@’PLOS ‘ ONE

CrossMark

click for updates

E OPEN ACCESS

Citation: Melckenbeeck |, Audenaert P, Michoel T,
Colle D, Pickavet M (2016) An Algorithm to
Automatically Generate the Combinatorial Orbit
Counting Equations. PLoS ONE 11(1): e0147078.
doi:10.1371/journal.pone.0147078

Editor: Yongtang Shi, Nankai University, CHINA
Received: September 18, 2015

Accepted: December 27, 2015

Published: January 21, 2016

Copyright: © 2016 Melckenbeeck et al. This is an
open access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: Code can be found at
https://github.com/IneMelckenbeeck/equation-
generator and https:/github.com/IneMelckenbeeck/
graphlet-naming.

Funding: IM, PA, DC and MP are funded by UGhent
—iMinds. TM is supported by Roslin Institute
Strategic Grant funding from the BBSRC (BB/
J004235/1 and BB/M020053/1). The funders had no
role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

An Algorithm to Automatically Generate the
Combinatorial Orbit Counting Equations

Ine Melckenbeeck' *, Pieter Audenaert!, Tom Michoel?, Didier Colle', Mario Pickavet'

1 Department of Information Technology (INTEC), Ghent University-iMinds, Ghent, Belgium, 2 The Roslin
Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, United Kingdom

* ine.melckenbeeck @intec.ugent.be

Abstract

Graphlets are small subgraphs, usually containing up to five vertices, that can be found in a
larger graph. Identification of the graphlets that a vertex in an explored graph touches can
provide useful information about the local structure of the graph around that vertex. Actually
finding all graphlets in a large graph can be time-consuming, however. As the graphlets
grow in size, more different graphlets emerge and the time needed to find each

graphlet also scales up. If it is not needed to find each instance of each graphlet, but know-
ing the number of graphlets touching each node of the graph suffices, the problem is less
hard. Previous research shows a way to simplify counting the graphlets: instead of looking
for the graphlets needed, smaller graphlets are searched, as well as the number of common
neighbors of vertices. Solving a system of equations then gives the number of times a vertex
is part of each graphlet of the desired size. However, until now, equations only exist to count
graphlets with 4 or 5 nodes. In this paper, two new techniques are presented. The first
allows to generate the equations needed in an automatic way. This eliminates the tedious
work needed to do so manually each time an extra node is added to the graphlets. The tech-
nique is independent on the number of nodes in the graphlets and can thus be used to
count larger graphlets than previously possible. The second technique gives all graphlets a
unique ordering which is easily extended to name graphlets of any size. Both techniques
were used to generate equations to count graphlets with 4, 5 and 6 vertices, which extends
all previous results. Code can be found at https://github.com/IneMelckenbeeck/equation-
generator and https://github.com/IneMelckenbeeck/graphlet-naming.

Introduction

A multitude of domains use graphs as a modeling tool. Obvious uses include the modeling of
networks, such as social, communications and transport networks. Plenty of metrics exist to
characterize them, for instance lengths of shortest paths or size of clusters of vertices. In recent
years, though, graphlets are gaining more popularity as a method of characterizing graphs.
The following symbols will be used throughout this paper for clarity. A graph G consists of
a set of vertices, called V, and a set of edges E, so that each edge connects two vertices. As such,

PLOS ONE | DOI:10.1371/journal.pone.0147078 January 21,2016

1/19

https://github.com/IneMelckenbeeck/equation-generator
https://github.com/IneMelckenbeeck/equation-generator
https://github.com/IneMelckenbeeck/graphlet-naming
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0147078&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/IneMelckenbeeck/equation-generator
https://github.com/IneMelckenbeeck/equation-generator
https://github.com/IneMelckenbeeck/graphlet-naming
https://github.com/IneMelckenbeeck/graphlet-naming

@’PLOS ‘ ONE

Automatically Generating Orbit Counting Equations

an edge can be notated by listing the couple of vertices it connects:
e={xy}:xyeV(G). (1)
The graph is notated as
G=(V,E). (2)

The number of vertices in a graph is called its order, the number of edges its size. Isomorphisms
between two graphs are bijections which map one graph’s vertices to the other’s so that both
edge sets are the same. The set of isomorphisms between two graphs G and H is given by

Iso(G,H) ={f : V(G) — V(H)|{u,v} € E(G) & {f(u),f(v)} € E(H)}. (3)

Graphs are isomorphic if they have at least one isomorphism: G ~ H < Iso(G, H)#£({. Isomor-
phisms from a graph to itself are called automorphisms:

Aut(G) = Iso(G, G). (4)

Przulj, Corneil and Jurisica define graphlets in [1] as connected graphs with a small number
of vertices. All of these graphlets containing up to order 5 can be seen in Fig 1. The x™ graphlet
in this numbering will be called graphlet x, all graphlets of order n are called n-graphlets. An
induced subgraph of a graph is defined as a subgraph containing a collection of vertices and all
edges between those vertices. A graph H is an induced subgraph of graph G = (V, E) if

H= (V' CV,{{ab}cEabeV} 5)

As graphlets are themselves graphs, a graph in which graphlets are searched will further be
called the explored graph. Specific induced subgraphs can be searched within an explored
graph, either listing each occurrence of the subgraph or simply counting them. When these
induced subgraphs of the explored graph are isomorphic to a graphlet, all vertices in such an
induced subgraph are said to touch that graphlet. The induced subgraph itself is then also said
to be an instance of that graphlet.

The vertices of a graphlet can be subdivided into different orbits [2], which are sets of verti-
ces which are mapped onto each other by the graphlet’s automorphisms. The orbit of a vertex x
is given by

Orb(x) = {y € V(G)|3g € Aut(G) : y = g(x)}- (6)

In Fig 1, vertices in the same orbit have the same color. Przulj [2] ordered the orbits and gave
each of them a number for easy identification. These numbers can also be seen in Fig 1. Simi-
larly to graphlets, the orbit with number n will be called orbit n and vertices of an explored
graph touching a graphlet are also said to touch the orbit. The graphlet degree distribution
(GDD) for a specific orbit 0 and a certain number k is defined as the number of vertices in the
explored graph that touch orbit o exactly k times [2]. These GDDs are used to obtain informa-
tion about the local structure in graphs.

An example of a graphlet can be seen in Fig 2. This graphlet will be used to demonstrate dif-
ferent concepts in this article. In Fig 1, it can be seen that this graphlet is graphlet 18. No other
vertex is symmetric to the middle one, which alone forms orbit 44. The left pair of black verti-
ces can be swapped without the structure of the graphlet changing, as can the right pair. Both
pairs can likewise be interchanged without structural change. Therefore, all of these vertices
belong to the same orbit, which is called orbit 43.

The more vertices are allowed in a graphlet, the more different graphlets there are. Within a
simple graph with n vertices, there are () possible edges, which can independently be present

PLOS ONE | DOI:10.1371/journal.pone.0147078 January 21,2016 2/19

el e
@ ' PLOS ‘ ONE Automatically Generating Orbit Counting Equations

3-node graphlets 3 4-node graphlets 6 8 013 12 14
9 11
1 2 4 5 7
——o—+ ——o—o0—+
1 2 3 4 5 6 7 8
5-node graphlets 19 22 31 32

24 26 29
21 20 18 25 27 28 30
23 33
15 16 17

9 10 11 12 13 14
34
50
37 40 43 48 (53 51
35 38< >§6 39 42 41 45 47< ‘ >46 ‘ 52
15 16 17 18 19 20 21
55 57 63 68 7
6 67 66 2
PP AN X <<
59 61
22 23 24 25 26 27 28 29

Fig 1. All graphlets up to order 5. The numbers in normal font are Przulj’s graphlet ordering. Within each graphlet, the vertices with equal color are in the
same orbit. The numbers in italic font are Przulj’s orbit ordering.

doi:10.1371/journal.pone.0147078.g001

or absent. The number of possible graphs on n vertices is therefore O (2(2)) . This is a loose

upper bound for the number of possible graphlets, because not all of these graphs will be con-
nected. Many of these graphlets will be isomorphic to each other, further reducing the number
of actual graphlets.

The actual number of graphlets containing up to 19 vertices can be found at the Online
Encyclopedia of Integer Sequences [3] and is shown in Table 1. Fig 3 shows the logarithm of
the number of graphlets in function of the number of vertices. These are fitted by a power func-
tion. Its coefficient of determination is 0.9989, meaning it is a good fit for the number of graph-
lets of order less than 20. The number of graphlets of a certain order grows exponentially with
growing order, therefore no algorithms running over all possible graphlets of a certain order
can have a complexity that is smaller than exponential in the number of vertices in a graphlet.

Motifs are a concept related to, but distinct from graphlets. Motifs are any connected sub-
graphs of a larger graph, not only induced subgraphs, that occur statistically significantly more

PLOS ONE | DOI:10.1371/journal.pone.0147078 January 21,2016 3/19

@’PLOS ‘ ONE

Automatically Generating Orbit Counting Equations

Fig 2. Graphlet 18. The black outer vertices form orbit 43, the white inner vertex is orbit 44.
doi:10.1371/journal.pone.0147078.9002

Table 1. The number of graphlets with n nodes.

Order Number of graphlets
1 1
2 1
3 2
4 6
5 21
6 112
7 853
8 11117
9 261080

10 11716571

doi:10.1371/journal.pone.0147078.1001

in the explored graph, compared to what would be expected in a random graph of equal size
and order. The difference between motifs and graphlets is shown in Fig 4: if the first graph is a
motif, all of the other graphs are different instances of it; if it is a graphlet, none of the others
are an instance of it. A more formal definition: graph G is an instance of motif M if and only if

3 - V(M) — V(G){u,v} € E(M) = {f(u),f(v)} € E(G). (7)

Since only certain significant subgraphs are required, not all motifs are counted. ISMAGS [4, 5]
is one motif finding algorithm which lists each occurrence of a specific motif within an
explored graph quickly. As there is no distinction between which graphlets are ‘significant’ and

PLOS ONE | DOI:10.1371/journal.pone.0147078 January 21,2016 4/19

el e
@ ' PLOS ‘ ONE Automatically Generating Orbit Counting Equations

40

35

30

25

20

log(N_graphlets)

15

10

0 2 4 6 8 10 12 14 16 18 20
Order

Fig 3. The number of graphlets for each order. The logarithm of the number of graphlets is plotted against the number of vertices in each graphlet. The
curve is an exponential fit: f(n) = 0.022n%°C, which has a coefficient of determination RZ = 0.9989.

doi:10.1371/journal.pone.0147078.9003

Fig 4. A motif isomorphic to graphlet 18. All other graphs contain instances of this motif, but would not if it were a graphlet. This is not a complete list of
possible instances of this motif.

doi:10.1371/journal.pone.0147078.9004

which not, counting all graphlets at the same time can be more useful than counting each of
them apart.

ORCA [6] uses combinatorial calculations to simplify computing the number of times each
vertex of the explored graph touches each orbit. It counts the number of times each vertex
touches each orbit without actually finding the corresponding graphlets. It calculates this for
all orbits of a certain order at the same time. Exploring the different ways a new vertex can be
added to a graphlet, a system of equations was composed that reduces counting graphlets to

PLOS ONE | DOI:10.1371/journal.pone.0147078 January 21,2016 5/19

@’PLOS ‘ ONE

Automatically Generating Orbit Counting Equations

finding graphlets of smaller order and finding common neighbors of vertices. This way, if one
wants to know all GDDs of order n, it suffices to find all graphlets of order n-1 and solve the
system of equations for each vertex. This greatly improves the time needed to find those
graphlets.

ORCA, however, has the shortcoming that is is not easily scaleable. Generally, connected
networks with up to 5 vertices are considered graphlets. This is due to the fact that the number
of different graphlets increases quickly with each added vertex, though there is no hard limit
on the number of vertices in a graphlet. ORCA’s equations were composed by hand, meaning
that anyone wanting to use graphlets of a larger order would need to compose a new system of
equations from scratch.

In this paper, a procedure to automatically generate ORCA’s equations for any order is pre-
sented. Step by step, the theory that will allow the automatic counting of graphlets will be built.
In order to count the graphlets, an expandable naming system for graphlets is introduced. This
naming system copies some features from Przulj’s commonly used naming system, but it is
more adapted to automatic expansion to graphlets of larger order.

Methods
Representing graphs, graphlets and orbits

Graphs are collections of vertices and edges, where each edge must connect exactly two verti-
ces, but each vertex can connect to any number of edges. As such, graphs can be represented
just like that: a set of vertices and a set of edges. Within a graphlet, there is no real reason to
name the vertices anything in particular. It suffices to save the number of vertices (1), thereby
implying the vertices are called 0, 1, . . ., n-1. As each edge connects two vertices, it can be rep-
resented by listing the indices of two vertices. One possible set of edges corresponding to
graphlet 18 is:

{{0,1},{0,2},{0,3}, {0, 4}, {1,4}, {2, 3}}. (8)

This graphlet can be seen in Fig 5.

As G ~ H & Iso(G, H)#D, when checking isomorphisms it is necessary to check whether
any permutation of the vertices of one graphlet changes its edge set into the other’s edge set.
Both graphlets’ vertices are named identically, so it is actually needed to check whether any of
one graphlet’s automorphisms creates an edge set which is identical to the other’s. To avoid
recalculation, all different sets of edges obtained by these automorphisms are also saved in the
graphlet object. All possible edge sets for graphlet 18 that are generated are shown in Table 2.

When permuting the vertices, the orbits of the graphlet can also be calculated. When inter-
changing some vertices does not change the edge set of a graphlet, an automorphism is found.
All vertices that were changed must then belong to the same orbit.

Orbit representatives. Using a good way to represent and identify orbits can simplify the
problem greatly. An orbit is a set of vertices from a graphlet which can be mapped onto each
other by an automorphism of the graphlet. As an orbit is meaningless without its graphlet, an
orbit can be represented as a graphlet with one marked vertex, which will be excluded when-
ever the vertices of the graphlet are permuted. This graphlet will then be called an orbit repre-
sentative, as the marked vertex will be a representative for all vertices in the same orbit. An
orbit representative will be noted as G(x), with x € V the marked vertex. For ease of use, the
marked vertex is called vertex 0. The formula for the set of isomorphisms between two orbit

PLOS ONE | DOI:10.1371/journal.pone.0147078 January 21,2016 6/19

@’PLOS ‘ ONE

Automatically Generating Orbit Counting Equations

3

Fig 5. Graphlet 18 with numbered vertices. The graphlet has all edges in Eq (8).

doi:10.1371/journal.pone.0147078.g005

4

Table 2. All edge sets that are isomorphic to graphlet 18.

doi:10.1371/journal.pone.0147078.t002

{{0.1}, {0,2}, {0,3}, {0,4}, {1.2}, {3,4}}
{{0.1}, {0,2}, {0,3}, {0.4}, {1.3}, {2.4}}
{{0.1}, {0,2}, {0,3}, {0.4}, {1.4}, {2,3}}
{{0,1},{0,2}, {1,2}, {1,3}, {1.4}, {3,4}}
{{0.1},{0,3}, {1,2}, {1.3}, {1.4}, {2.4}}
{{0,1}, {0.4}, {1,2}, {1,3}, {1.4}, {2,3}}
{{0,1},{0,2}, {1,2}, {2,3}, {2,4}, {3,4}}
{{0,2}, {0,3}, {1,2}, {1,4}, {2,3}, {2,4}}
{{0.2}, {0,4}, {1,2}, {1,3}, {2,3}, {2,4}}
{{0.1}, {0,3}, {1,3}, {2,3}, {2,4}, {3,4}}
{{0.2}, {0,3}, {1,3}, {1,4}, {2,3}, {3,4}}
{{0.3}, {0.4}, {1,2}, {1.3}, {2,3}, {3,4}}
{{0.1}, {0,4}, {1,4}, {2,3}, {2,4}, {3,4}}
{{0.2}, {0,4}, {1,3}, {1.4}, {2,4}, {3,4}}
{{0.3}, {0.4}, {1,2}, {1.4}, {2.4}, {3.4}}

PLOS ONE | DOI:10.1371/journal.pone.0147078 January 21,2016

7/19

el e
@ ' PLOS ‘ ONE Automatically Generating Orbit Counting Equations

3 4

Fig 6. Orbit representative 44. The central vertex is marked and called vertex 0, to indicate that it cannot be
interchanged with any other vertex.

doi:10.1371/journal.pone.0147078.9g006

representatives then becomes:

Lso(G(x), H(y)) = {f:V(G(x)) = V(H(y)){u,v} € E(G) &
{f(w),f(v)} € E(H) A f(x) = y}.

Indeed, this way two orbit representatives are equal if and only if the list of edges is equal under
some permutation of their vertices, excluding vertex 0. When talking about an orbit representa-

©)

tive, that representative will get the same name as the orbit it represents. For example, a repre-
sentative for orbit 44 will be called orbit representative 44. An illustration of this orbit
representative can be seen in Fig 6. The isomorphic edge sets can be seen in Table 3.

The other action permutations are used for, the calculation of orbits, can also be used within
the orbit representatives. The definition of automorphisms and orbits are analogous to before,

Aut(G(n)) = Iso(G(n), G(n)) (10)

Orb(x) = {y € V(G(n))|3g € Aut(G(n)) : y = g(x)} (11)

Table 3. All edge sets that are isomorphic to orbit representative 44.

{{0,1}, {0,2}, {0,3}, {0,4}, {1.2}, {3,4}}
{{0,1}, {0,2}, {0,3}, {0,4}, {1.3}, {2,4}}
{{0,1}, {0,2}, {0,3}, {0,4}, {1.4}, {2,3}}

doi:10.1371/journal.pone.0147078.t003

PLOS ONE | DOI:10.1371/journal.pone.0147078 January 21,2016 8/19

el e
@ ' PLOS ‘ ONE Automatically Generating Orbit Counting Equations

4 3

Fig 7. Orbit representative 43. Vertex 0 is marked and cannot be permuted. Vertices colored the same
shade of gray are in the same suborbit.

doi:10.1371/journal.pone.0147078.g007

but the changed definition of an isomorphism also changes the outcome. The orbits found in
this way are different from the orbits found when all vertices are included in the permutations.
As the orbits will be subdivided into smaller orbits, these groups will be called suborbits. These
suborbits will come in handy when composing the equations, as they contain groups of vertices
within the orbit representative that are equivalent as seen from the marked node.

The suborbits of orbit representative 44 are the same as the orbits of graphlet 18: in Fig 6 the
central, marked vertex is one suborbit, the other vertices constitute another. In orbit represen-
tative 43, the suborbits are different, despite both orbit representatives being part of the same
graphlet. In Fig 7, the upper left vertex is marked and called vertex 0, and cannot be inter-
changed with any other vertex during permutations. Vertex 1 is still in an orbit alone, but not
all other vertices are together in an orbit. Vertex 0 is never interchanged, so it is the only vertex
in its orbit by definition. No matter which of the allowed automorphisms is used, vertex 4 can-
not be mapped on any other vertex, putting it in its own orbit as well. Vertices 2 and 3 can still
be swapped, so they belong in the same orbit.

In [6], equations are composed by considering different ways vertices can be added to
graphlets. Likewise, in creating the equations, vertices will be added to orbit representatives.
This will be noted as follows:

G(n) U {{x,v,},{x,v,},...|v, € V(G(n))} = {V(G(n))Ux,

(12)
E(G(n)) U {{x, i} {x,ma}, - 1}

This means a new vertex x is added to the graphlet, along with a set of edges connecting the

PLOS ONE | DOI:10.1371/journal.pone.0147078 January 21,2016 9/19

el e
@ ' PLOS ‘ ONE Automatically Generating Orbit Counting Equations

X X
a b a 9 b
/
\\b/ /
y
) (B) ©

Fig 8. Construction of an equation. The white vertex is the orbit representative’s marked vertex, black
vertices were present in the original orbit representative and the gray vertex is the new vertex. Full lines
indicate the original edges, dashed lines the edges added as part of the common neighbors and dotted lines
the vertices that are added afterwards. (A) G(x)~ Orbit representative 3. (B) G(x)U{{y, a}, {y, b}}~ Orbit
representative 12. (C) G(x)U{{y, a}, {y, b}, {y, x}}~ Orbit representative 14.

doi:10.1371/journal.pone.0147078.9g008

new vertex to some of the graphlet’s other vertices. Likewise, edges can be added to the graph-
let:

Gn) U {{vi v} (v vid, ooy, € V(G(n))} = {V(G(n), (13)
E(G(n)) U{{vi, o}, {vy v}y 1

These new edges then each connect two vertices that were already present in the graphlet.

Two examples of equation construction

Now that the needed theory is shown, the equations to count graphlets can be composed. The
following two examples illustrate how an equation can be constructed. Both show an orbit rep-
resentative in a 3-graphlet to which an extra vertex is added. When the vertices being part of
such an orbit representative can be identified within an explored graph, adding common
neighbors of those vertices to the 3-graphlets forms various 4-graphlets.

A simple example. In Fig 8, the construction of an equation is shown. Panel A shows orbit
representative 3 (seen in Fig 1), to which a new vertex will be added. In panel B, the new vertex
is added, with edges to vertices a and b. These edges can be chosen at will; connecting the new
vertex to a different set of neighbors results in a different equation. In panel C, it is additionally
connected to vertex x, after which there are no more vertices it can be connected to.

As such, all orbits involved in the construction of this equation are known. If a vertex x
within an explored graph touches orbit 3, and the other two vertices of that orbit representative
have a certain number of common neighbors, these common neighbors will transform orbit 3
either in orbit 12 or 14. However, vertex x is itself a common neighbor of a and b, as well. This
means that x will also be counted when searching for the common neighbors of those vertices
within the explored graph. Therefore, the actual number of common neighbors available to cre-
ate orbits 12 and 14 will be one less.

There still is one catch: to avoid counting graphlets twice, the vertices a and b will have a
unique ordering. As they are in the same suborbit, they are interchangeable and if no unique
ordering is imposed on the indices of the vertices mapped on them while finding the graphlets,
each instance of the graphlet will be found twice. Therefore, a and b need a fixed ordering. No
such ordering is imposed on the newly added vertex, however. So, assume we are looking at a
graph in which vertices with indices 0, 1, 2, 3 form orbit representative 14. Orbit representative
3 is formed by vertices 0, 1, 2. Vertices 1 and 2 have common neighbors 0 and 3, of which we

PLOS ONE | DOI:10.1371/journal.pone.0147078 January 21,2016 10/19

el e
@ ' PLOS ‘ ONE Automatically Generating Orbit Counting Equations

(E) Q) G) (H)

Fig 9. Use of an equation. (A) The explored graph in which Eq (14) is tested. Vertex x, colored white, is the
inspected vertex. (B-F) The graph is shown in dotted lines, edges in full lines show all different graphlets
where vertex x touches orbit 3. Vertices on a gray background are common neighbors of both other vertices
of those graphlets. (G-H) The two graphlets in which vertex x touches orbit 14.

doi:10.1371/journal.pone.0147078.g009

discard one. Likewise, vertices 0, 1, 3 form orbit representative 3, in which we can find common
vertex 2 and discard 0. The same story applies to vertices 0, 2, 3. No further orbit representa-
tives 3 are found because of the ordering imposed on vertex a and b. However, the same orbit
representative was counted three times. To compensate for this, the term containing orbit 14
will need to be multiplied by 3.

Now all possible symmetrical situations have been explored. The resulting equation reads:

0,, + 30, = Z (c(a,b) — 1) (14)

{x.a,b}=P3

in which 0,, and 0,, are the number of times a chosen vertex x in the explored graph touches
orbits 12 and 14, respectively. The range of the sum, {x, a, b} = P;, means all sets of vertices that
form a graphlet in which node x touches orbit 3. In this case, these are all instances of graphlet
2 that are touched by node x. In less symmetric graphlets, only the instances in which node x
touches the specific orbit are counted. The number of common neighbors of a and b is notated
as c(a, b).

As a test for Eq (14), Fig 9 shows how the equation would be solved in a small graph, shown
in panel A. Vertex x is the inspected vertex. The right-hand side of Eq (14) indicates that all
graphlets in which vertex x touches orbit 3 must be listed. Panels B to F show all different trian-
gles vertex x touches, thereby touching orbit 3. Furthermore, all common neighbors of the
other two vertices in the triangle have a gray background. As can be seen, panels B to E all
show 2 common neighbors, while panel F shows three. As the right-hand side of the equation
dictates that these should all be subtracted by 1, then added, the right-hand side sums up to 6.

PLOS ONE | DOI:10.1371/journal.pone.0147078 January 21,2016 11/19

@’PLOS ‘ ONE

Automatically Generating Orbit Counting Equations

X X X
| |
| |
| |
a b a | b a | @b
A NS
N N\
[o
y y
(A) B) ©
X X
| |
| |
a | b a @ | b
|/ O R
I // I //
¢ ¢
y y
D) (E)

Fig 10. Construction of an equation. (A) G(x)~ Orbit representative 2. (B) G'(x) = G(x)U{{y, x}, {y, a}}~ Orbit
representative 11. (C) G’ (x)U{y, b}~ Orbit representative 13. (D) G" (x) = G(x)U{{y, x}, {y, b}}~ Orbit
representative 11. (E) G” (x)U{y, a} = G'(x)U{y, b}.

doi:10.1371/journal.pone.0147078.g010

The number of times vertex a touches orbit 14 is 2, as can be seen in Fig 9, panel G and H.
Plugging this value in Eq (14) gives

0y, + 30, = Y (ca,b) — 1) (15)

Py
0,+3%x2=6 (16)

0, =0 (17)

meaning vertex a does not touch orbit 12. Indeed, vertex a has an edge to every other vertex in
the graphlet, which means it can not touch orbit 12.

A more complicated example. A second example shows another complication. Fig 10
shows how orbit representatives 11 and 13 are created by adding a vertex to orbit representative
2.In panel A, the new vertex is connected to vertices x and a of orbit representative 2, creating
orbit representative 11. However, this is not the only way this orbit representative can be cre-
ated from orbit representative 2. Adding a new vertex connected to vertices x and b, as is done
in panel C, also creates a valid orbit representative 11. Indeed, because vertices a and b are in
the same suborbit of orbit representative 2, they will have a unique ordering. In orbit represen-
tative 11, they are not in the same suborbit, so they need to be considered separately. Therefore,
the sum in the right-hand side of the equation will contain two different terms: one for either
way the new vertex can be connected.

As in the previous example, the added vertex shares a suborbit of orbit representative 11
with another vertex. Therefore, the term counting orbit representative 11 needs to be multi-
plied by 2.

PLOS ONE | DOI:10.1371/journal.pone.0147078 January 21,2016 12/19

el e
@ ' PLOS ‘ ONE Automatically Generating Orbit Counting Equations

When the new vertex is additionally connected to vertex b, as is done in panel B, orbit repre-
sentative 13 is created. This way, the added vertex is not in the same suborbit as any other ver-
tex anymore. Similarly, the orbit representative 11 in panel C becomes orbit representative 13
in panel D with an additional edge to vertex a. Now those two orbit representatives are exactly
the same. In other words, any orbit representatives 13 are counted twice in this way. The solu-
tion is to multiply the orbit representative 13 term by 2 to compensate.

The previous reasoning gives rise to the equation:

20, + 20, = Zc(x, a) + c(x,b) (18)
Py

Generating the equations

Now the reasoning of the previous section can be generalized. An orbit representative in a (n-
1)-graphlet serves as base to construct some equations for counting vertices touching orbits in
n-graphlets. A new vertex is added to the orbit representative, having edges to a set of some,
but not all, other vertices in the orbit representative. Then, all possible combinations of other
edges are added to the orbit representative. Each different orbit representative which is created
in this way will appear in a term in the left-hand side of the equation. Even if multiple isomor-
phic orbit representatives are created multiple times, this only creates a single term. This is due
to the fact that those different situations will all be seen as the same orbit when counting how
many times a vertex within an explored graph touches an orbit.

function cenerateEQuaTion (OrbitRepresentative start, Set (Vertex) neighbors)
Set(OrbitRepresentative) lhsOrbits : =0
for all Set(Vertex) s in (start.vertices—neighbors) do
Set (Vertex) connections :=neighborsU s
1lhsOrbits :=1hsOrbitsU (start Uconnections)

end for
lhs :=0
rhs :=0

forallOrbitRepresentative repin lhsOrbits do
lhs :=1hs + rep * LusFactor (rep)
end for
rhsSum :=start
rhs :=rhs + neighbors
rhs :=rhs—umusTerM (start, neighbors)
return lhs = rhs
end function

To determine the factor by which each term must be multiplied, the suborbits of that orbit
representative are sought. Then the term is multiplied by the size of the suborbit in which the
new vertex is located. After all, all vertices from that suborbit, except the new one, come from
the same suborbit in the smaller graphlet. Then, it can be assumed that they have a fixed order
when the orbit representative is found in the graph. The new vertex, however, is not required
to be in any particular position in this order. Therefore, it may be in any of the n positions, and
the term for each orbit representative must be multiplied by its size.

function tusFactor (OrbitRepresentative rep)
Calculate rep’ s suborbits
return size of the last vertex’ s suborbit
end function

PLOS ONE | DOI:10.1371/journal.pone.0147078 January 21,2016 13/19

@’PLOS ‘ ONE

Automatically Generating Orbit Counting Equations

The right-hand side is constructed purely from the original orbit representative and the ver-
tices that are connected to the new vertex. Evidently they are seen in the orbit representative
over which the sum must be made and the term containing the common neighbors, respec-
tively. Potential negative terms in the sum are equal to the number of vertices satisfying the
conditions imposed by the common neighbor term. For instance, if an equation has a term
specifying the common neighbors of a and b, which have 2 common neighbors in the original
graphlet, the negative term should be -2.

function mmnusTery (OrbitRepresentative start, Set (Vertex) neighbors)
result :=0
forallVertexnl instart.verticesdo
connected := true
forallVertexn2 inneighborsdo
if{ nl, n2} ¢ start.edges then
connected :=false
endif
end for
if connected then
result :=result+1
endif
end for
return result
end function

This entire procedure is performed for all possible combinations of common neighbors of
vertices in the original graphlet. When two equations’ orbit representatives are all equal, the sit-
uation of the second example applies and the two equations describe symmetrical ways the
same orbit representatives can be created from a starting graphlet. These equations then need
to be merged. This means a new equation is created containing the same orbit representatives,
with the sum of both equations’ right-hand sides as the new equation’s right-hand side. Also,
when a corresponding pair of orbit representatives in the left-hand sides of the two equations
has identical lists of edges, their multiplication factors need to be added to avoid counting the
same orbit representative twice.

functionweree (Equationel, Equatione?2)

lhs :=0
fori=0toel.lhs.sizedo
ifel.lhs.cerOrBIT (i) ==e2.1lhs.cetOrBIT (1) then
lhs :=lhs+el.lhs.cerTerv (1) +e2.1lhs.cerTErM (1)
else
lhs :=el.lhs.cerTerRM (1)
endif
end for

rhs :=el.rhs +e2.rhs
return lhs = rhs
end function

Selection of a linearly independent system of equations

As is mentioned in Hodevar’s paper, the method used here to generate the equations gives rise
to a large amount of linearly dependent equations. For instance: 114 equations are generated to
enable counting orbits of 5-graphlets. There are only 58 orbits in 5-graphlets, and one of them
still needs to be counted [6], which means 57 equations are needed. As a result, the need arises
to find a criterium to select a linearly independent set of equations.

PLOS ONE | DOI:10.1371/journal.pone.0147078 January 21,2016 14/19

@’PLOS ‘ ONE

Automatically Generating Orbit Counting Equations

To each orbit representative, except the sole orbit of the complete graphlet, an edge can be
added, making another orbit representative. Graphlets, and by extension their orbits, are
ordered by number of edges in Przulj’s system; therefore, adding an edge increases the number
of the orbit. Each equation relates orbits that are created by adding a new vertex and its edges
to a smaller graphlet, of which some must be present, while the others may or may not be pres-
ent. As a result, the orbit in which only the obligatory edges are present will have the lowest
number in Przulj’s identification.

This observation shows that each orbit will be the orbit with the smallest number in at least
one equation, with exception of the complete graphlet. Therefore, creating a linearly indepen-
dent system boils down to selecting such an equation for each graphlet. These equations will
then be linearly independent and straightforward to solve. Indeed, to solve an equation, it suf-
fices to solve the equations in descending order and fill in the solutions to the previous equa-
tions; no further reduction of the system is needed to solve it.

function ceneraTEEQUATIONS (int size)
List (Equation) equations
forallOrbitRepresentative repof size—1 do
for all Set (Vertex)sing.verticesdo
el = generaTEEQUATION (Xep, s)

if equations[el.lowestOrbit] ==null then
equations[el.lowestOrbit] :=el
elseif equations[el.lowestOrbit] .graphlets==el.graphlets then
equations|[el.lowestOrbit] :=wmerce (el,equations[el.lowestOrbit])
endif
end for
end for

return equations
end function

Going to higher order graphlets

The presented method can generate equations for graphlets of any order. However, the method
used to find a linearly independent set, as well as the actual interpretation of the equations,
need an actual naming scheme for the generated orbits. Like done before, we will give each
graphlet and orbit a number. Unlike the graphlet numbering used before, however, we will try
to generate the ordering of the graphlets automatically. This way, the numbering can be
extended to larger graphlets without the need to change the code.

The criteria for selection of an independent system of equations impose a partial ordering
on the orbits’ numbers. If one orbit can be created by adding an edge to another, the first must
have a higher number than the second. Orbits that cannot be created from each other by only
adding or only removing edges do not need a particular ordering. To simplify matters, first an
ordering for graphlets will be made, then the orbits within each graphlet will be ordered.

Choosing to apply intuitive rules, that can be easily checked at first sight by an observer,
translates poorly to larger graphlets. For example, both 6-graphlets in Fig 11 have six vertices
of degree 3, which are in a single orbit, but the graphlets themselves are different. The differ-
ence can easily be spotted: the prism graphlet (panel A) contains two triangles, while K3 5
(panel B) does not. As such, they cannot be discriminated on basis of number of edges, degree
of vertices, orbits or which type of vertices are connected. One can imagine this kind of prob-
lem will only get worse with increasing order.

To avoid such problems, graphlets are represented in triangular matrix form. In matrix
form, an n-graphlet is represented as an #n+n matrix. The value at row r and column ¢ is 1 if

PLOS ONE | DOI:10.1371/journal.pone.0147078 January 21,2016 15/19

@’PLOS ‘ ONE

Automatically Generating Orbit Counting Equations

Fig 11. Two 6-graphlets. All of both graphlets’ vertices have degree 3, and each graphlet has one orbit
containing all of its vertices. (A) This graphlet’s edges and vertices correspond to the edges and vertices in a
triangular prism. (B) The complete bipartite graph K3 3.

doi:10.1371/journal.pone.0147078.9011

there is an edge between vertex r and ¢ and 0 if there is not. In Fig 12, the matrix corresponding
to the graphlet in Fig 5 can be seen. As graphlets are undirected, the matrix is symmetrical.
Additionally, all values on the primary diagonal are 0 because no self-loops are allowed. There-
fore, we are able to discard the diagonal and every value above it, reducing the amount of values
that have to be saved for each graphlet. The result of this operation can be seen in the second
matrix in Fig 12. Then, all values in the triangular matrix are saved in a single string. This is
done for all possible permutations of the vertices of a graphlet, and the string that is lexico-
graphically smallest is kept. This string is a unique identifier for any graphlet.

If such a string is made for each graphlet of a certain order, and those strings are sorted lexi-
cographically, a unique ordering for the graphlets is established. Any added edge will change a
0 into a 1, which will make the string lexicographically larger, and the new graphlet’s number
will therefore be larger than the old one’s. This means that using this ordering to number the
graphlets gives rise to a numbering following the partial ordering that was required.

In practice, the ordering was made by generating all possible string forms of graphlets of a
certain size in order with a binary counter. These are then converted to actual graphlets and
added to an ordered set so they keep their ordering but duplicates are not allowed.

The orbits are numbered in the order that their vertices first appear in the lexicographically
smallest string representation. Vertex 0 in this representation will always be in the first orbit,
vertex 1 can either be in the same orbit or start orbit 2, and so on.

1 |

Fig 12. Matrix form, triangular matrix form and string form of graphlet 18. These forms correspond to
graphlet 18 as it is shown in Fig 5. The string form is not the lexicographically smallest possible for this
graphlet.

doi:10.1371/journal.pone.0147078.9012

S =

[1101011100]

_ O O
—_

O O =

= =

=)

= == =0
S O O
O =

o

PLOS ONE | DOI:10.1371/journal.pone.0147078 January 21,2016 16/19

@’PLOS ‘ ONE

Automatically Generating Orbit Counting Equations

Results and Discussion
Equations

The equations generated for 4-graphlets can be found in S1 Equations. They differ from the
ones in [6], because here new vertices cannot be added in a path containing two already present
vertices. Instead, any neighbor of any vertex already present can be added. However, both sets
of equations are equivalent. For instance, the two equations:

0, + 204 + 20, + 20,, = Z(C(b) -1) (19)

204 + 20,, = Zc(a, b) (20)

can be subtracted from each other, resulting in

0,+20,= Y (c(b) — cla,b) = 1) = > pla.b) o)

Py

where p(a, b) is the number of vertices that form 3-vertex paths starting with a and b, i.e. all
neighbors of b but not a, except a itself. This equation is the corresponding equation that
appears in [6].

Similarly, the equations for 5-graphlets, which can be found in S2 Equations, are different
from the ones in [6]. This is purely due to the process of selecting a linearly independent sys-
tem. When no such selection is made, a large, linearly dependent system of equations is gener-
ated, which does contain all of the equations in [6].

The new equations for 6-graphlets are shown in S3 Equations. The algorithm to generate
the equations is order-independent and can generate equations to facilitate counting of graph-
lets of any size. This is the first time that equations to count 6-graphlets were derived; this
marks an important step for the use of larger graphlets.

Graphlet naming

Graphlets up to order 5. As is expected, most of the graphlets up to order 5 have a differ-
ent naming here than in Przulj’s scheme. This is shown in Fig 13.

For ease of comparison between the automatically generated equations and the equations in
[6], the original naming scheme was used in the previous parts of this article, wherever possi-
ble. The generated numbering was only used when describing 6-graphlets, which have no place
in the original numbering.

Graphlets of order 6. All graphlets and orbits of order 6 were identified. A total of 112
graphlets and 407 orbits were identified and can be found in S1 Fig. Like the algorithm to gen-
erate the equations, this algorithm is order-independent and can therefore be used to order
graphlets of any size.

Conclusion

A new algorithm has been developed to automatically generate equations that facilitate count-
ing the number of times each node of an explored graph touches each orbit of graphlets of a
certain order. This algorithm can create an independent set of equations to calculate graphlet
degree distributions without restriction of the order of the graphlets. In addition, a new algo-
rithm to automatically name graphlets and orbits has been created, which enables the use of
higher-order graphlets. Both algorithms were programmed in Java, the source code is available

PLOS ONE | DOI:10.1371/journal.pone.0147078 January 21,2016 17/19

el e
@ ' PLOS ‘ ONE Automatically Generating Orbit Counting Equations

I p
*—1—o—0
.—.—.A El
1 2 3 4 5 6 7 8
1 2 4 3 6 5 7 8
X > =
9 10 11 12 13 14
15 10 14 9 12 16
11 16 17 18 19 20 21
17 13 19 23 20 22 18
) p
I/ <<
22 23 24 25 26 27 28 29
15 21 24 25 26 27 28 29

Fig 13. All graphlets up to order 5. The numbers in normal font are the graphlet ordering generated by the algorithm, the numbers in italic font are Przulj’s
ordering.

doi:10.1371/journal.pone.0147078.9013

at https://github.com/IneMelckenbeeck/equation-generator and https://github.com/
IneMelckenbeeck/graphlet-naming.

All 6-graphlets were ordered and named by this algorithm, and the equations that enable
efficient counting of their orbits were generated. This is a large step towards using graphlets
with an order of 6 and larger.

Future work

The algorithms presented in this paper enable the use of an ORCA-like counter for graphlets of
any size. However, the ORCA code itself is highly optimized for counting 4- and 5-graphlets,
making it impossible to use the equations for any other order with the existing code. The next
step is thus to develop an efficient and order-independent algorithm that makes efficient use of
these equations to actually count the times each vertex in an explored graph touches each orbit.

PLOS ONE | DOI:10.1371/journal.pone.0147078 January 21,2016 18/19

https://github.com/IneMelckenbeeck/equation-generator
https://github.com/IneMelckenbeeck/graphlet-naming
https://github.com/IneMelckenbeeck/graphlet-naming

@’PLOS ‘ ONE

Automatically Generating Orbit Counting Equations

Supporting Information

S1 Equations. Generated equations for 4-graphlets.
(PDF)

S2 Equations. Generated equations for 5-graphlets.
(PDF)

S3 Equations. Generated equations for 6-graphlets.
(PDF)

S1 Fig. Graphlets of order 6. All graphlets of order 6 are shown in the newly introduced order.
In the lower left corner of each page, the graphlet’s orbits are listed in their order.
(PDF)

Author Contributions

Conceived and designed the experiments: IM PA TM DC MP. Performed the experiments: IM
PA. Analyzed the data: IM. Wrote the paper: IM PA MP. Revised the manuscript: TM DC.

References

1. PrzuljN, Corneil DG, Jurisica |I. Modeling interactome: scale-free or geometric? Bioinformatics (Oxford,
England). 2004 Dec; 20(18):3508—15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/15284103
doi: 10.1093/bioinformatics/bth436

2. Przulj N. Biological network comparison using graphlet degree distribution. Bioinformatics (Oxford,
England). 2007 Jan; 23(2):e177-83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17237089
doi: 10.1093/bioinformatics/btI301

3. The On-Line Encyclopedia of Integer Sequences. http://oeis.org/A001349, retrieved December 2,
2015.

4. Demeyer S, Michoel T, Fostier J, Audenaert P, Pickavet M, Demeester P. The index-based subgraph
matching algorithm (ISMA): fast subgraph enumeration in large networks using optimized search trees.
PloS one. 2013 Jan; 8(4):e61183. Available from: http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid=3631255&tool = pmcentrez&rendertype = abstract doi: 10.1371/journal.pone.0061183
PMID: 23620730

5. Houbraken M, Demeyer S, Michoel T, Audenaert P, Colle D, Pickavet M. The Index-based Subgraph
Matching Algorithm with General Symmetries (ISMAGS): exploiting symmetry for faster subgraph enu-
meration. PloS one. 2014 Jan; 9(5):97896. Available from: http://www.pubmedcentral.nih.gov/
articlerender.fcgi?artid=4039476&tool = pmcentrez&rendertype = abstract doi: 10.1371/journal.pone.
0097896

6. Hocevar T, Demsar J. A combinatorial approach to graphlet counting. Bioinformatics (Oxford, England).
2014 Feb; 30(4):559-65. Available from: http://www.ncbi.nIm.nih.gov/pubmed/24336411 doi: 10.1093/
bioinformatics/btt717

PLOS ONE | DOI:10.1371/journal.pone.0147078 January 21,2016 19/19

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0147078.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0147078.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0147078.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0147078.s004
http://www.ncbi.nlm.nih.gov/pubmed/15284103
http://dx.doi.org/10.1093/bioinformatics/bth436
http://www.ncbi.nlm.nih.gov/pubmed/17237089
http://dx.doi.org/10.1093/bioinformatics/btl301
http://oeis.org/A001349
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3631255&tool�=�pmcentrez&rendertype�=�abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3631255&tool�=�pmcentrez&rendertype�=�abstract
http://dx.doi.org/10.1371/journal.pone.0061183
http://www.ncbi.nlm.nih.gov/pubmed/23620730
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4039476&tool�=�pmcentrez&rendertype�=�abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4039476&tool�=�pmcentrez&rendertype�=�abstract
http://dx.doi.org/10.1371/journal.pone.0097896
http://dx.doi.org/10.1371/journal.pone.0097896
http://www.ncbi.nlm.nih.gov/pubmed/24336411
http://dx.doi.org/10.1093/bioinformatics/btt717
http://dx.doi.org/10.1093/bioinformatics/btt717

