The identification of disease-associated miRNAs will be helpful for understanding

the molecular mechanisms of diseases at the post-transcriptional level. Based on different

types of genomic data sources, computational methods for miRNA-disease association pre-

diction have been proposed. However, individual source of genomic data tends to be incom-

plete and noisy; therefore, the integration of various types of genomic data for inferring

reliable miRNA-disease associations is urgently needed. In this study, we present a compu-

tational framework, CHNmiRD, for identifying miRNA-disease associations by integrating

multiple genomic and phenotype data, including protein-protein interaction data, gene

ontology data, experimentally verified miRNA-target relationships, disease phenotype infor-

mation and known miRNA-disease connections. The performance of CHNmiRD was evalu-

ated by experimentally verified miRNA-disease associations, which achieved an area

under the ROC curve (AUC) of 0.834 for 5-fold cross-validation. In particular, CHNmiRD

displayed excellent performance for diseases without any known related miRNAs. The

results of case studies for three human diseases (glioblastoma, myocardial infarction and

type 1 diabetes) showed that all of the top 10 ranked miRNAs having no known associations

with these three diseases in existing miRNA-disease databases were directly or indirectly

confirmed by our latest literature mining. All these results demonstrated the reliability and

efficiency of CHNmiRD, and it is anticipated that CHNmiRD will serve as a powerful bioinfor-

matics method for mining novel disease-related miRNAs and providing a new perspective

into molecular mechanisms underlying human diseases at the post-transcriptional level.

CHNmiRD is freely available at http://www.bio-bigdata.com/CHNmiRD.
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Introduction
MicroRNAs (miRNAs) are endogenous small non-coding RNAs (~22nt) that function by
binding to the 3’ untranslated regions (3’UTRs) of target mRNAs, and then inhibiting their
expression [1, 2]. According to miRBase (Release 21) [3], more than 1800 human miRNAs
have been discovered in the last few years. MiRNAs are known to participate in many impor-
tant biological processes including cell proliferation, differentiation and apoptosis[4]. The dys-
regulation of miRNA expression is therefore associated with a broad range of diseases [5], such
as cardiovascular diseases [6, 7], neurodevelopmental diseases [8–10] and cancers [5, 11, 12].
Identification of disease-related miRNAs will provide novel insights into the molecular mecha-
nisms underlying human diseases at the post-transcriptional level.

Many miRNAs were found to be associated with certain diseases using various biological
experiment methods. To provide a mechanism to comprehensively search for these experimen-
tally verified miRNA-disease associations, researchers have constructed several publicly-avail-
able and manually-curated databases, such as HMDD [13] and miR2Disease [14]. However,
the collection and inclusion of verified miRNA-disease associations in these databases is far
from complete, and identifying disease-related miRNAs from the multitude of candidate miR-
NAs by biological experimentation is time consuming and labor-extensive. Therefore, the
development of effective computational methods for inferring miRNA-disease associations at
the systematic level is urgently needed.

Computational methods can produce statistically significant results from a large amount of
biological data and serve as a powerful tool for guiding further biological experiments. Based
on miRNA functional similarity network (MFSN), different algorithms (Jiang’s method [15],
RWRMDA [16], NetCBI [17], HDMP [18], RLSMDA [19]) have been developed to predict dis-
ease-related miRNAs (S1 Table). For example, Jiang et al. [15] constructed a MFSN by estab-
lishing a relationship between two miRNAs based on their significantly shared common
targets, and they then integrated the MFSN with a disease network to infer potential miRNA-
disease associations. The MFSN they constructed considered the number of overlapping
miRNA targets while neglecting the functional link between them, and only the direct neighbor
information of each miRNA was utilized in their scoring system. Additionally, this method was
not work for disease whose all neighbor diseases are not associated with any known miRNAs.
In RWRMDA [16], NetCBI [17], HDMP [18] and RLSMDA [19], the MFSN they adopted was
constructed based solely on the information of known miRNA-disease associations using
Wang et al.’s method [20]. Moreover, in these methods, the same miRNA-disease relations
were used to construct the MFSN and evaluate the performance, which might over-estimate
the performance. In addition, RWRMDA and HDMP were not applicable to disease which did
not have any known related miRNAs. Recently, based on protein-protein interaction (PPI) net-
works, Shi et al. [21] developed a computational framework to identify miRNA-disease associa-
tions by focusing on the functional link between miRNA targets and disease genes.
Additionally, Mork et al. [22] presented a method in which miRNA-disease associations were
inferred by integrating miRNA-protein associations and protein-disease associations. How-
ever, these two methods neglected to use information of known miRNA-disease associations,
which could improve their predictive performance. In contrast, Xu et al. [23] and Jiang et al.
[24] constructed different feature vectors and trained a support vector machine classifier for
distinguishing positive miRNA-disease associations from negative ones, respectively. But, there
were no verified negative microRNA-disease associations, which result in the difficulty or
impossibility for collection of negative disease-related miRNAs. Hence, the low-quality nega-
tive samples used in these two studies might largely reduce the predictive accuracy. High-
throughput technologies have produced huge amounts of genomic data, which can be used in
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many ways to predict miRNA-disease associations. However, individual sources of genomic
data tend to be noisy and incomplete, which downgrades the prioritization algorithms. There-
fore, the question of how to effectively integrate different types of genomic data to improve pre-
dictive performance is a major challenge.

In this study, we constructed a complex heterogeneous network (CHN) by integrated PPI
data, gene ontology (GO) data, miRNA-target relationships, disease phenotype data and
known miRNA-disease associations. Based on the CHN, a computational model, CHNmiRD,
was developed to identify miRNA-disease associations by performing random walk analysis.
The results of cross validation and case studies suggested that CHNmiRD was effective for
uncovering unknown miRNA-disease associations.

Materials and Methods

Human miRNA-disease associations and miRNA targets
Human miRNA-disease associations were retrieved from HMDD (version 2.0) [13]. This ver-
sion of HMDD, released in 2013, has recorded 10,368 high-quality, experimentally verified
miRNA-disease associations from 3,511 papers. Repeating miRNA-disease entries were
removed, miRNA precursors were mapped to mature miRNAs using miRBase, and disease
names were curated based on Online Mendelian Inheritance in Man (OMIM) [25] disease ID.
Finally, 3,536 miRNA-disease associations involving 370 miRNAs and 105 diseases were
obtained (S1 File). These miRNA-disease associations were used to construct a disease pheno-
type-miRNA network and used as the gold standard dataset for evaluating performance.

The miRNA targets were chosen from three widely used and experimentally validated
miRNA target databases: TarBase (version 6.0) [26], miRTarBase (version 4.5) [27] and miRe-
cords (version 4) [28]. We merged these three databases, and after removing miRNAs that
have only one target and unifying the name of mature miRNAs based on miRBase, 37,659 tar-
geting pairs involving 402 miRNAs and 12,360 target genes were obtained (S2 File).

Disease phenotype network and disease phenotype-miRNA network
Disease phenotype similarity scores were calculated by MimMiner [29] which computed a dis-
ease phenotype similarity score for two disease phenotypes based on the text mining analysis of
their disease phenotype descriptions contained in the OMIM database. For each disease pheno-
type, the similarity between it and any other disease phenotypes in the OMIM database was
computed using MimMiner, and the K most similar disease phenotypes, called K-nearest
neighbors (KNN), were identified. The disease phenotype was connected with its KNNs and
weighted using the similarity measure calculated by MimMiner. The network constructed by
this method was called the KNN graph. In this study, we constructed a disease phenotype net-
work (DPN) using 5-NN network (S3 File) followed some previous studies [30, 31].

As described above, the disease phenotype-miRNA relationships were extracted from the
HMDD database (version 2.0) [32]. These relationships can be viewed as a bipartite disease
phenotype-miRNA network (DPMN) in which one node is the miRNA, and the other is the
disease phenotype, and the edges are the disease phenotype-miRNA relationships. This net-
work can be used as a bridge to construct a CHN (described later).

MiRNA functional similarity network based on PPI and GO
MiRNA performs its regulatory function primarily through its target mRNA(s), and miRNAs
with similar functions tend to target functionally related genes [33]. Therefore, for a given pair
of miRNAs, their functional similarity score could be obtained by calculating the functional
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similarity of their target mRNA set. Firstly, the functional similarity score of two miRNA target
sets was calculated based on PPI considering the functional communication and physical inter-
action between gene sets by using GsNetCom [34]. Secondly, we adopted GSFS [35] to com-
pute the functional similarity score of two miRNA target sets based on three sub-ontologies
(biological process, BP; molecular function, MF; and cellular component, CC) of GO. Finally,
four miRNA functional similarity matrices were obtained by using different data sources. In
order to make use of the global network similarity information, four weighted MFSNs were
constructed according to the above miRNA functional similarity matrices, in which the edges
were assigned different functional similarity scores between miRNAs.

Random walk with restart algorithm
Random walk with restart (RWR) is a global network ranking algorithm [36]. The random
walker starts from a seed node (or a set of seed nodes, simultaneously) and proceeds to ran-
domly selected neighbors based on the probabilities of the edges between the two nodes. For-
mally, RWR is an iterative algorithm and defined as follows:

Ptþ1 ¼ ð1� aÞMTPt þ aP0 ð1Þ

where P0 is the initial probability vector, constructed such that equal probabilities are assigned
to all of the seed nodes, with the sum of the probabilities equal to 1. Pt is a vector in which the
i-th element holds the probability of finding the random walker at node i at step t.M is the
transition matrix of the network, in which (i, j)-th element ofM denotes the transition proba-
bility from node i to node j, and it is computed as the row-normalized adjacency matrix of the
network. α is the restart probability of the walker returning to the seed node, the closer the
value of α is to 0, the more global the view observed.

We performed the algorithm until the probability of all of the nodes reached a steady state,
measured by the change between Pt and Pt+1 (measured by the L1 norm) falling below 10−10.
The stable probability is defined as P1, which gives a measure of similarity between non-seed
nodes and seed nodes.

Ranking algorithm based on random walk with restart on complex
heterogeneous networks
In this study, we presented a complex heterogeneous network computational model,
CHNmiRD, to infer potential miRNA-disease associations by combining an integrated multi-
graph MFSN and DPN. Our method was an expansion of a previous method for predicting dis-
ease-related protein-coding genes [31]. The strategy to identify miRNA-disease associations
using CHNmiRD is shown in Fig 1. The main flow of CHNmiRD consists of four steps: (1)
constructing an integrated multigraph MFSN; (2) generating the CHN; (3) deciding the transi-
tion matrix of the CHN and (4) deciding the initial probability vector of the RWR algorithm to
rank candidate disease miRNAs.

As mentioned above, four MFSNs were obtained based on different types of genomic data
and were merged into a single multigraph MFSN. On the merged multigraph MFSN, the tran-
sition probability from node i to node j was computed as the expected value of the transition
probabilities corresponding to four types of links between node i to node j. Suppose Ak is the
transition matrix of the network k (k = 1, 2, 3, 4), and the corresponding (i, j)-th element of the
matrix is Ak(i, j) denoting the transition probability from node miRNA i to node miRNA j. The
transition probability from node i to node j on the integrated multigraph MFSN can then be
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Fig 1. An overview of the CHNmiRDmethod. Firstly, four MFSNs were constructed based on different genomic data by means of miRNA-target
relationships and a disease phenotype network was constructed using the information of disease phenotype similarity. Then the complex heterogeneous
network was generated by connecting the disease phenotype network and the integrated multigraph MFSN using the knownmiRNA-disease relationship
information. Finally, the predicting miRNA-disease associations were obtained by implementing RWR algorithm on the complex heterogeneous network.

doi:10.1371/journal.pone.0148521.g001
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computed as

Aði; jÞ ¼
XNi

k¼1

okAkði; jÞ ð2Þ

Where Ni is the number of networks to which node miRNA i is associated. ωk is the proba-
bility of choosing the k-th network. Here, we set ok ¼ 1

Ni
denoting the selection of any network

with equal probability. Thus, an integrated multigraph MFSN could be obtained (S4 File).
A CHN was constructed by connecting a DPN and an integrated multigraph MFSN through

the use of the human miRNA-disease associations from the HMDD database. Suppose A(m×m),
B(n×n) and C(m×n) denote adjacency matrices for the integrated multigraph MFSN, DPN and

DPMN, respectively. The adjacency matrix of the CHN can then be represented as
A C

CT B

" #
,

where CT is the transpose of C.
Next, we computed the transition matrix of the CHN. Suppose the transition matrix of the CHN

isM ¼ MmiRmiR MmiRD

MDmiR MDD

" #
, whereMmiRmiR andMDD are transition matrices indicating the proba-

bility from one miRNA (disease) to another miRNA (disease) in the randomwalk, respectively;
MmiRD is the transition matrix from the integrated multigraphMFSN to the DPN, andMDmiR is the
transition matrix from the DPN to the integrated multigraphMFSN. Let λ be the jumping probabil-
ity, that is, the probability of jumping from the integrated multigraphMFSN to the DPN or vice
versa. LetmiRi denote the i-th miRNA in the integrated multigraphMFSN and di represents the i-th
disease phenotype in the DPN. The transition matrix can thus be defined as follows:

The transition probability frommiRi tomiRj is defined as

MmiRmiRði; jÞ ¼ pðmiRjjmiRiÞ ¼
Aði; jÞ=

X
j

Aði; jÞ if
X

j

Cði; jÞ ¼ 0

ð1�lÞAði; jÞ=
X

j

Aði; jÞ otherwise
ð3Þ

8>>><
>>>:

The transition probability from di to dj is defined as

MDDði; jÞ ¼ pðdjjdiÞ ¼
Bði; jÞ=

X
j

Bði; jÞ if
X

j

Cðj; iÞ ¼ 0

ð1�lÞBði; jÞ=
X

j

Bði; jÞ otherwise
ð4Þ

8>>><
>>>:

The transition probability frommiRi to dj is defined as

MmiRDði; jÞ ¼ pðdjjmiRiÞ ¼
lCði; jÞ=

X
j

Cði; jÞ if
X

j

Cði; jÞ 6¼ 0

0 otherwise

ð5Þ

8><
>:

The transition probability from di tomiRj is defined as

MDmiRði; jÞ ¼ pðmiRjjdiÞ ¼
lCðj; iÞ=

X
j

Cðj; iÞ if
X

j

Cðj; iÞ 6¼ 0

0 otherwise

ð6Þ

8><
>:

Inferring Novel miRNA-Disease Associations

PLOS ONE | DOI:10.1371/journal.pone.0148521 February 5, 2016 6 / 15



Let u0 and v0 be the initial probability vectors of the integrated multigraph MFSN and DPN,
respectively. The initial probability vector of the CHN can then be represented as

P0 ¼
ð1� ZÞu0

Zv0

" #
. The parameter η 2 (0,1) weighs the importance of the integrated multi-

graph MFSN and DPN. The initial probability of the integrated multigraph MFSN u0 is con-
structed such that equal probabilities are assigned to all of the seed nodes with the sum of the
probabilities equal to 1. Similarly, the initial probability of the DPN v0 can be obtained.

Finally, we substituted the transition matrixM and initial probability P0 into the iterative

equation (Eq 1). After a few steps, a stable probability vector P1 ¼ ð1� ZÞu1

Zv1

" #
can be

obtained. All candidate miRNAs can now be ranked according to u1, and the top ranked miR-
NAs can be considered as having a high probability of being associated with the disease of
interest.

Results

Performance of CHNmiRD
For simplicity, we chose the following parameters to assess the performance of CHNmiRD in
identifying potential miRNA-disease associations: α = 0.7 and λ = η = 0.5. The effect of these
parameters was examined in the next section. 5-fold cross validation analysis of 3,462 known
experimentally verified miRNA-disease associations, including 69 diseases associated with no
less than 5 miRNAs, was used for this assessment. For a given disease d, the known experimen-
tally verified miRNAs associated with disease d were randomly divided into 5 subsets. One sub-
set was used as testing case, while the known disease d-related miRNAs in the rest sets and
disease d were used as seed nodes in the multigraph MFSN and DPN, respectively. The candi-
date miRNAs included all of the miRNAs without known associations with disease d. We
tested how well this testing case ranked relative to the candidate miRNA set for the given dis-
ease d. If the ranking of the testing miRNA exceeded a given threshold, this experimentally ver-
ified miRNA-disease association was considered to be successfully predicted by CHNmiRD.

The ROC curve is a plot of the true positive rate (sensitivity) against the false positive rate
(1-specificity) for different thresholds. Suppose TP denotes true positive, TN denotes true neg-
ative, FN denotes false negative, and FP denotes false positive, then the sensitivity is calculated
as TP/(TP+FN), and specificity is calculated as TN/(TN+FP). Sensitivity refers to the propor-
tion of the testing miRNAs ranked higher than a given threshold, and specificity refers to the
proportion of the testing miRNAs ranked lower than this given threshold. We plotted an ROC
curve by varying the threshold and calculated the value of the area under the ROC curve
(AUC). AUC values range from 0 to 1, with 0.5 and 1.0 indicating random and perfect predic-
tive performance, respectively. CHNmiRD achieved an AUC value of 0.834 when testing 3,462
known experimentally verified miRNA-disease associations (Fig 2). To examine whether the
result generated by chance, the seed miRNAs were randomly selected from candidate miRNAs
for each disease and the AUC value was calculated (Fig 2). The results indicated that the real
AUC value was much higher than that in randomization tests. 19 human diseases which are
associated with at least 50 miRNAs were also evaluated. As shown in Table 1, lung cancer
achieved the highest AUC value while systemic lupus erythematosus had the lowest one. The
average AUC value of these 19 diseases was 0.844. These results demonstrated that CHNmiRD
was effective in recovering known experimentally verified miRNA-disease associations.

To further evaluate the performance of individual data sources, we performed the same pre-
diction framework by substituting the MFSN based on individual data sources for the
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integrated MFSN. The results are shown in Table 2. Although the PPI obtained the highest
AUC value (0.817) among the four data sources, it was lower than that of the integrated
method (0.834). The results showed that prediction performance improved upon integration
of different genomic data sources. In addition, the coverage of miRNAs was different and
biased for individual data sources. Therefore, some known disease-related miRNAs were
ignored in the prediction process when using individual data sources. For example, 8 of 370
disease-related miRNAs were absent in the MFSN constructed based on BP ontology, and

Fig 2. ROC curves and AUC values of CHNmiRD and other similar methods for 5-fold cross validation.

doi:10.1371/journal.pone.0148521.g002

Table 1. AUC values of CHNmiRD and other similar methods for 19 human diseases using 5-fold cross validation.

Disease name MIM ID No. miR CHNmiRD Jiang’s RWRMDA SRLSMDA

Lung cancer 211980 208 0.920 0.589 0.777 0.832

Breast cancer 114480 229 0.911 0.573 0.777 0.913

Colorectal cancer 114500 239 0.904 0.557 0.807 0.909

osteosarcoma 259500 54 0.900 0.664 0.685 0.810

Hepatocellular cancer 114550 243 0.895 - 0.779 0.819

Pancreatic cancer 260350 127 0.876 0.648 0.691 0.844

Bladder cancer 109800 106 0.875 0.567 0.701 0.817

Esophageal cancer 133239 171 0.873 0.568 0.737 0.868

Glioblastoma 137800 155 0.872 0.563 0.744 0.857

Melanoma 155600 175 0.858 0.590 0.709 0.840

Prostate cancer 176807 148 0.857 0.576 0.725 0.854

nasopharyngeal cancer 607107 51 0.848 0.711 0.627 0.697

kidney cancer 144700 125 0.833 0.579 0.735 0.820

Thyroid cancer 188550 58 0.828 0.622 0.628 0.785

Acute myeloid leukemia 601626 86 0.822 - 0.575 0.611

Cervical cancer 603956 64 0.820 0.583 0.630 0.785

Medulloblastoma 155255 76 0.786 0.556 0.669 0.780

Adrenal cortical carcinoma 202300 67 0.777 0.625 0.617 0.677

Systemic lupus erythematosus 152700 83 0.711 - 0.594 0.622

Note: ‘No.miR’ indicates the number of miRNAs associated with a disease. ‘-’ denotes the disease- miRNA associations could not be predicted by Jiang’s

method because of the lack of data.

doi:10.1371/journal.pone.0148521.t001

Inferring Novel miRNA-Disease Associations

PLOS ONE | DOI:10.1371/journal.pone.0148521 February 5, 2016 8 / 15



36 of 370 disease-related miRNAs could not be prioritized when using CC ontology. Compared
with individual data sets, the combined algorithm produced a higher coverage of miRNAs,
which could be preferable for searching for novel disease-related miRNAs.

Robustness of CHNmiRD
To evaluate the robustness of CHNmiRD, we considered different miRNA targets, miRNA-dis-
ease associations, DPNs and parameters. The predicted targets of 402 miRNAs were obtained
from TargetScan (version 6.2) [37], miRDB (version 5.0) [38] and TargetMiner (May 2012)
[39] (see S5 File). CHNmiRD was implemented for 5-fold cross validation. As a result, an AUC
value of 0.832 was achieved (S1 Fig), which was comparable with that of the experimentally
verified targets. To examine whether CHNmiRD was sensitive to the miRNA-disease associa-
tions, we randomly removed the miRNA-disease associations from 5% to 30% with a step of
5%. The results showed that the number of miRNA-disease associations had slight effect on the
results (S2 Table). Additionally, we constructed DPNs using 3-NN network and 7-NN net-
work, and CHNmiRD was then performed. As a result, the AUC values of 0.833 and 0.834
were obtained for 3-NN network and 7-NN network using 5-fold cross validation (S2 Fig).
This was comparable with that of 5-NN network (0.834), demonstrating that CHNmiRD was
robust to the selection of K for the KNN network. CHNmiRD included three parameters: (1)
the restart probability α; (2) the jumping probability λ; and (3) the parameter η which con-
trolled the effect of the two seed nodes, seed miRNAs and seed diseases. Based on previous
studies demonstrating that the predictive result was robust to the restart probability, parameter
α was selected to be 0.7 [40–42]. To investigate the possible effects of parameters λ and η on
the performance of CHNmiRD, various values were used for these two parameters, and 5-fold
cross validation was performed. The AUC values for different combinations of these two
parameters are shown in Table 3. The results of the validation showed that parameter η had
only a slight effect on the performance, while an increase of parameter λ improved perfor-
mance. Specifically, when parameter λ was in the range of 0.5 to 0.9, performance became sta-
ble and performed better. Thus, the dependence of this method on these two parameters is
minimal, particularly when the value of λ is above 0.5.

CHNmiRD versus similar existing methods
To further demonstrate the advantages of CHNmiRD in identifying miRNA-disease associa-
tions, we compared our model with the following similar existing methods: Jiang’s method

Table 2. Performance of individual data source.

Data source PPI BP MF CC

AUC 0.817 0.771 0.765 0.751

No. of missing disease-related miRNAs 0 8 17 36

doi:10.1371/journal.pone.0148521.t002

Table 3. AUC values for different combinations of the two parameters.

η

λ 0.1 0.3 0.5 0.7 0.9

0.1 0.706 0.714 0.723 0.732 0.743

0.3 0.800 0.800 0.800 0.799 0.801

0.5 0.835 0.834 0.834 0.832 0.831

0.7 0.850 0.849 0.849 0.848 0.846

0.9 0.856 0.856 0.857 0.856 0.855

doi:10.1371/journal.pone.0148521.t003
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[15], RWRMDA [16] and SRLSMDA [19]. Jiang et al. [15] adopted a hypergeometric distribu-
tion model for inferring potential miRNA-disease associations based on the human phenome-
miRNAnome network. Chen et al. proposed two methods to uncover the relationships between
miRNAs and diseases: RWRMDA and SRLSMDA. RWRMDA [16] used random walk method
on the MFSN, while SRLSMDA [19] combined the optimal classifiers in disease space and
miRNA space using regularized least squares method. We applied the RWRMDA to the inte-
grated multigraph MFSN and applied Jiang’s method and SRLSMDA to the CHN, respectively.
5-fold cross validation was then performed using the same dataset. The best parameters were
selected for other prediction methods (see S6 File) and the AUC values were obtained (see Fig
2 and Table 1). As the results indicated, CHNmiRD (AUC = 0.834) performed better than
Jiang’s method (AUC = 0.588), RWRMDA (AUC = 0.675) and SRLSMDA (AUC = 0.763).

Additionally, there were some diseases without known related miRNAs and the pathological
mechanism of these diseases at the miRNA level was completely unknown. A recent study indi-
cated that SRLSMDA showed a better performance for this kind of disease [19]. We therefore
tested the efficacy of CHNmiRD in searching miRNA-disease associations for these diseases.
In the DPMN, 105 diseases were connected to 370 miRNAs. For each of these 105 diseases, we
removed all of the relationships of this disease to miRNAs and used this disease as a seed node
to implement CHNmiRD and RLSMDA. If one of the known disease-related miRNAs was
ranked in the top N of the ranked list, we considered it to be a successful prediction. Here, we
set N as 1, 5, 10, 20 and 50. As indicated in Table 4, CHNmiRD successfully ranked 40 miRNAs
as top 1, while SRLSMDA only ranked 14 miRNAs as top 1. Moreover, CHNmiRD performed
better than SRLSMDA as N varied.

Case studies
To illustrate the application of CHNmiRD in identifying novel disease-related miRNAs, case
studies of glioblastoma (GBM), myocardial infarction (MI) and type 1 diabetes (T1D) consid-
ering different available numbers of seed miRNAs were examined. For a given disease, the
known miRNAs associated with that disease were referred to as seed miRNAs. Based on the
aforementioned known miRNA-disease associations, GBM had 155 seed miRNAs, MI had 40
seed miRNAs, and T1D had 1 seed.

For each of these three diseases, all of the candidate miRNAs (non-seed miRNAs) were
ranked based on CHNmiRD (S3 Table), and the top 10 predicted miRNAs in the ranked list
were examined. Because the known miRNA-disease associations were collected from the
HMDD database, which was last updated in 2013, we manually verified these miRNA-disease
associations by checking more recently published literatures. The results are illustrated in
Table 5. Ten, 8 and 3 of the top 10 predicted miRNAs were confirmed in GBM, MI and T1D,
respectively, according to recently reported biological experiments, and almost all of these had
high ranks in the predicted miRNA lists. Although the remaining 9 predicted miRNA-disease
associations had not yet been validated directly, these associations could be interpreted indi-
rectly by recent studies. For instance, gene expression profile analysis of patient whole blood
revealed that hsa-miR-182-5p was deregulated in patients with coronary artery disease [43].
Additionally, hsa-miR-19b-3p was reported to be a potential anti-thrombotic protector in

Table 4. The number of successfully predictedmiRNAswith different Ns.

Top N Top 1 Top 5 Top 10 Top 20 Top 50

SRLSMDA 14 80 140 280 779

CHNmiRD 40 138 249 434 987

doi:10.1371/journal.pone.0148521.t004
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patients with unstable angina [44], which has a high probability of developing into acute myo-
cardial infarction. The remaining 7 predicted miRNAs which were not validated to be associ-
ated with T1D directly were found to be associated with diabetes [45, 46] and type 2 diabetes
(T2D) [47–49]. It is worth noting that T1D had only one seed miRNA, but CHNmiRD
achieved excellent performance. Collectively, these results not only indicated the reliability of
CHNmiRD in identifying novel disease-associated miRNAs, but also demonstrated its poten-
tial application value in biomedical research.

Discussion
In this work, a computational framework, CHNmiRD, was presented for the prediction of
novel miRNA-disease associations by integrating multiple genomic and phenotype data. Based
on PPI data and GO data (three sub-ontologies: BP, MF and CC), four MFSNs were

Table 5. Literature evidence for top 10miRNAs of glioblastoma, myocardial infarction and type 1 diabetes.

miRNA Rank Literature validation PubMed ID Year

Glioblastoma

hsa-miR-200a-3p 1 Yes/directly 24755707 2014

hsa-miR-190a-5p 2 Yes/directly 23863200 2013

hsa-miR-126-3p 3 Yes/directly 21713760 2012

hsa-miR-126-5p 4 Yes/directly 21713760 2012

hsa-miR-223-3p 5 Yes/directly 24438238 2014

hsa-miR-29b-3p 6 Yes/directly 24155920 2013

hsa-miR-34c-5p 7 Yes/directly 24140020 2013

hsa-miR-34b-5p 8 Yes/directly 24213470 2012

hsa-miR-1-3p 9 Yes/directly 24310399 2014

hsa-miR-34b-3p 10 Yes/directly 24213470 2012

Myocardial infarction

hsa-miR-146a-5p 1 Yes/directly 23208587 2013

hsa-miR-17-5p 2 Yes/directly 24900964 2014

hsa-miR-17-3p 3 Yes/directly 24900964 2014

hsa-miR-125b-2-3p 4 Yes/directly 24627568 2014

hsa-miR-125b-5p 5 Yes/directly 24627568 2014

hsa-miR-182-3p 6 No/ indirectly - -

hsa-miR-19b-3p 7 No/ indirectly - -

hsa-miR-34c-5p 8 Yes/directly 23047694 2012

hsa-miR-29c-3p 9 Yes/directly 20164119 2010

hsa-miR-29c-5p 10 Yes/directly 24900964 2014

Type 1 diabetes

hsa-miR-155-5p 1 Yes/directly 24223694 2013

hsa-miR-16-5p 2 No/ indirectly 23233752 2013

hsa-miR-146a-5p 3 Yes/directly 24796653 2014

hsa-miR-15a-5p 4 No/ indirectly 24397367 2014

hsa-miR-21-5p 5 Yes/directly 24937532 2014

hsa-miR-15a-3p 6 No/ indirectly 24397367 2014

hsa-miR-17-5p 7 No/ indirectly 22960330 2012

hsa-miR-16-1-3p 8 No/ indirectly 23233752 2013

hsa-miR-96-5p 9 No/ indirectly 24981880 2014

hsa-miR-128-3p 10 No/ indirectly 24944010 2014

doi:10.1371/journal.pone.0148521.t005
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constructed using miRNA-target relationships and were further merged in to an integrated
multigraph MFSN. A CHN was then constructed by connecting the integrated multigraph
MFSN and DPN using the known miRNA-disease relationship information. Finally, novel
miRNA-disease associations were predicted by implementing a global network distance mea-
sure-based random walk analysis on the CHN.

Comparing the integrated data with the individual data sources using the same method, we
found that PPI data was the most effective in prioritizing candidate miRNAs among the four
data sets. However, the performance of PPI data was inferior to the combined method, because
individual data tend to be incomplete and noisy. In addition, the combined method covered
more miRNAs, which was favorable for uncovering novel disease-related miRNAs.

The results of cross validation indicated the improved performance of CHNmiRD over
other similar existing methods, especially for diseases without any known associated miRNAs.
In addition, CHNmiRD did not need negative samples and the performance became stable and
performed better when parameter λ was in the range of 0.5 to 0.9. Furthermore, case studies
demonstrated the reliability and effectiveness of this method in revealing novel disease-related
miRNAs. Each of the top 10 miRNAs in the three case studies was either directly or indirectly
validated by recently published research. It worth noting that we did not compare CHNmiRD
with our previously described method [21] because of different data sources used in the two
methods. Moreover, the known disease-miRNA associations were not used in our previous
method, thus the cross validation could not be implemented.

The CHNmiRD is based on the CHN, and thus the efficacy of CHNmiRD is affected by the
quality of the CHN. For future studies, more bioinformatics data should be integrated to
improve the quality of the CHN. For example, expression profile and/or pathway data can be
added into the integrated MFSN, and the similarity of disease phenotypes based on ontological
descriptions can also be added into the DPN. We anticipate that our algorithm may be more
comprehensive and effective with the increasing amount of available miRNA-related biological
data. In summary, CHNmiRD could potentially provide an improved tool for predicting novel
miRNA-disease associations and play an important role in deciphering the pathogenesis of
complex human diseases at the post-transcriptional level.
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