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Abstract
Recently, the Coherent Point Drift (CPD) algorithm has become a very popular and efficient

method for point set registration. However, this method does not take into consideration the

neighborhood structure information of points to find the correspondence and requires a

manual assignment of the outlier ratio. Therefore, CPD is not robust for large degrees of

degradation. In this paper, an improved method is proposed to overcome the two limitations

of CPD. A structure descriptor, such as shape context, is used to perform the auxiliary cal-

culation of the correspondence, and the proportion of each GMM component is adjusted by

the similarity. The outlier ratio is formulated in the EM framework so that it can be automati-

cally calculated and optimized iteratively. The experimental results on both synthetic data

and real data demonstrate that the proposed method described here is more robust to

deformation, noise, occlusion, and outliers than CPD and other state-of-the-art algorithms.

Introduction
Point set registration is one of the main methods for image registration. As a fundamental
component of the computer vision field, point set registration is often used in medical image
processing [1–3], pattern recognition [4], and remote sensing image processing [5, 6]. Gener-
ally, point set registration is divided into either rigid or non-rigid registration. Rigid registra-
tion is a relatively simple process that mainly processes the scaling, translation, and rotation of
the point sets. Generalized rigid registration includes affine and projection transformation.
However, for non-rigid registration, the transformation form is non-rigid, and it is difficult to
accurately determine the transformation model, especially if there is a large degree of degrada-
tion, such as deformation, occlusion, noise, or outliers.

Non-rigid point set registration is faced with two problems: one is finding the correspon-
dence between two point sets, and the other is choosing the right transformation model. If one
of these problems is solved, then the other can be solved easily. However, the issue is that both
of the problems are often unknown and must be solved simultaneously. Therefore, most
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algorithms use the iterative method of alternate calculations of correspondence and transfor-
mation to obtain an approximately optimal solution.

The iterative closest point (ICP) algorithm [7], which is one of the most famous point set
registration algorithms, is mainly used for the registration of free curves and surfaces. The ICP
algorithm assumes the closest points to be in correspondence and minimizes the mean square
distance iteratively until the objective function converges. Instead of assigning a binary corre-
spondence, soft assignment and relaxation labeling have been proposed for fuzzy correspon-
dences. One of the most well-known contributions for these work is a non-rigid point
matching generic framework proposed by Chui et al. [8]. Under this framework, the TPS-RPM
algorithm uses a thin plate spline as non-rigid mapping as well as uses soft allocation and deter-
ministic annealing to solve the combined optimization problem. The probabilistic methods [9–
13] are typically used to solve the problem of point set registration. Myronenko et al. [9, 14]
proposed the Coherent Point Drift (CPD) algorithm and treated the alignment of the two
point sets as a probability density estimation problem. Furthermore, restrained by the motion
coherence theory, the Gaussian Mixture Model (GMM) centroids fit to the data points via the
EM algorithm. Many improvements to CPD have been proposed that involve altering some
phases of this algorithm [15–20]. Jian et al. [10] used two GMMs to represent the point sets,
and the differences of the two GMMs are minimized to solve the problem of point set registra-
tion. Moreover, there are some additional algorithms [21–25] that use other kinds of mixture
model for point set registration. However, these methods mainly use the global relationships to
find the correspondence and hardly consider the structure information.

To make full use of the neighborhood structure information of the point sets, Belongie et al.
[4] introduced the Shape Context (SC) to measure the similarity between two shapes, and the
corresponding points with a similar shape will have a similar SC. Furthermore, SC is used in
shape matching and object recognition. Zheng et al. [26] introduced the concept of neighbor-
hood structure and proposed a robust non-rigid point matching algorithm by keeping the
neighborhood structure. They used the SC distance to find the initial correspondence, followed
by a relaxation labeling technique to search for the optimal solution. Ma et al. [27] and Chen
et al. [28] used the descriptor of SC to first establish the rough correspondence and then used
the robust L2E estimator to estimate the transformation. In addition, different structure
descriptor [29–34] of the point sets are used for point set registration. Although these algo-
rithms use the structure information as the similarity measurement, they find the correspon-
dence and the transformation separately. In this paper, we propose a GMM based method and
use neighborhood structure information combining global distance to determine the corre-
spondence, jointly, refine the transformation in the EM process.

As a rapid method that can be used in high dimensional point set registration, the CPD
algorithm is relatively advantageous. However, the method is limited in the following two main
aspects. (1) Only the distance is considered at the step of computing similarity, not the neigh-
borhood structure of points, and each GMM component has an equal contribution to the dis-
tribution of data points without making full use of the similarity, resulting in sensitivity to
noise, occlusion and outliers. (2) The outlier ratio must be manually assigned, but the exact
value of the outlier ratio is often impossible to determine before registration. In addition, CPD
uses an improper uniform distribution to model noise and outliers so that even if the real out-
lier ratio is set, it still cannot guarantee a good result.

In this paper, we devise an improvement based on the state-of-the-art CPD algorithm to
solve the aforementioned problem. The main contributions of our paper are twofold. (1)
Structure information is used to perform the auxiliary calculation of the correspondence.
Here, the shape context is used as the structure descriptor of the points to compute the simi-
larity, and the proportion of each GMM component is adjusted by the similarity; as a result,
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the registration process is more accurate and robust. (2) The automatic estimation of the out-
lier ratio is integrated into the EM framework so that the product of the outlier ratio and the
uniform distribution can “capture” noise and outliers properly. This process allows us to
implement this method without manually selecting the real outlier ratio, thus improving its
practicability.

The rest of this paper is organized as follows: Section 2 reviews the CPD algorithm, followed
by our proposed method to improve CPD with detailed description of the two aspects of the
structure descriptor and the processing outliers in the EM framework. Section 3 gives the
experimental results and performance evaluation on synthetic data and real data. Finally, the
discussion and conclusion are presented in section 4.

Methods

1. Review of the Coherent Point Drift algorithm
1.1 Coherent Point Drift algorithm. The CPD algorithm considers the alignment of two

point sets as a probability density estimation problem. One point set represents the GMM cen-
troids, and the other point set represents the data points. At the optimum, the correspondence
of the two point sets is obtained by maximizing the posterior probability. The core of CPD is to
force the GMM centroids to move coherently as a group to preserve the topological structure
of the point sets.

Given two point sets X and Y. The points in the “model” set Y = {ym|1, 2, . . .,M} are consid-
ered GMM centroids. The points in the “scene” set X = {xn|1, 2, . . ., N} are considered data
points generated by the GMM. The purpose is to learn a transformation T applied to Y for
X = T(Y, θ), in which θ is a set of the transformation parameters. The probability density func-
tion of the GMM can be written as follows:

pðxÞ ¼
XMþ1

m¼1

PðmÞpðxjmÞ ð1Þ

where pðxjmÞ ¼ 1

ð2ps2ÞD=2 exp � kx�Tðym ;yÞk2
2s2

� �
,m = 1, 2, . . .,M. To handle the outliers, occlusion,

and noise, a uniform distribution is used: p(x|M+1) = 1/N. The weight of the uniform distribu-
tion, which represents the outlier ratio, is denoted as ω, 0� ω� 1. In addition, an equal isotro-
pic covariance σ2 and equal membership probabilities P(m) = (1 − ω)/M are used for all GMM
components. Thus, the probability density function takes the following form:

pðxÞ ¼ o
1

N
þ ð1� oÞ 1

M

XM
m¼1

pðxjmÞ ð2Þ

The centroid of the GMM is parameterized by the set of parameters θ. The parameters will
be estimated by maximizing the likelihood, which minimizes the negative log-likelihood func-
tion:

Eðy; s2Þ ¼ �
XN
n¼1

log
XMþ1

m¼1

PðmÞpðxnjmÞ ð3Þ

According to Jensen’s inequality, an upper bound of the negative log-likelihood function in
Eq (3) is the function of Q in Eq (4), which is the objective function of CPD.

Q ¼ �
XN
n¼1

XMþ1

m¼1

PoldðmjxnÞlog½PðmÞpðxnjmÞ� ð4Þ
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Assuming that each Gaussian component is independent, the correspondence probability
between two points, ym and xn, is defined as the posterior probability of the GMM centroid
given the data point: P(m|xn) = P(m)p(xn|m)/p(xn). Next, the EM framework is used to solve
the optimal estimate of θ and σ2. The CPD algorithm iteratively computes the posterior proba-
bility distribution Pold(m|xn) of mixture components by the Bayes’ theorem in E-step and
determines the new parameter values by minimizing the expectation of the complete negative
log-likelihood function in M-step until convergence. The registration process of CPD algo-
rithm is given as follows.

Initialization: ω, θ, and σ2 are initialized.
E-step: First, the old values of the parameters are guessed, and then the posterior probability

distribution Pold(m|xn) of the mixture components is calculated:

PoldðmjxnÞ ¼
exp �k xn � Tðym; yÞk2

2s2

� �
PM

k¼1 exp �k xn � Tðyk; yÞk2
2s2

� �
þ oMð2ps2ÞD=2

ð1� oÞN

; ðm ¼ 1; 2; :::;MÞ ð5Þ

M-step: The new parameters θ and σ2 are computed by minimizing the expectation of the
complete negative log-likelihood function Q.

Qðy; s2Þ ¼ 1

2s2

XN
n¼1

XM
m¼1

PoldðmjxnÞk xn � Tðym; yÞ k2 þ DNP

2
logs2 ð6Þ

where NP ¼
PN

n¼1

PM
m¼1 P

oldðmjxnÞ.
The algorithm iterates E-step and M-step until Q converges. Next, the aligned point set is

T(Y, θ).
1.2 The limitations of CPD. From the discussion above, we can see that the outlier ratio ω

and the Gaussian membership probabilities P(m) play significant roles in determining the
distribution (one of the GMM components or the uniform distribution) of the data points.
However, these parameters are fixed in CPD, so there are two problems that influence its per-
formance severely. The first problem is that the similarity measure only depends on the Euclid-
ean distance between points. In the case of a large degree of degradation, such as deformation,
noise, occlusion, or outliers, the closest point pairs may not be in correspondence, whereas the
point pairs that have the similar neighbor structures are probably in correspondence. There-
fore, the contribution of each Gaussian component to the GMM is not the same. The neighbor-
hood structure similarity of the point pairs should be introduced into the proportion of the
GMM components.

The other problem existing in CPD is the outlier ratio ω, which requires manual assignment
during initialization. This requirement also limits the application of CPD. It is difficult to deter-
mine the outlier ratio of the two point sets before registration. An improper value of ω leads to
an unpredictable registration result. Meanwhile, CPD uses a uniform distribution 1/N to treat
noise and outliers. The uniform distribution should be related to the coordinate range of the
data points rather than the number of data points N. For example, given two data sets with the
same number of points, the point’s distribution range of one data set is larger than the other.
Thus, the uniform distribution of the two data sets should not be equal. As a result, even if the
real outlier ratio is assigned, a good result is still not guaranteed. Only by slight adjustment of
ω to make the product of ω and 1/Nmodel the noise and outliers appropriately. Therefore, in
the CPD algorithm, ω can only be called an approximate outlier ratio.
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2. The method of improvement
The paper proposes a method to overcome the two limitations of CPD stated above. As previ-
ously mentioned, the CPD algorithm does not take into account the structure information of
the points. Generally, two corresponding points also have a similar neighborhood structure,
which allows us to compute the similarity and find the correspondence according to the neigh-
borhood structure information. Because the contribution of each Gaussian component is not
the same, the proportion of each GMM component is adjusted by the similarity. In addition,
because the outlier ratio must be manually assigned in CPD, we formulate it in the EM frame-
work so that it can be automatically calculated and optimized iteratively.

2.1 Structure descriptor. In this paper, shape context [4] is used as a structure descriptor.
The shape context at a point is the measurement of the distribution of other points relative to
it. This point is treated as the origin of the log-polar coordinate, and the direction from this
point to the mass center of the shape is used as the positive x-axis. Thus, the shape context has
translation, scale, and rotation invariant characteristics. In considering two points, xn is in one
set and ym is in another set; their shape contents are hn(k) and hm(k), respectively, where h(k) is
the value of k-bin for the log-polar histogram, k = 1, 2, . . ., K. Let Cnm represent the matching
cost measure of these two points.

Cnm ¼ exp � 1

2g

XK
k¼1

½hnðkÞ � hmðkÞ�2
hnðkÞ þ hmðkÞ

 !
; ðg ¼ 0:1 in defaultÞ ð7Þ

The more similar the shape contexts for the two points of xn and ym are, the more likely it is
that the correspondence and the membership probability Pn(m) are higher. Thus, the member-

ship probabilities are improved as Pn(m) = (1 − ω)Cnm/S, where S ¼
PM

k¼1 Cnk and the proba-
bility density function of GMM is rewritten as

pðxnÞ ¼ o
1

N
þ ð1� oÞ 1

S

XM
m¼1

CnmpðxnjmÞ ð8Þ

After introducing the structure descriptor to the registration process, at the first several
times of iterations, the similarity measure based on structure descriptor increases the speed of
finding the correct correspondences. However, at the later stage of the iterations, most of the
correspondences are found. Thus, for the similarity measure, the effect of structure descriptor
is reduced, and the effect of Euclidean distance is increased.

2.2 Outliers processing and the EM solution. In the CPD algorithm, the outlier ratio ω
must be manually assigned. However, it is difficult to determine the real outlier ratio in
advance. If an incorrect ω value is assigned, then the performance of the registration will be
reduced. Here, an automatically calculated outlier ratio is considered as well as an iterative pro-
cess of the EM algorithm.

The non-rigid point set registration method proposed in this paper uses the Tikhonov regu-
larization framework. The transformation is defined as the initial position plus a displacement
function v: T(Y, v) = Y+v(Y). In the Reproducing Kernel Hilbert Space (RKHS), the regulariza-
tion term is defined as λkLvk2/2. As the objective function of our method, by ignoring the con-
stants, the negative log likelihood function Eq (6) can be written as

Qðv;o; s2Þ ¼ 1

2s2

XN
n¼1

XM
m¼1

PoldðmjxnÞk xn � ym � vðymÞ k2 þ
DNP

2
logs2

�NPlogð1� oÞ � ðN � NPÞlogoþ l
2
k Lv k2

ð9Þ
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where the set of unknown parameters is {v, ω, σ2}. The integrated stages for solving the parame-
ters by the EM algorithm are given as follows.

E-step: The posterior probability Pold(m|xn) can be calculated by applying Bayes rule:

PoldðmjxnÞ ¼
Cnmexp �k xn � ym � vðymÞk2

2s2

� �
PM

k¼1 Cnkexp �k xn � yk � vðykÞk2
2s2

� �
þ oSð2ps2ÞD=2

ð1� oÞN

; ðm ¼ 1; 2; :::;MÞ ð10Þ

Denote P = (Pmn)M×N, where Pmn = Pold(m|xn) is a soft decision, which indicates what degree
point ym corresponds to point xn. The probability of noise and outliers can be computed as fol-
lows:

PoldðM þ 1jxnÞ ¼ 1�
XM
m¼1

PoldðmjxnÞ ð11Þ

M-step: The new parameters v, ω, and σ2 can be calculated by minimizing the objective
function Q. σ2 is updated as follows:

s2 ¼ 1

DNP

XN
n¼1

XM
m¼1

PðmjxnÞk xn � ym � vðymÞ k2 ð12Þ

Next, the function Q(v, ω, σ2) is minimized with respect to the outlier ratio to obtain the
value of ω.

o ¼ 1� 1

N

XN
n¼1

XM
m¼1

PðmjxnÞ ð13Þ

which equals o ¼ 1
N

PN
n¼1 PðM þ 1jxnÞ. However, when using Eq (13) to update ω directly, it is

problematic if the outlier ratio is large because over-fitting will occur. Therefore, to avoid this
problem, the outlier ratio can be updated by using the following function:

o ¼ oold þ aðonew � ooldÞ; a ¼ 1

t
in default

� �
ð14Þ

where ωold is the old value of ω, which is updated at the last iteration. ωnew is calculated by Eq
(13). α is the learning ratio, which is similar to the annealing rate in the simulated annealing
algorithm; it is an empirical parameter to avoid over-learning. In this paper, the learning ratio
is set as α = 1/t, where t is the current iteration time. The learning ratio is larger at the begin-
ning and then gradually become smaller so that ω can update more rapidly at the initial itera-
tions to achieve rapid optimization and update slower at the later iterations to prevent over-
fitting. Thus, the outlier ratio can be efficiently updated, combined with the learning rate, dur-
ing the EM iteration by Eqs (13) and (14).

The functional form of v, which must be solved by calculus of variation, must satisfy the
Euler-Lagrange differential equation. By solving the differential equation, the displacement func-
tion v can be obtained. Here, a Gaussian matrix kernel is used to define the hypothesis spaceH.

½Gþ ls2diagðP1Þ�1�W ¼ diagðP1Þ�1PX � Y ð15Þ

whereWM×D = (W1, ..,WM) is a matrix of coefficients, G = (yi, yj)M×M is the kernel matrix with
elementsG(yi, yj) = exp(−kyi−yjk2/2β), diag()−1 is the inverse diagonal matrix, and P1 is the
matrix of posterior probability Pmultiplied by the column vector of all ones.
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The algorithm iterates E-step andM-step until Q converges. Next, the transformed positions
of ym are determined by T(Y,W) = Y + GW, and the probability of correspondence is given by P.

In the expression T(Y, v) = Y + (Y), Y is a constant, and v(Y) is a regularization; both are dif-
ferentiable so that the sum of them is still differentiable. However, the partial differential equa-
tion v(Y), which must be solved by calculus of variation, may obtain an infinite number of
solutions under different boundary conditions. Therefore, the transformation T is not revers-
ible and is not diffeomorphic.

Results
The performance of our proposed method is tested with both synthetic data and real data. All
experiments are performed by MATLAB R2013a on a PC with 16 GB of RAM and an i7-
4770K (3.5 GHz) Inter CPU. In this section, the goal of the point set registration is to align the
model point set onto the scene point set, where the model point set is presented by blue pluses
and the scene point set is red circles.

1. Evaluation criterions
The registration error of two point sets is quantified as the average Euclidean distance between
a point in the model set and the ground truth corresponding point in the scene set. Root Mean
Square Error (RMSE) is used to measure the registration error.

Errorp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

J

XJ

j¼1

ðxj � yjÞ2
vuut ð16Þ

where J is the total number of the ground truth correspondences, and yj is the true correspond-
ing point to xj.

The registration error of two images is defined as RMSE, which reflects the difference of
intensity distribution of the two images.

Errori ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

U � V

XU
u¼1

XV
v¼1

½Mðu; vÞ � Fðu; vÞ�2
s

ð17Þ

where U×V is the total number of the pixels in each image,M(u, v) and F(u, v) are the intensity
values of the pixels located in (u, v) of the two respective images.

Recall, precision, and F1 measure are well known parameters in statistics and pattern recog-
nition. The recall is defined as the proportion of true-positive correspondences to the ground
truth correspondences. The recall-accuracy curve, as used in [10, 25], denotes the ability of a
registration method to determine as many true-positive correspondences as possible with low
errors in accuracy. The F1 measure is used to evaluate the balance between recall and precision.

Recall ¼ TP
TP þ FN

ð18Þ

Precision ¼ TP
TP þ FP

ð19Þ

F1 ¼
2 � Precision � Recall
Precisionþ Recall

¼ 2 � TP
2 � TP þ FP þ FN

ð20Þ

where TP denotes true-positive, FN denotes false-negative, and FP denotes false-positive.
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2. Experiments on synthetic data
The same data as in [8, 26, 27], named Chui-Rangarajan synthesized data, were used, and the
shape of the fish and the Chinese character were selected. Four models of data designed to mea-
sure the robustness of registration algorithms under deformation, noise, occlusion, and outliers
were chosen. Each model contains 5 different degradation levels, and each level includes 100
examples. In the rest of this section, the experimental results of our algorithm are shown, and
the performance is analyzed from two aspects: the “structure descriptor based vs. constant
memberships” and the “automatic outlier ratio vs. fixed one”.

2.1 Results on synthetic data. For the purpose of evaluating the performance of the pro-
posed method, the results of our method are compared with four state-of-the-art algorithms:
GMMREG [10], TPS-RPM [8], RPM-L2E [27], and CPD [9]. The TPS-RPM algorithm uses
soft assignment to find the correspondence under the deterministic annealing scheme, and the
GMMREG algorithm uses the L2 distance between two GMMs to measure similarity. Both of
the two algorithms do not leverage the neighborhood structure information of points as well as
the CPD algorithm. The RPM-L2E algorithm depends on only the shape context to find the
correspondence and optimize it in the iteration. However, our method uses the structure
descriptor combined with the Euclidean distance to find correspondence in an EM framework.
Therefore, those four algorithms are selected to compare with our method.

In each experiment, both the CPD algorithm and our method have the maximum iteration
number set at 100, and the same initial values of the outlier ratio are assigned, as shown in
Table 1. The registration examples are shown in Fig 1 (the fish shape) and Fig 2 (the Chinese
character shape). In the two figures, from top to bottom, there are the four groups under the
largest degradation levels of deformation (degree 0.08), noise (level 0.05), occlusion (ratio 0.5),
and outlier (outlier-to-data ratio 2.0).

The performance statistics for deformation, noise, occlusion, and outliers are summarized
in Fig 3 (the fish shape) and Fig 4 (the Chinese character shape). Each algorithm is compared
by the error mean and the standard deviation of the registration error of all 100 examples in
each distortion degree. From the experimental and statistical results, we can see that our
method is much more robust compared with the other four algorithms and generally give bet-
ter performance, especially as the degradation degree increases.

2.2 Evaluation of the structure descriptor. To evaluate the effect of structure descriptor,
the automatic outlier function is closed in the source code of our method and 100 trials of the

Table 1. Initial values of outlier ratio.

Deformation

Degree of deformation 0.020 0.035 0.050 0.065 0.080

Initial ω 0 0 0 0 0

Noise

Noise level 0.01 0.02 0.03 0.04 0.05

Initial ω 0.1 0.2 0.3 0.4 0.5

Occlusion

Occlusion ratio 0.1 0.2 0.3 0.4 0.5

Initial ω 0.1 0.2 0.3 0.4 0.5

Outlier

Outlier-to-data ratio 0.0 0.5 1.0 1.5 2.0

Initial ω 0 0.4 0.5 0.6 0.7

Both CPD and our method are set the same initial values of ω in each experiment

doi:10.1371/journal.pone.0148483.t001
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Fig 1. Registration examples on the fish point set. From top to bottom are the four largest degradations: deformation (0.08), noise (0.05), occlusion (0.5),
and outlier (2.0). The goal is to align the model point set (blue pluses) onto the scene point set (red circles).

doi:10.1371/journal.pone.0148483.g001

Fig 2. Registration examples on the Chinese character point set. From top to bottom are the four largest degradations: deformation (0.08), noise (0.05),
occlusion (0.5), and outlier (2.0). The model point set is shown in blue pluses, and the scene point set is shown in red circles.

doi:10.1371/journal.pone.0148483.g002

Non-Rigid Point Set Registration Based on Structure Information

PLOS ONE | DOI:10.1371/journal.pone.0148483 February 11, 2016 9 / 17



fish point set under the outlier degradation (outlier-to-data ratio of 1.0) are chosen. Both CPD
and our method are set the same initial values: ω is 0.7 and the maximum iteration number is
100. The error curves, the recall curves, and the F1 measure of the two algorithms during the
iteration are shown in Fig 5. Here, the recall is defined as the proportion of the true-positive
correspondences that are found at current iteration to the ground truth correspondences. As
shown in the figure, due to the introduction of structure descriptor, at the first 20 times of the
iterations, our method can find the correct correspondences rapidly and maintain smaller
errors. At the later stage of the iterations, the effect of the structure descriptor is reduced and
the effect of Euclidean distance is increased; as a result, the curves of the two algorithms tend to
be similar.

However, the introduction of structure descriptor increases the complexity of the calcula-
tions. The average registration times of each example on the synthetic dataset are GMMREG:
0.24 s, TPS-RPM: 0.03 s, RPM-L2E: 6.52 s, CPD: 0.15 s, and our method: 1.21 s. The RPM-L2E
algorithm and our method (which used shape context) exhibit poor speed performance.

2.3 Evaluation of the automatic outlier processing. In this subsection, the automatic out-
lier processing is evaluated in the EM framework. First, consider one example with 98 points in
the model point set and 196 points in the scene point set to demonstrate the distribution of the
outliers of our method during the iteration. The initial value of the outlier ratio is 0.7, and the
maximum iteration number is 100. As shown in Fig 6, the leftmost figure is the initial point
sets. The right six figures are the correspondence and the distribution of the outliers at the iter-
ations of 1, 3, 5, 10, 20 and 50 times. The corresponding point pairs are connected by green

Fig 3. Performances of the registration methods on the fish point set. The registration performance of
our method compared with the performances of GMMREG, TPS-RPM, RPM-L2E, and CPD on the fish point
set. Each error bar indicates the registration error mean and the standard deviation over 100 trials.

doi:10.1371/journal.pone.0148483.g003
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lines. The many-to-one correspondence can be seen directly. There may be one Gaussian cen-
troid closest to multiple date points and another Gaussian centroid that is not the closest to
any data point. In other words, each point in the model point set has a closest point in the
scene point set. However, some points in the scene point set cannot find the corresponding

Fig 4. Performances of the registration methods on the Chinese character point set. The registration
performances of GMMREG, TPS-RPM, RPM-L2E, CPD, and our method on the Chinese character point set.
Each error bar indicates the registration error mean and the standard deviation over 100 trials.

doi:10.1371/journal.pone.0148483.g004

Fig 5. Evaluation of the effect of structure descriptor in the iteration.One hundred trials of the fish point set under the outlier degradation (outlier-to-data
ratio 1.0) are chosen to test the effect of structure descriptor in the iteration: (a) error curves, (b) recall curves, and (c) F1 measure scores in the iteration. Our
method is compared with CPD, both of which have the same initial value:ω is 0.7 and the maximum iteration number is 100.

doi:10.1371/journal.pone.0148483.g005
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point to them; such points are so-called outliers. Whether a point is an outlier or not will
change during the iteration of the EM framework. At the same time, we can see the change of
the correspondence and the distribution of the outliers rapidly at the initial iterations, which
then gradually slow and stabilize.

The statistical figure of outlier ratio change in the iteration is shown in Fig 7. The learning
ratio is set as α = 1/t, and the outlier ratios are, respectively, initialized as 0.1, 0.3, 0.5, 0.7, and
0.9. In each of the five experiments, the value of the outlier ratio converges to nearly 0.7 after
iterating 100 times. On one hand, if the learning ratio is too small, then the outlier ratio does
not converge to the optimal value at the end of iteration. On the other hand, if the learning
ratio is too large, then the outlier ratio may converge to a local optimal solution.

Fig 6. The change of the correspondence and the outliers in the iteration. The leftmost figure is the initial
point sets with 98 points in the model point set (blue pluses) and 196 points in the scene point set (red
circles). The right six figures are the correspondence and the distribution of the outliers in the iterations of 1,
3, 5, 10, 20 and 50 times of our method. The corresponding point pairs are connected by green lines, and the
other points are the outliers.

doi:10.1371/journal.pone.0148483.g006

Fig 7. The statistics of the outlier ratio change in the iteration. The same point sets are assigned the
different initial values ofω (0.1, 0.3, 0.5, 0.7, and 0.9). The outlier ratios converge to the optimal value
iteratively.

doi:10.1371/journal.pone.0148483.g007
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Furthermore, to evaluate the automatic outlier ratio of our method vs. the fixed one of the
CPD algorithm, we assign different initial outlier ratios (0.1, 0.3, 0.5, 0.7, and 0.9) to the same
example (the initial state is shown in Fig 6) and run the CPD algorithm together with our
method. The registration results are shown in Fig 8. Next, two groups of the fish point set
under the outlier degradation (outlier-to-data ratios of 0.5 and 2.0) are chosen to compare
the influence of different initial outlier ratios on the registration results of CPD and our
method. Both methods are assigned different initial outlier ratios from 0 to 0.9. The error
means and the standard deviations of the registration error of 100 examples in each group
are shown in Fig 9.

3. Experiments on real data
In this subsection, some real examples are presented on several biomedical datasets obtained
from http://radiology.dxy.cn. The sizes of the original images are 240×180 pixels. The point
sets are created by the edges of the objects, which are extracted using a regional scanning

Fig 8. Registration examples with different initial outlier ratios. The same point sets are assigned
different initial outlier ratios (0.1, 0.3, 0.5, 0.7, and 0.9). The top is the registration results of the CPD
algorithm, and the bottom is our method.

doi:10.1371/journal.pone.0148483.g008

Fig 9. Performances of the registration methods for different initial outlier ratios. Two groups examples
with outlier-to-data ratios of 0.5 (a) and 2.0 (b) are chosen to test the influence of different initial outlier ratios
(from 0 to 0.9) on the registration results. The error means and the standard deviations of 100 examples in
each group of our method are compared with CPD.

doi:10.1371/journal.pone.0148483.g009
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method. We demonstrate the registration results of all the experiments with the initial outlier
ratio of 0.7 and the maximum iteration number of 100.

Three groups of the real data examples are shown in Fig 10. The top row is a pair of thorax
Computed Tomography (CT) images. The middle row is a pair of transverse plane from brain
Magnetic Resonance Imaging (MRI) data. The bottom row is the sagittal plane from brain
MRI data, from which the boundaries of the apparatuses (corpus callosum, corpus fornicis,
thalamus, basis pontis, and medulla oblongata) are extracted for registration. For each group,
the leftmost two images are the scene data (fixed images) and the model data (moving images).
The next image is the initial state of the point sets created by the scene data and the model
data. The rightmost two images are the registration results by CPD and our method, in which
the model point sets (blue) align to the scene point sets (red). Because of the limitation of the
contour extraction algorithm and for reasons inherent to the original images, these point sets
contain numerous outliers and noise. However, our method performs well and demonstrates
visually accurate image alignments under deformation, outliers, and noise.

To ensure a quantitative experimental comparison, we use the recall-accuracy curve as the
evaluation criterion. First, for each pair of real data, we manually select 30 point pairs with
obvious features as ground truth correspondences. Here, TP is defined as the number of the
ground truth corresponding point pairs that fall within a given accuracy threshold in terms of
pairwise distance. FN is defined as the number of the ground truth corresponding point pairs
that fall outside the given accuracy threshold. The recall-accuracy curves of the three real
data experiments, under different accuracy threshold (from 1 to 5 pixels), are shown in Fig 11.
The proposed method can obtain better recall values in most of the tested accuracy thresholds
than CPD.

Because the structure descriptor provides some information of larger scale and a hierarchi-
cal registration framework can do the same, we compare the proposed method with the multi-
resolution registration method. The pair of sagittal plane brain MRI data in Fig 10 is selected
again, and a multi-resolution registration method is designed to perform the experiment. The
conventional CPD algorithm is applied with multi-resolution strategy. As shown in Fig 12, we

Fig 10. Registration examples on the real data. The top row is a pair of thorax CT images, the middle row is a pair of transverse plane from brain MRI, and
the bottom row is a pair of sagittal plane from brain MRI. For each row, the leftmost two images are the scene data and the model data. The next image is the
initial state of the point sets extracted from the scene data and the model data. The rightmost two images are the registration results using CPD and our
method, in which the model point sets (blue) align to the scene point sets (red).

doi:10.1371/journal.pone.0148483.g010
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construct 4 level pyramid images. In each level, the CPD algorithm is used, and the registration
result is used as the initial value of the next level. The registration error of the CPD algorithm,
multi-resolution method, and our method are listed in Table 2. The experimental results show
that the performance of the multi-resolution method has certain improvements compared

Fig 12. Registration example and comparison of the multi-resolution method. The top row shows the pyramid images and the corresponding contour
point sets of the fixed image. The middle row, from left to right, shows the initial moving image and the registration results of CPD, multi-resolution, and our
method. The bottom row shows the differences between the images of the middle row and the fixed image.

doi:10.1371/journal.pone.0148483.g012

Table 2. Registration error for the sagittal plane brain MRI data.

CPD Multi-resolution Our method

Error 18.0001 13.5107 8.2350

doi:10.1371/journal.pone.0148483.t002

Fig 11. Performances of registrationmethods on the real data. Recall-accuracy curves are used to evaluate CPD and our method on the three real data
experiments under the accuracy threshold 1 to 5 pixels: (a) thorax CT data, (b) transverse plane brain MRI data, and (c) sagittal plane brain MRI data.

doi:10.1371/journal.pone.0148483.g011
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with the conventional CPD algorithm but still no more than our method because the multi-res-
olution method requires down sampling, point set extraction, image interpolation, and trans-
formation, etc. The error in each level transfers to the next level; thus, the cumulative error will
inevitably increase. However, our method finds the optimal solution using only the structure
descriptor and EM iteration processing. Thus, our method can avoid the accumulation of
errors.

Discussion
The paper presents a method that is an improvement upon the CPD algorithm. Our contribu-
tion consists of two aspects. First, adding structural information by means of the shape context
to calculate the similarity and find the correspondence, and adjusting the proportion of each
GMM component according to the similarity. Second, the outlier ratio is automatically calcu-
lated and optimized in the EM framework, thereby avoiding manual assignment of the wrong
value (which may lead to an undesirable registration result). The experimental results show
that our approach is robust to a large degree of degradation and outperforms CPD and other
state-of-the-art non-rigid point set registration algorithms. Future work will involve further
investigation of how to better use the structure information of point sets to find the correct cor-
respondences in the presence of occlusion, noise, and outliers, in addition to studying how to
increase the speed performance of the registration method that uses the structure descriptor.

Acknowledgments
The authors acknowledge Andriy Myronenko, Jiayi Ma, Haili Chui, and Bing Jian for provid-
ing their implementation source codes and test datasets.

Author Contributions
Conceived and designed the experiments: LP GL. Performed the experiments: LP LX. Analyzed
the data: LP MX. Wrote the paper: LP.

References
1. Sotiras A, Davatzikos C, Paragios N. Deformable medical image registration: A survey. Medical Imag-

ing, IEEE Transactions on. 2013; 32(7):1153–1190. doi: 10.1109/TMI.2013.2265603

2. Wang G, Wang Z, Chen Y, ZhaoW. Robust point matching method for multimodal retinal image regis-
tration. Biomedical Signal Processing and Control. 2015; 19:68–76. doi: 10.1016/j.bspc.2015.03.004

3. Han X. Feature-constrained nonlinear registration of lung CT images. Medical image analysis for the
clinic: a grand challenge. 2010; p. 63–72.

4. Belongie S, Malik J, Puzicha J. Shape matching and object recognition using shape contexts. Pattern
Analysis and Machine Intelligence, IEEE Transactions on. 2002; 24(4):509–522. doi: 10.1109/34.
993558

5. Zhang K, Li X, Zhang J. A robust point-matching algorithm for remote sensing image registration. Geo-
science and Remote Sensing Letters, IEEE. 2014; 11(2):469–473. doi: 10.1109/LGRS.2013.2267771

6. Wang S, You H, Fu K. BFSIFT: A novel method to find feature matches for SAR image registration.
Geoscience and Remote Sensing Letters, IEEE. 2012; 9(4):649–653. doi: 10.1109/LGRS.2011.
2177437

7. Besl PJ, McKay ND. Method for registration of 3-D shapes. In: Robotics-DL tentative. International
Society for Optics and Photonics; 1992. p. 586–606.

8. Chui H, Rangarajan A. A new point matching algorithm for non-rigid registration. Computer Vision and
Image Understanding. 2003; 89(2):114–141. doi: 10.1016/S1077-3142(03)00009-2

9. Myronenko A, Song X. Point set registration: Coherent point drift. Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on. 2010; 32(12):2262–2275. doi: 10.1109/TPAMI.2010.46

10. Jian B, Vemuri BC. Robust point set registration using gaussian mixture models. Pattern Analysis and
Machine Intelligence, IEEE Transactions on. 2011; 33(8):1633–1645. doi: 10.1109/TPAMI.2010.223

Non-Rigid Point Set Registration Based on Structure Information

PLOS ONE | DOI:10.1371/journal.pone.0148483 February 11, 2016 16 / 17

http://dx.doi.org/10.1109/TMI.2013.2265603
http://dx.doi.org/10.1016/j.bspc.2015.03.004
http://dx.doi.org/10.1109/34.993558
http://dx.doi.org/10.1109/34.993558
http://dx.doi.org/10.1109/LGRS.2013.2267771
http://dx.doi.org/10.1109/LGRS.2011.2177437
http://dx.doi.org/10.1109/LGRS.2011.2177437
http://dx.doi.org/10.1016/S1077-3142(03)00009-2
http://dx.doi.org/10.1109/TPAMI.2010.46
http://dx.doi.org/10.1109/TPAMI.2010.223


11. Ma J, Chen J, Ming D, Tian J. A mixture model for robust point matching under multi-layer motion. PloS
one. 2014; 9(3):e92282. doi: 10.1371/journal.pone.0092282 PMID: 24658087

12. Gerogiannis D, Nikou C, Likas A. Registering sets of points using Bayesian regression. Neurocomput-
ing. 2012; 89:122–133. doi: 10.1016/j.neucom.2012.02.018

13. Qu HB, Li JC, Wang JQ, Xiang L, Tao HJ. Robust Point Set Matching under Variational Bayesian
Framework. In: Pattern Recognition (ICPR), 2014 22nd International Conference on. IEEE; 2014.
p. 58–63.

14. Myronenko A, Song X, Carreira-Perpinán MA. Non-rigid point set registration: Coherent point drift. In:
Advances in Neural Information Processing Systems; 2006. p. 1009–1016.

15. Hu Y, Rijkhorst EJ, Manber R, Hawkes D, Barratt D. Deformable vessel-based registration using land-
mark-guided coherent point drift. In: Medical Imaging and Augmented Reality. Springer; 2010. p. 60–69.

16. Wang P, Wang P, Qu Z, Gao Y, Shen Z. A refined coherent point drift (CPD) algorithm for point set reg-
istration. Science China Information Sciences. 2011; 54(12):2639–2646. doi: 10.1007/s11432-011-
4465-7

17. Habert S, Khurd P, Chefd’hotel C. Registration of multiple temporally related point sets using a novel
variant of the coherent point drift algorithm: application to coronary tree matching. In: SPIE Medical
Imaging. International Society for Optics and Photonics; 2013. p. 86690M–86690M.

18. Gao Y, Ma J, Zhao J, Tian J, Zhang D. A robust and outlier-adaptive method for non-rigid point registra-
tion. Pattern Analysis and Applications. 2014; 17(2):379–388. doi: 10.1007/s10044-013-0324-z

19. Liu S, Sun G, Niu Z, Li N, Chen Z. Robust rigid coherent point drift algorithm based on outlier suppres-
sion and its application in image matching. Journal of Applied Remote Sensing. 2015; 9(1):095085–
095085. doi: 10.1117/1.JRS.9.095085

20. de Sousa S, KropatschWG. Graph-based point drift: Graph centrality on the registration of point-sets.
Pattern Recognition. 2015; 48(2):368–379. doi: 10.1016/j.patcog.2014.06.011

21. Sang Q, Zhang JZ, Yu Z. Robust non-rigid point registration based on feature-dependant finite mixture
model. Pattern Recognition Letters. 2013; 34(13):1557–1565. doi: 10.1016/j.patrec.2013.06.019

22. TaoW, Sun K. Asymmetrical Gauss Mixture Models for Point Sets Matching. In: Computer Vision and
Pattern Recognition (CVPR), 2014 IEEE Conference on. IEEE; 2014. p. 1598–1605.

23. Zhou Z, Zheng J, Dai Y, Zhou Z, Chen S. Robust non-rigid point set registration using student’s-t mix-
ture model. PloS one. 2014; 9(3):e91381. doi: 10.1371/journal.pone.0091381 PMID: 24618749

24. Wang G, Wang Z, ZhaoW, Zhou Q. Robust Point Matching Using Mixture of Asymmetric Gaussians for
Nonrigid Transformation. In: Computer Vision–ACCV 2014. Springer; 2014. p. 433–444.

25. Wang G, Wang Z, Chen Y, ZhaoW. A robust non-rigid point set registration method based on asym-
metric gaussian representation. Computer Vision and Image Understanding. 2015; 141:67–80. doi: 10.
1016/j.cviu.2015.05.014

26. Zheng Y, Doermann D. Robust point matching for nonrigid shapes by preserving local neighborhood
structures. Pattern Analysis and Machine Intelligence, IEEE Transactions on. 2006; 28(4):643–649.
doi: 10.1109/TPAMI.2006.81

27. Ma J, Zhao J, Tian J, Tu Z, Yuille AL. Robust estimation of nonrigid transformation for point set registra-
tion. In: Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on. IEEE; 2013.
p. 2147–2154.

28. Chen J, Ma J, Yang C, Ma L, Zheng S. Non-rigid point set registration via coherent spatial mapping.
Signal Processing. 2015; 106:62–72. doi: 10.1016/j.sigpro.2014.07.004

29. Lee JH, Won CH. Topology preserving relaxation labeling for nonrigid point matching. Pattern Analysis
and Machine Intelligence, IEEE Transactions on. 2011; 33(2):427–432. doi: 10.1109/TPAMI.2010.179

30. Yan Xw, WangW, Zhao J, Hu Jm, Zhang J, Wan Jw. Relaxation labeling for non-rigid point matching
under neighbor preserving. Journal of Central South University. 2013; 20:3077–3084. doi: 10.1007/
s11771-013-1831-1

31. Jin F, Feng D. Image Registration Algorithm Using Mexican Hat Function-Based Operator and Grouped
Feature Matching Strategy. PloS one. 2014; 9(4):e95576. doi: 10.1371/journal.pone.0095576 PMID:
24752223

32. Ge S, Fan G, Ding M. Non-rigid Point Set Registration with Global-Local Topology Preservation. In:
Computer Vision and Pattern Recognition Workshops (CVPRW), 2014 IEEE Conference on. IEEE;
2014. p. 245–251.

33. Tang J, Shao L, Zhen X. Robust point pattern matching based on spectral context. Pattern Recognition.
2014; 47(3):1469–1484. doi: 10.1016/j.patcog.2013.09.017

34. Yang Y, Ong SH, Foong KWC. A robust global and local mixture distance based non-rigid point set reg-
istration. Pattern Recognition. 2015; 48(1):156–173. doi: 10.1016/j.patcog.2014.06.017

Non-Rigid Point Set Registration Based on Structure Information

PLOS ONE | DOI:10.1371/journal.pone.0148483 February 11, 2016 17 / 17

http://dx.doi.org/10.1371/journal.pone.0092282
http://www.ncbi.nlm.nih.gov/pubmed/24658087
http://dx.doi.org/10.1016/j.neucom.2012.02.018
http://dx.doi.org/10.1007/s11432-011-4465-7
http://dx.doi.org/10.1007/s11432-011-4465-7
http://dx.doi.org/10.1007/s10044-013-0324-z
http://dx.doi.org/10.1117/1.JRS.9.095085
http://dx.doi.org/10.1016/j.patcog.2014.06.011
http://dx.doi.org/10.1016/j.patrec.2013.06.019
http://dx.doi.org/10.1371/journal.pone.0091381
http://www.ncbi.nlm.nih.gov/pubmed/24618749
http://dx.doi.org/10.1016/j.cviu.2015.05.014
http://dx.doi.org/10.1016/j.cviu.2015.05.014
http://dx.doi.org/10.1109/TPAMI.2006.81
http://dx.doi.org/10.1016/j.sigpro.2014.07.004
http://dx.doi.org/10.1109/TPAMI.2010.179
http://dx.doi.org/10.1007/s11771-013-1831-1
http://dx.doi.org/10.1007/s11771-013-1831-1
http://dx.doi.org/10.1371/journal.pone.0095576
http://www.ncbi.nlm.nih.gov/pubmed/24752223
http://dx.doi.org/10.1016/j.patcog.2013.09.017
http://dx.doi.org/10.1016/j.patcog.2014.06.017

