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Abstract

Increasing awareness of the issue of deforestation and degradation in the tropics has
resulted in efforts to monitor forest resources in tropical countries. Advances in satellite-
based remote sensing and ground-based technologies have allowed for monitoring of for-
ests with high spatial, temporal and thematic detail. Despite these advances, there is a
need to engage communities in monitoring activities and include these stakeholders in
national forest monitoring systems. In this study, we analyzed activity data (deforestation
and forest degradation) collected by local forest experts over a 3-year period in an Afro-
montane forest area in southwestern Ethiopia and corresponding Landsat Time Series
(LTS). Local expert data included forest change attributes, geo-location and photo evidence
recorded using mobile phones with integrated GPS and photo capabilities. We also assem-
bled LTS using all available data from all spectral bands and a suite of additional indices
and temporal metrics based on time series trajectory analysis. We predicted deforestation,
degradation or stable forests using random forest models trained with data from local
experts and LTS spectral-temporal metrics as model covariates. Resulting models pre-
dicted deforestation and degradation with an out of bag (OOB) error estimate of 29% over-
all, and 26% and 31% for the deforestation and degradation classes, respectively. By
dividing the local expert data into training and operational phases corresponding to local
monitoring activities, we found that forest change models improved as more local expert
data were used. Finally, we produced maps of deforestation and degradation using the
most important spectral bands. The results in this study represent some of the first to com-
bine local expert based forest change data and dense LTS, demonstrating the complemen-
tary value of both continuous data streams. Our results underpin the utility of both datasets
and provide a useful foundation for integrated forest monitoring systems relying on data
streams from diverse sources.
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Introduction

Recent years have seen a dramatic increase in the attention being given to the plight of tropical
forests. This attention is due to the importance that these ecosystems have with regards to global
climate change [1, 2], biodiversity loss [3, 4] and ecosystem services [5]. In recognition of the
considerable impact human activities are having on tropical forest systems worldwide, a range
of initiatives have been launched to mitigate against the adverse effects of tropical forest loss.
One such programme—Reducing Emissions from Deforestation and Degradation (REDD+)—
is designed to provide incentives to developing countries to reduce deforestation and forest deg-
radation rates and strengthen conservation measurements [6, 7].

Countries wishing to engage in REDD+ are required to undertake monitoring measures
enshrined in the Measuring, Reporting and Verification (MRV) framework [7, 8]. Estimates of
forest area changes in baseline and reporting periods—termed “Activity Data”—comprise an
important component of REDD+ MRV [9]. While the choice of methods and technologies
used to fulfill MRV requirements are left up to individual participant countries, satellite remote
sensing data have been widely recognized as essential data sources for comprehensive mapping
and quantification of forest area change [10]. In addition to the various change detection
approaches already existing [11], MRV-related capacity gaps among participant countries [12]
have resulted in a surge of new forest change monitoring methods and case studies in the trop-
ics. While deforestation monitoring is operational in many cases, forest degradation is still
poorly understood in many areas of the tropics [13-15]. This gap is due to the nature of degra-
dation processes, including complex governance structures and drivers, as well as technical
challenges related to degradation monitoring, and thus remains a bottleneck to the implemen-
tation of effective MRV systems [16].

Recent years have seen a paradigm shift in satellite-based forest monitoring, with dense
time series increasingly being used in favour of conventional bi-temporal image comparison
approaches [17]. This shift is largely due to open data policies, such as the decision to release
the entire Landsat archive to the public in 2008, which has spurred considerable development
in Landsat time series (LTS) based monitoring methods [18]. These methods have allowed for
forest change monitoring with gains in both resolution and accuracy in the temporal domain
[13, 19-21]. Furthermore, a number of operational forest monitoring systems based on satellite
time series have emerged in the tropics, such as the PRODES and DETER systems of the Brazil-
ian Space Agency [22, 23], the Monitoring of the Andean Amazon Project (MAAP) [24], the
Global Forest Watch [25, 26] and others.

Not only do forest monitoring methods based on LTS allow for rapid detection of forest dis-
turbance, but they also allow for descriptions of forest change trajectories well beyond what is
possible with conventional methods [27, 28]. Change trajectory analysis usually involves the
segmentation and/or reduction of a time series to describe the change history at a particular
location. Several segmentation methods have been described in the literature. The Breaks For
Additive Season and Trend (BFAST) method detects abrupt and gradual changes in time series
decomposed into season, trend and noise components [29]. The Detecting Breakpoints and
Estimating Segments in Trend (DBEST) method similarly segments time series to measure
timing, type and magnitude of changes [30], but without considerations for seasonal variations
as in BFAST. The Landsat-based detection of Trends in Disturbance and Recovery (Land-
TrendR) method segments annual or composited Landsat time series using a series of parame-
ters describing segment length, inter-segment angle and other characteristics of time series
trajectories [27]. While these and other time series segmentation algorithms have been proven
to be useful in describing changes or other state variables using satellite time series, they have
all been developed for regularly timed observations such as MODIS 16-day composites [29],
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AVHRR GIMMS3g data [30] or annual Landsat composites [27]. Few studies have applied
analogous techniques to time series with missing data (“irregular” time series) such as LTS data
using all available observations [31].

Even with increasingly sophisticated tools for quantifying and describing forest changes
using satellite image time series, the involvement of local people in monitoring activities (such
as in Community-Based Forestry projects) is necessary to ensure sustainability [32, 33] and
equity [34] in forest management programmes such as REDD+. Community involvement in
monitoring activities has also been shown to reduce overall monitoring costs with negligible
trade-offs in data quality for certain monitoring applications [35]. Use of community-based
monitoring (CBM) data or volunteered geo-information (VGI) data have been previously
shown to be promising in such applications as land cover validation [36], climate change
impact studies [37] or forest carbon stock estimation [35, 38]. Emerging technologies such as
smart phones [35, 39] improve the quality and consistency of these data through functionalities
such as integrated photos and geo-tagging capabilities [40].

Another area where CBM or VGI data could add considerable value is in the training and
validation of forest change detection methods, since the validation of historical change esti-
mates is often severely limited by a lack of reliable historical reference data [41]. However, very
few studies have been undertaken to demonstrate the utility of local monitoring data in such a
context. Pratihast et al. (2014) [42] showed that local forestry experts in southern Ethiopia can
describe forest changes with much higher thematic details than is possible with satellite time
series, but some trade-offs were encountered with regards to spatial coverage and temporal
accuracy. Notably, this study found that local experts were particularly adept at describing loca-
tions and drivers of low-level degradation [42], a great deal of which is not adequately captured
by satellite-based methods [13]. There is currently a need for more research on approaches to
integrate CBM or VGI data with satellite time series data to improve the spatial, temporal and
thematic quality of forest change estimates.

The objective of this study was to investigate the utility of local expert data combined with
LTS-based trajectory analysis to characterize forest change processes. To this end, we investi-
gated three overall research questions:

1. How well can we differentiate between deforestation and forest degradation using local
expert data and Landsat time series?

2. What impact does a continuous stream of local expert data have on predictions of forest
change types?

3. How can maps of forest change types be used to describe key change processes?

To address these research questions, we used forest disturbance reports collected from 2012
to 2015 by a team of 30 forest rangers in a montane forest area in southwestern Ethiopia and
compared them with LTS trajectories. Using all available LTS data, we first derived a series of
temporal trajectory metrics from time series of each spectral band and index using an adapted
version of the BFAST algorithm [29]. We derived these metrics to describe changes in trend
and seasonal amplitudes between time series segments as well as overall time series trend and
intercepts. To address the first research question, we combined all local disturbance reports
and time series metrics to train random forest models designed to predict deforestation, degra-
dation or stable forest (no change). To address the second research question, we divided the
local expert data into training and operational phases and measured the accuracies of predicted
models as new training data were added to the models. Finally, to explore the third research
question, we used the most important spectral-temporal covariates to map deforested and
degraded forests based on LTS as of March 2015.
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We studied the relationship between community-based monitoring data and dense LTS
over a tropical montane forest system in southern Ethiopia (project setting described below).
This work builds upon the work of both DeVries et al. (2015) [13] and Pratihast et al. (2014)
[42]. DeVries et al. (2015) mapped annual forest disturbances in this system using dense LTS,
for which degradation proved elusive [13]. Pratihast et al. (2014), on the other hand, showed
that local rangers in the study area were able to capture degradation sooner than was possible
with manual interpretation of very high resolution optical imagery [42]. This study builds
upon both of these papers in its attempt to combine community-based monitoring data with
dense LTS towards mapping deforestation and low-level degradation with improved confi-
dence and consistency.

Methods
Study Area and Project Context

This study was carried out in the UNESCO Kafa Biosphere Reserve (hereafter referred to as “Kafa
BR”) in southwestern Ethiopia. The Kafa BR comprises an Afro-montane forest system consisting
mostly of highly fragmented moist evergreen forests, forest-cropland matrix landscapes, coffee
forests, tree plantations and wetlands. A detailed description of the study area as well as the driv-
ers of deforestation and forest degradation is provided in DeVries et al. (2015) [13].

The research in this study was carried out in the frame of a project implemented by the Ger-
man Nature and Biodiveristy Conservation Union (NABU), in partnership with the Kafa Zone
Bureau of Agriculture, the zonal office of the Ethiopian Ministry of Agriculture. This project
aimed to reduce carbon emissions from deforestation and forest degradation in the Kafa BR
and to promote conservation and sustainable management of remaining forest resources in the
area. In line with the projects goals, the region was inaugurated as a Biosphere Reserve in 2011
under the UNESCO Man and the Biosphere (MAB) programme and was zoned according to
land use (Fig 1).

As part of these initiatives, 30 forest rangers (hereafter referred to as “local experts”) were
recruited to implement forest management, monitoring and community outreach activities in
each of the 10 local districts (woredas) within the Kafa BR. As part of their monitoring man-
date, local experts were trained in methods and tools to report and describe forest changes,
including disturbances (deforestation and degradation) and positive changes (afforestation and
reforestation). Fig 1 shows the geo-location of the disturbance reports provided by local experts
between 2012 and 2015 which were used in this study. The details of these reports are described
below, and have also been described in detail in a previous study in the area [42]. The overall
goal of the current study was to develop an integrated monitoring system using the knowledge
of the local experts in combination with Landsat time series and very high resolution (VHR)
time series [42] to track forest change throughout the Kafa BR.

Definition of Change Classes

In order to address our first research question, a definition of deforestation and forest degrada-
tion is needed. This definition can take on several criteria related to area change, canopy cover
change, or other dimensions of the change [16, 43-45]. For example, the IPCC defines degra-
dation as changes negatively affecting carbon stocks in forests which remain forests, where a
forest is defined based on area, height and canopy cover thresholds [9]. Degradation can thus
occur when a forest is completely cleared, but the total area cleared is less than the area thresh-
old (e.g. 0.5 hectares). Degradation can alternatively occur when a larger area of forest experi-
ences negative changes in forest canopy cover, but the canopy fraction still remains above a
defined forest threshold (e.g. 20%).
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Fig 1. Study area located in the UNESCO Kafa Biosphere Reserve in the Southern Nations, Nationalities and Peoples Republic (SNNPR) state of
southwestern Ethiopia. Biosphere Reserve zones and location of local expert disturbance reports (deforestation and degradation) and additional reference
data (no-change) are shown. The locations of map tiles from Fig 9 are shown as boxes labeled A to D.

doi:10.1371/journal.pone.0147121.g001

In this study, we limited the definitions of deforestation and degradation to the tree canopy
dimension described above. In other words, if the forest canopy was reduced to below our for-
est definition canopy cover threshold of 20% at the pixel or plot level, we assigned a “deforesta-
tion” label, regardless of the total contiguous area cleared. Any negative changes evident that
still resulted in a canopy cover of above 20% thus resulted in a label of “degradation”. We
neglected the area-based definition in this study for two reasons. First, it was often difficult to
determine with certainty the total area affected from local expert disturbance reports, but can-
opy condition could be verified using plot photos submitted by local experts. Second, we sought
to derive relationships between temporal metrics derived from LTS and change classes derived
from local expert disturbance data, and spatial context was thus not considered here.
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A summary of our methods is provided in Fig 2. We describe the datasets and individual
steps taken in detail below.

Local Expert Disturbance Monitoring Data

Ground based forest monitoring data were provided by local experts employed by the Kafa
Zone Bureau of Agriculture. The design of the local disturbance monitoring forms are
described in detail in Pratihast et al. (2014) [42]. These forms were designed as reporting tools
for local experts to report disturbances (deforestation or forest degradation) or positive forest
changes (afforestation or reforestation). We used Open Data Kit (ODK) [46] to integrate these
forms with GPS and multimedia (photo, audio). As such, each form contains a range of attri-
butes describing forest status and history and is associated with at least one coordinate pair,
five photos (facing north, east, south, west and upwards) and a narrative plot description
(input by hand or recorded as audio by the local expert).

We filtered and classified the local disturbance reports into forest change types as shown in
S1 Fig. We first assigned a provisional class label (hatched circles in S1 Fig) to the reports auto-
matically, based on the current status of the forest and evidence of previous or ongoing distur-
bance. For these data to be used in an automated workflow, it was necessary to control for the
reliability and consistency of the data [47]. We thus modified the provisional class label where
appropriate based on photo evidence (shown in Fig 3), general narrative description of the plot
and very high resolution (VHR) imagery from GoogleEarth™. After visually validating each
form, we assigned the definitive labels of “deforestation”, “degradation”, “no change” or “non-
forest”. Given the fact that most reports described deforestation or degradation processes, we
finally excluded forms from the other two classes from subsequent analysis. We supplemented
the final local expert dataset with randomly sampled and validated no-change pixels from a
previous study in the region [13] to ensure both change and no-change classes were sufficiently
represented in the dataset used to train the forest change models.

LTS Pre-processing

We downloaded all available Landsat imagery from the Landsat5-TM, Landsat7-ETM+ and
Landsat8-OLI sensors with cloud cover below 80% per scene and processing level L1T from
the USGS Earth Explorer system. We selected all available spectral bands except for the ther-
mal band (shown in Table 1). All TM and ETM+ scenes were already processed to surface
reflectance level using the Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS) atmospheric and topographic correction algorithm [48]. OLI scenes were already
processed to surface reflectance level by the USGS internal L8SR algorithm. We applied a
cloud mask derived from the Function of Mask (FMASK) algorithm [49] to each of the
scenes, masking out clouds, cloud shadows and gaps due to the malfunctioning scan-line cor-
rector (SLC) of the ETM+ sensor. Since there were virtually no image acquisitions over our
study area during the 1990’s, leaving a large gap in the Landsat archive, we limited our time
series to all data after and including 1999, coinciding with the launch of the ETM+ sensor.
From a visual screening of all imagery in the archive, we identified cloud pixels frequently
missed by the FMASK-derived cloud mask, especially where these clouds coincided with
SLC-off gaps in ETM+ images. To reduce the number of these contaminations, we applied a
5-pixel sieve to all images, where pixel clusters surrounded by masked values of five pixels or
less were removed from the images. In our assessment, we did not find any significant geo-
location errors in the dataset. Since the noise component of the BFAST method [29] can
account for occasional outliers due to such errors, we did not carry out any further quality
assessment.
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Fig 3. Photo evidence from local disturbance reports documenting deforestation (A) and degradation
(B). The location shown in panel A corresponds to the time series shown in Fig 4, and the location shown in
panel B corresponds to the time series shown in Fig 5.

doi:10.1371/journal.pone.0147121.g003

Using the pre-processed surface reflectance layers shown in Table 1, we computed a selec-
tion of spectral indices, shown in Table 2. These indices have been shown in previous research
to be sensitive to vegetation characteristics, states or change dynamics [50-57]. Coefficients for
the three basic tasseled cap indices (brightness, greenness and wetness) are shown as b, gand
w, respectively, in Table 2. Since data from all sensors were pre-preprocessed to surface reflec-
tance products, we used the same surface reflectance derived tasseled cap coefficients across all
sensors [27, 55], which are shown in S1 Table in the Supplemental Materials.

Since we used all spectral bands and derived indices in our forest change models, we refer to
the combination of bands and indices as “spectral bands” for the remainder of this study.

Deriving Temporal Metrics

Our specific objective in this study was to differentiate between three main forest state classes:
deforestation, degradation and no-change. We derived a series of temporal metrics from time
series of each of the spectral bands described above and in Tables 1 and 2, recognizing that
these forest state classes can involve either gradual or abrupt (i.e. involving a break between
adjacent observations) changes. We thus derived temporal metrics which can be divided into
two broad categories: (1) full time series and (2) segment-based metrics. We derived these met-
rics from pixel time series at sites coinciding with local disturbance reports.

For each spectral band, we fit a linear function to the entire time series. We chose the robust
linear regression (RLM; [58]) instead of the commonly-used linear regression based on ordi-
nary least squares (OLS). RLM is based on the M-estimator, which seeks to find the best fit to a

Table 1. Spectral bands on the Landsat TM, ETM+ and OLI sensors.

Band Abbreviation A(TM) A(ETM+) A(OLI)

1 (TM/ETM+), 2 (OLI) B 0.45-0.52um 0.45-0.52pm 0.45-0.51ym
2 (TM/ETM+), 3 (OLI) G* 0.52—0.60um 0.52—0.60um 0.53-0.59um
3 (TM/ETM+), 4 (OLI) R 0.63-0.69um 0.63-0.69um 0.64-0.670um
4 (TM/ETM+), 5 (OLI) NIR 0.77-0.90um 0.77-0.90um 0.85-0.880um
5 (TM/ETM+), 6 (OLI) SWIR1 1.55-1.75um 1.55-1.75um 1.57-1.65um
7 (all sensors) SWIR2* 2.08-2.35um 2.09-2.35um 2.11-2.29um

*Spectral bands used to produce final forest change maps.

doi:10.1371/journal.pone.0147121.t001
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Table 2. Spectral indices used in this study.

Name Abbreviation Equation Remarks Reference(s)

Normalized Difference Vegetation NDVI ot sensitive to photosynethetic activity  [50]

Index

Normalized Difference Moisture NDMI o sensitive to canopy moisture [51, 52]

Index content

Normalized Burn Ratio NBR D sensitive to disturbances and fire [53]

Normalized Burn Ratio 2 NBR2 % sensitive to disturbances and fire

Tasseled Cap Brightness TCB b1B+boR+b3G+b4NIR+bsSWIR1 + beSWIR2  sensitive to surface brightness [54, 55]

Tasseled Cap Greenness TCG 91B+goR+93G+94NIR+gsSWIR1 + gsSWIR2  sensitive to vegetation greenness [54, 55]

Tasseled Cap Wetness TCW* w1B + WoR + wsG + wuNIR + wsSWIR1 + sensitive to vegetation moisture [52, 54, 55]
weSWIR2 content

Tasseled Cap Angle TCA tan! (;g—g) sensitive to above-ground biomass  [56, 57]

*Spectral indices used to make final change probability maps.

doi:10.1371/journal.pone.0147121.t002

distribution of data with outliers [58]. This choice of fitting method was motivated by the fact
that full Landsat time series commonly contain noise due to unmasked clouds or other sources
[13, 19, 59]. The output of this method applied to each time series and spectral band thus con-
sisted of (1) the RLM intercept (using the baseline year 1999 as the origin), and (2) the RLM
slope.

While an overall RLM trend can help to describe gradual changes or to discriminate
between change and no-change classes, abrupt changes or onset of gradual changes late in a
time series may not be sufficiently captured using this method. To describe these changes, we
tested each pixel time series for each spectral band for the presence or absence of breaks using
the “breakpoints” method of Bai and Perron (2003) [60], which determines the optimal num-
ber of breaks in a time series based on the Bayesian Information Criterion (BIC; [60]). We
assumed that in the length of the time series (from 1999 to 2015), a land use or land cover
change event would occur only once, and were thus interested in identifying the most impor-
tant break. We therefore set the maximum number of breaks to one, generating a result repre-
senting the presence or absence of a break in the time series [61].

For each segment that resulted from the breakpoint computation above, we fit season-trend
models as in Verbesselt et al. (2010) [29] as follows. For a time-dependent response variable y;,
we fit the formula

ot
Vo= o+ B+ ysin(e +5) (1)

f J

where q; is the intercept, f; is the linear slope, y; is the amplitude, fis the frequency of the time
series (set to 365 days for LTS data) and dj is the phase for each segment j. Similarly to the over-
all trend fitting, we used RLM instead of ordinary least squares (OLS) in fitting the season-
trend models. The output of the time series segmented applied to each time series and spectral
band thus consisted of (1) the amplitude of the first segment (y;), (2) the amplitude of the sec-
ond segment (¥,; equal to the first amplitude if no break was detected), (3) the trend of the first
segment (f;) and (4) the trend of the second segment (3,; equal to the first trend if no break
was detected). These outputs are shown for two sites (Fig 3) representing deforestation and
degradation in Figs 4 and 5.
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Fig 4. Time series over a deforested site for four spectral bands: SWIR2, NDVI, NBR and TCW. The RLM-fitted season-trend model for each segment is
shown as a dotted line. Local disturbance photo evidence for this site is shown in Fig 3A.

doi:10.1371/journal.pone.0147121.9g004

Modelling Forest Change Processes

Random Forest Models. We used random forests to model change type as a function of
LTS spectral-temporal metrics. The random forest classifier is based on a machine learning
algorithm which constructs many decision tree classifiers based on bootstrapped samples [62].
Several advantages of the random forest method over other classifiers have been reported in
the literature, including the ability to accommodate many predictor variables, as well as the
fact that it is a non-parametric classifier (i.e. does not assume any underlying distribution in
the training samples) [62]. Random forest classifications generally assign class labels based on
the majority vote among all bootstrapped classification trees. In this study, we used the major-
ity votes from 7000 classification trees to analyze the internal out-of-bag (OOB) error estimates
per class. We used the class probabilities (also based on the number of votes per class) to study
the impact of the updated local data stream and to map change probabilities at several sites
(described below).
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Fig 5. Time series over a degraded forest site for four spectral bands: SWIR2, NDVI, NBR and TCW. The RLM-fitted season-trend model for each
segment is shown as a dotted line. Local disturbance photo evidence for this site is shown in Fig 3B.

doi:10.1371/journal.pone.0147121.9005
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Fig 6. Flowchart demonstrating the iterative updating of random forest models. Time of acquisition of local expert data (parallelograms) are shown in
the box on the right hand side. In each phase, a subset of the local expert data were used for model calibration (grey), and another subset was used for model

validation (white).

doi:10.1371/journal.pone.0147121.g006

Iterative Model Updating. Monitoring activities carried out by local experts were carried
out in phases according to project activities in the Kafa BR. Specifically, initial trainings were
held with local experts to collaboratively develop ODK-based tools for forest monitoring in
2012, after which several rounds of monitoring were carried out until 2014 [42]. From October
2014, a new Integrated Forest Monitoring System (IFMS) was piloted for the Kafa BR with
additional trainings in October, a demonstration phase in November and December 2014, and
an operational near real-time monitoring phase from January 2015 onwards. While the
research described in this paper takes place within the context of this IFMS, the details of the
system is the subject of future research in preparation, and is not the focus of this paper.

To demonstrate the use of a continuous data-stream from local experts, we ran the random
forest algorithm as described above for two time periods: (1) a training phase and (2) an opera-
tional phase roughly according to the project phases described above. We divided the local
expert data as outlined in Fig 6. During an initial “training” phase, we took all local expert data
acquired before July 2013 (“period A” in Fig 6) and used them with all LTS spectral-temporal
covariates to train a random forest model as described above. In addition to the OOB error esti-
mate, we used additional local expert data acquired during the period between July 2013 and
October 2014 (“period B” in Fig 6) to validate this model. Specifically, we compared the distri-
bution of predicted class probabilities for all disturbance locations reported in period B with
the actual change types reported by local experts. During a subsequent “operational” phase, we
fused the local expert data from periods A and B, and built a new random forest model using
all spectral-temporal covariates. We then used all local expert data acquired after October 2014
(“period C” in Fig 6) to compare predicted class probabilities with actual class labels as in the
training phase.

Selecting Important Variables. Mapping forest change classes requires that all covariates
used in the change type prediction are computed over all pixels in a scene. The computation of
breakpoints for each pixel necessary for deriving temporal metrics was computationally time-
consuming and not realistic for producing wall-to-wall change maps. We therefore decided to
produce maps using simplified random forest models built with only a subset of the most
important spectral-temporal covariates. The importance of individual covariates in random
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forest models is measured either as the mean decrease in accuracy when each variable is
removed from the individual bagged decision trees or as a node impurity coefficient [62].
These measures suffer from two possible drawbacks. First, the model composition is different
with every run, resulting in different outcomes for every random forest model. Second, when
the covariates included in the model are tightly correlated with each other, interpretation of
importance can be problematic [63]. For example, if coefficients A and B are both seen to be
important predictor variables and are both highly correlated with each other, it is not clear if
the importance is due to this correlation or the underlying predictive power of either covariate.
To overcome this second drawback, Strobl et al. (2008) [63] proposed a conditional importance
measure which involves measuring importance among permuted samples of covariates. With a
large number of covariates, however, we found this approach to be computationally
unreasonable.

To circumvent this limitation, we derived a scoring algorithm based on iterations of random
forests run separately for each spectral band (Tables 1 and 2), using temporal metrics derived
from each respective band as model covariates. Specifically, we ran the algorithm 1000 times
for all temporal metrics derived from only the blue band, the green band, and so forth for all
other spectral bands. For each of the 1000 iterations, we ranked the bands based on the overall
accuracy as well as the class-specific accuracies. We then derived a score (S) for each band (j)
and change class (A) by taking the average normalized rank over all iterations as follows:

Nox. —1

S —1 J
MmN n—1

i

(2)

where x; is the rank of band j in iteration i, 7 is the total number of spectral bands and N is the
total number of iterations. x;; was computed such that the bottom ranking band in iteration i
was assigned a value of 1, and the top ranking band was assigned a value equal to n. Since it is a
normalized rank, S, falls within the interval [0, 1], where a maximum score of one indicates a
top rank for all N iterations. We selected the most important spectral bands based on this scor-
ing algorithm and produced maps of change class probabilities for several sites. We applied a
forest mask produced from a Landsat ETM+ scene acquired on Feburary 2001 to filter out pix-
els representing stable non-forest from before 2001.

Results
Model Accuracies and Temporal Variable Importance

The random forest constructed with 7000 trees using all spectral-temporal covariates and train-
ing data gave an overall OOB error estimate of 29%. The deforestation class error was 26%, the
degradation class error was 31% and the no-change class error was 32%. Although subsequent
iterations of the modeling process showed inconsistencies in importance metrics, the overall
RLM trends from various spectral bands were consistently ranked as the most important pre-
dictors. The amplitude of the second segment (y,) was also frequently highly ranked, followed
by trends of the first and second segments (3; and £3,).

Iterative model updating

The results of the iterative model updating are shown in Fig 7. Here, the class probabilities (P)
of deforestation (DEF), degradation (DEG) and no-change (NOCH) are shown for reference
deforestation and degradation (DEF and DEG on the x-axis, respectively), both for the training
phase (top row) and the operational phase (bottom row). In the training phase, the median
class probabilities for reference deforestation locations were 61% for deforestation, 26% for
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doi:10.1371/journal.pone.0147121.g007

degradation and 7% for no change. These class probabilities remained largely static during the
operational phase: 60% for deforestation, 34% for degradation and 2% for no change.
The median class probabilities for reference degradation locations in the training phase
were 21% for deforestation, 28% for degradation and 44% for no change. These probabilities
changed to 17% for deforestation, 46% for degradation and 31% for no change during the oper-

ational period.

Importance of spectral bands in classifying change types

The importance scores for each spectral band are shown in Fig 8. SWIR2 and TCW emerged as
the most important variables when overall accuracies were considered (i.e. taking all change
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Fig 8. Importance scores (S) for each band based on overall accuracies and class accuracies for deforestation (DEF), degradation (DEG) and no-

change (NOCH).
doi:10.1371/journal.pone.0147121.9008

classes into account). The most important bands for the individual change classes were SWIR2
for deforestation, TCG for degradation and G for no-change. SWIR2 achieved a perfect score
of 1 for the deforestation class, implying that it was ranked the highest in terms of deforestation
accuracy on every iteration. The NIR band, on the other hand, received a score of zero for the
no-change class, implying that it was consistently the lowest ranked band for that class over all
iterations.

Spatial distribution of deforestation and degradation

Based on the results of the importance scoring algorithm, we selected all temporal covariates
derived from the SWIR2 and TCW bands for further analysis. We additionally selected the
RLM intercept and trend of the green band (G) based on its apparent importance in discrimi-
nating stable forest (no-change). Using this subset of the covariates, we derived another ran-
dom forest model. The overall class error of the revised random forest model was 28%, with
class errors of 23% and 33% for deforestation and degradation, respectively. We produced
maps of change type probabilities (deforestation, degradation and no-change). Maps of forest
change probabilities (deforestation or degradation) for four sites are shown in Fig 9, and histo-
grams of deforestation and degradation class probabilities for each site are shown in Fig 10. In
general, deforestation was mapped with high certainty. Degradation, on the other hand, was
spatially diffuse and class probabilities were generally lower than that of deforestation. One of
the four sites (Figs 9B and 10B) had noticeably lower deforestation probabilities, despite the
fact that an abundance of local expert data confirmed the deforestation events at that site.
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respectively. Local expert reports of deforestation (X) or degradation (+) collected between 2012 and 2015 are overlaid on the maps. The base images are
SPOT5 images (band 2; 2.5m spatial resolution) acquired between 2009 and 2011. Dark shaded areas represent forest in the SPOT5 image, and light areas
are non-forest land cover types (e.g. cropland or wetland). The locations of each tile (A to D) are shown in Fig 1.
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doi:10.1371/journal.pone.0147121.g010

Discussion
Detecting changes using an integrated approach

Our first research question concerned the ability to distinguish deforestation and degradation
in our study area using local expert data in combination with LTS. In the current study, we pro-
vide evidence that deforestation and degradation are indeed separable using a random forest
approach, with OOB class accuracies for both deforestation and degradation on order of distur-
bance accuracies reported previously [13]. Two main factors contributed to this ability. While
a direct comparison between methods and results is difficult, a similar study conducted in the
same area achieved similar accuracies in disturbance monitoring using LTS (73% user’s and
producer’s accuracies) [13]. Similarly to DeVries et al. (2015) [13], we were able to track small-
scale deforestation (Fig 9), with the key difference that our models were able to predict degra-
dation above a 50% probability threshold in many cases. Using NDVI time series and an Ordi-
nary Logistic Regression approach, DeVries et al. (2015) [13] were unable to achieve predicted
class probabilities above 25% for degradation, precluding the mapping of degraded forest with
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certainty. In Fig 9, on the other hand, we demonstrate how degradation can be mapped along-
side deforestation when prediction probabilities are sufficiently high.

Improvements in sensitivity to forest degradation are owed in part to our overall workflow.
Most other remote sensing method-related studies validate an existing method using ground-
data or visually interpreted data sampled from an existing map or result, and indeed use local
expert or community-based monitoring (CBM) data to validate samples selected from existing
results [64]. In this study, however, we used a priori training data to help to develop the method
itself. These existing data underscore the value of the local expert data stream featured in this
study. This bottom-up approach was especially important for examining the extent to which
we could track forest degradation, since local experts were able to identify cases of below-can-
opy disturbances independently of any remote sensing based datasets. Notably, with this
approach we found that SWIR-based indices are consistently more sensitive to changes in our
study area than indices based on the NIR or visible wavelengths, such as NDVI [13].

The flexibility of our bottom-up integration approach can be extended to land cover
changes not explored in this study. We assumed that significant land cover changes occur a
maximum of one time during a 16-year time series. While this assumption is generally reason-
able for Southern Ethiopia, where small-holder agriculture drives deforestation and tends
towards permanent agriculture [65], it does not hold true for other shifting agricultural sys-
tems, where multiple disturbance-recovery cycles would be expected in the time series [66].
Our approach can still be tuned to such cases, whereby in situ forest state observations (“defor-
ested” or “degraded” in this study) can be used to classify such patterns based on their spectral-
temporal signatures.

A continuous local data stream

The local expert data used in this study were generated as a result of a series of field trainings,
local monitoring activities [42] and the development of an Integrated Forest Monitoring Sys-
tem (IFMS) involving local experts (forest rangers) in the Kafa BR. We divided the dataset into
a training and operational phase to represent this process and then compared reference data
from each period with predicted class probabilities derived from iteratively trained random for-
est models. While the median class probabilities between the two phases did not differ substan-
tially, the spread of probabilities showed a marked change from a wide spread in the training
phase (Fig 7, top row) to more narrow distributions in the operational phase (Fig 7, bottom
row). Most importantly, the apparent confusion between degradation and no-change classes in
the training phase was reduced as evidenced by the generally lower no-change probabilities
among degradation reference samples in the operational phase, an important prerequisite to
mapping degradation with a degree of certainty (Fig 9).

Two possible factors may influence the improvements in estimated class probabilities seen
in Fig 7. First, the absolute number of training samples available with subsequent monitoring
phases likely have a favourable effect on the random forest models. DeVries et al. (2015) [13]
found that degradation samples were associated with and without time series breakpoints and
a range of change magnitude values. For this reason, an increase in the number of training
samples provides a better range of degradation “states” from which to train the models, partic-
ularly considering the fact that local experts are more able to identify degradation from the
ground than is possible with optical remote sensing data [42]. Second, it is possible that the
quality of the local expert data increase over time as they become more experienced with the
monitoring tools and receive subsequent follow-up trainings [38, 42]. Notably, the last phase
corresponds with the kick-off of an IFMS, which is intended to provide a platform for local
stakeholders to share local data, experiences and gain access to satellite-based forest change
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alerts. Such a system is expected to spur increased and enhanced local monitoring data, allow-
ing for further development and testing of forest change models.

Mapping deforestation and deforestation

The Kafa BR, like many other areas in the tropics, is characterized by forest mosaic landscapes
and complex deforestation and degradation patterns [13, 16]. Characterizing and mapping
these processes is therefore important to understanding forest changes. The spatial distribution
of deforestation and degradation shows that deforestation and degradation exhibit logical spa-
tial patterns. Previous research in the Kafa BR has shown that deforestation occurs at small
scales [13]. In general, we found that deforestation probabilities were generally quite high in
these change areas, confirming that LTS is a suitable data source for tracking small-scale defor-
estation [13]. Given the fact that the drivers of degradation in the Kafa BR are tightly associated
with deforestation [42], it is not surprising that the areas with relatively high degradation prob-
abilities seem to be associated with deforestation fronts. This mapping approach can thus be
used for at least two key purposes. First, deforestation and especially degradation hotspots can
be used to alert local stakeholders and monitoring experts of areas with possible disturbances
via an interactive monitoring system. Second, these hotspots can be used for activity-based
stratification of the area for measuring biomass, biodiversity or other important ecological
variables.

Despite the quality of the maps produced, it should be noted that deforestation class proba-
bilities were markedly lower at one of our sites than in the other test sites (Fig 9B). This particu-
lar site is located near the edge of the Landsat scene used in this study, a region where data
availability is known to be limiting [13]. It is possible that higher uncertainties in the deforesta-
tion class are a result of a relative lack of observations in the LTS dataset, which can preclude
the fitting of a reliable seasonal model. With a sub-standard season model, the seasonal ampli-
tude of either segment cannot be reliably estimated, causing errors in the deforestation class.
Considerations must therefore be made for data availability when choosing temporal variables
with which to model forest change.

Limitations to the method

A number of limitations to the approach used in this study are discussed in this section, includ-
ing definitions of forest degradation, sampling considerations and the timing of forest changes.
Definition of forest degradation. Making a distinction between deforestation and forest
degradation processes is problematic when dealing with the complex forest change processes
encountered in this study. While we systematically distinguished between these two processes
among local expert disturbance reports, comparison with LTS profiles reveals a more subtle
distinction between these processes. Characterizing a disturbance “event” is complicated by the
fact that deforestation is preceded by several years of forest degradation when driven by subsis-
tence agriculture [13, 42]. Our classification scheme could thus be alternatively viewed as “state
variables”, in which forest pixels at a given point in time were classified as “deforested” or
“degraded” depending on a suite of spectral-temporal variables. Given difficulties with defining
degradation [45], a more practical definition of degradation would be a continuous measurable
value [43]. To this end, our approach could be expanded to include other tools, such as hemi-
spherical photography [67, 68] to provide a continuous measure of canopy cover over moni-
tored sites. Additionally, expanding the local monitoring activities to include regular biomass
measurement campaigns [35, 38] would provide additional continuous forest variables to
describe forest change. Even with a quantitative measure of forest change, however, any
approach using LTS data to map degradation is practically bound by changes to the forest
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canopy. Other forms of forest degradation, including alteration of ecosystem function by lianas
[69-71] or other invasive species [72], are unlikely to be captured by LTS spectral-temporal
covariates if the canopy itself is not sufficiently impacted. In such cases, the in situ data stream
discussed here plays an important role as an indicator of where such types of degradation are
occurring and not being sufficiently detected by LTS data.

Sampling considerations. The data used in the the iterative validation of the random for-
est models were not probabilistically sampled, but were rather based on purposive observations
by local experts. As can be expected from CBM-based data streams, local expert data were lim-
ited to locations that were accessible to the forest rangers in this study. Accessibility limitations
are not only limited to the spatial distribution of local expert observations, but also to the tim-
ing and frequency of observations [42]. Prescribing plot locations, on the other hand, could
lead to the temptation to either approximate site locations (negatively affecting the spatial data
quality) or to forgo monitoring altogether (negatively affecting the data stream). A purposive
sampling design was therefore necessary for preserving the quality and quantity of the local
expert data collected in this study.

Despite drawbacks in sampling and validation, the internal OOB sample provided by the
random forest models provide an alternative robust measure of model accuracy. Additionally,
we demonstrated the ability of continuously acquired local expert data to improve and validate
the random forest models over time (Fig 7). The maps produced by these models (Fig 9) can be
used to support the continuous training and validation of random forest models by directing
local experts to locations with high probability of forest change.

Timing of changes. The timing of change is an important feature of forest monitoring, for
which reference data often consist of visually interpreted imagery [41]. Even though local
experts also record disturbance timing, we did not attempt to model change timing in this study
due especially to uncertainties in the local expert data. These uncertainties arose largely because
of the way in which change types and onset times are defined. Pratihast et al. (2014) [42] found
that temporal discrepancies between change times recorded by local experts and those observed
using very high resolution imagery arose because of two possible differences. First, local rangers
are able to detect understorey degradation before this is visible to satellite sensors, causing a
temporal lag on the side of the satellite data. Second, local experts tended to define deforestation
in terms of land use, implying that preceding degradation activities (e.g. for fuelwood and tim-
ber harvesting or understorey coffee cultivation) were not interpreted as deforestation, causing a
temporal lag on the side of the local experts [42]. To avoid confusion in our change models, we
decided therefore to focus on the thematic dimension of forest change.

Continuity and Consistency of Time Series. The continuity of the Landsat observation
record is the motivation behind the launch of the eighth Landsat sensor in 2013 [73]. Since
some part of the Kafa BR are known to be Landsat data poor [13], the addition of OLI data at
the end of the LTS is seen as a distinct advantage in this study. The spectral resolution
(Table 1) and radiometric resolution (higher bit depth than that of Landsat 7 and 5) are two
major differences between Landsat 8 and its predecessors that were not taken into account in
this study, however. Research has shown that despite a difference in dynamic range of NIR
spectral reflectance values between OLI and ETM+ data, surface reflectance and derived met-
rics do not differ significantly between sensors [74]. Further research into the cross-sensor
comparability and need for normalization for other systems and objectives is still needed, how-
ever. Specifically, significant differences in spectral reflectance could have an impact on class
predictions made in this study.

Overcoming limitations using Integrated Forest Monitoring. Limitations in sampling
and change timing could be addressed by further exploring the idea of an interactive monitor-
ing system between local experts and remote sensing specialists. Future research is aimed at
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demonstrating an operational IFMS for the Kafa BR that is designed to support such ongoing
monitoring activities. Such research should further investigate how the forest change outputs
of our method can be used in an interactive environment to support follow-up monitoring,
management and enforcement, including the temporal dimension of change in the context of a
near real-time interactive monitoring system, for example.

Conclusions

In this study, we have provided the first demonstration of local expert forest monitoring data
integrated with Landsat Time Series (LTS) using a machine learning (random forest) approach.
We found that local expert monitoring data and dense LTS are valuable in training and valida-
tion random forest models to predict deforestation and degradation in complex forest matrix
landscapes. Notably, we showed that as local expert monitoring data continued to be collected
and received, model results improved, demonstrating the potential of an ongoing forest moni-
toring system featuring both data streams. From the models, we determined that the SWIR2
and TCW spectral bands were the most important for differentiating deforestation and degra-
dation, and used temporal covariates based on these bands to produce spatial predictions of
forest change. This study provides a basis on which further research on integrated forest moni-
toring systems, particularly those seeking to integrate community-based monitoring (CBM) or
volunteered geo-information (VGI) data with dense satellite time series. Future research will
follow-up on our approach by incorporating other data sources using data fusion methods
[75], such as Sentinel-2, terrestrial or airborne LiDAR or other airborne remote sensing data-
sets. Furthermore, our approach is flexible to the types of predictions and can include other
types of forest change as needed, such as afforestation and reforestation activities.
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