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Abstract

Background

Reduced white matter (WM) integrity is a fundamental aspect of pediatric multiple sclerosis

(MS), though relations to resting-state functional MRI (fMRI) connectivity remain unknown.

The objective of this study was to relate diffusion-tensor imaging (DTI) measures of WM

microstructural integrity to resting-state network (RSN) functional connectivity in pediatric-

onset MS to test the hypothesis that abnormalities in RSN reflects changes in structural

integrity.

Methods

This study enrolled 19 patients with pediatric-onset MS (mean age = 19, range 13–24

years, 14 female, mean disease duration = 65 months, mean age of disease onset = 13

years) and 16 age- and sex-matched healthy controls (HC). All subjects underwent 3.0T

anatomical and functional MRI which included DTI and resting-state acquisitions. DTI pro-

cessing was performed using Tract-Based Spatial Statistics (TBSS). RSNs were identified

using Independent Components Analysis, and a dual regression technique was used to

detect between-group differences in the functional connectivity of RSNs. Correlations were

investigated between DTI measures and RSN connectivity.

Results

Lower fractional anisotropy (FA) was observed in the pediatric-onset MS group compared

to HC group within the entire WM skeleton, and particularly the corpus callosum, posterior

thalamic radiation, corona radiata and sagittal stratum (all p < .01, corrected). Relative to

HCs, MS patients showed higher functional connectivity involving the anterior cingulate
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cortex and right precuneus of the default-mode network, as well as involving the anterior

cingulate cortex and left middle frontal gyrus of the frontoparietal network (all p < .005 uncor-

rected, k�30 voxels). Higher functional connectivity of the right precuneus within the

default-mode network was associated with lower FA of the entire WM skeleton (r = -.525,

p = .02), genu of the corpus callosum (r = -.553, p = .014), and left (r = -.467, p = .044) and

right (r = -.615, p = .005) sagittal stratum.

Conclusions

Loss of WMmicrostructural integrity is associated with increased resting-state functional

connectivity in pediatric MS, which may reflect a diffuse and potentially compensatory acti-

vation early in MS.

Introduction
Multiple sclerosis (MS) is an inflammatory demyelinating and neurodegenerative disease of
the central nervous system associated with diffuse damage to white matter (WM) tracts.
Approximately 5% of all MS patients experience pediatric-onset MS [1–3]. Pediatric MS
patients may be especially vulnerable to disruption of WM pathways given that MS onset
occurs during the primary maturation of these networks.

Diffusion tensor imaging (DTI) is a technique that characterizes microstructural tissue
integrity based on properties of diffusion, and this information is represented mathematically
in a diffusion ellipsoid [4, 5]. The diffusion ellipsoid allows for the calculation of fractional
anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD). FA is a measure which
incorporates both AD and RD and represents the preferential directionality of water diffusion,
often evaluated specifically in WM tracts [4, 5]. AD represents diffusivity parallel to the main
axis of WM tracts and higher values are considered to be indicative of axonal loss [6, 7]. RD
represents diffusivity perpendicular to the main axis and higher values are more related to
demyelination [8]. Collectively, lower FA values are indicative of decreased WMmicrostruc-
tural integrity.

DTI studies have demonstrated widespread abnormalities in pediatric MS patients [9–14].
Reduced FA has been noted not only in T2-hyperintense lesions, but also in normal-appearing,
non-lesional WM [15]. In addition, average FA of normal-appearing WM shows significant
correlations with total lesion load [16]. Higher gray matter mean diffusivity has also been
reported in pediatric MS [11]. DTI abnormalities, particularly lower FA of the corpus callosum,
appear clinically relevant given associations with reduced attentional control [17], slower cog-
nitive processing speed [18], and poorer math performance [19].

Studies in adults with MS have demonstrated that greater WM disruptions (as measured by
DTI) correspond to reduced functional connectivity of corresponding resting-state networks
[20, 21], supporting a direct relationship between anatomical and functional connectivity. It
has yet to be determined fully whether such a relationship exists in pediatric MS.

Given that pediatric-onset MS patients have a longer time from onset to progressive physi-
cal disability relative to adult-onset MS patients [22], it is possible that onset of MS during
childhood and adolescence is associated with adaptive resilience that serves to promote func-
tional preservation. In support of the concept of greater functional reserve in pediatric-onset
MS, the study by Rocca and colleagues [23] demonstrated that lower FA in the normal appear-
ing WM of the corpus callosum was associated with increases (rather than decreases) in
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connectivity between the right cerebellum and the left primary sensorimotor cortex during the
performance of a simple motor task.

We explored functional connectivity within resting state networks and relate these findings
to DTI measures of WMmicrostructure in a cohort of patients with pediatric-onset MS. We
anticipate that pediatric MS patients will demonstrate reduced WM integrity, as measured by
DTI. In contrast to adult MS patients, we hypothesize that this loss of WM integrity will pro-
mote an early, age-related compensatory increase in resting-state functional connectivity.

Methods

Participants
We recruited 23 pediatric-onset MS patients (age less than 18 years at time of first MS attack,
all meeting 2010 McDonald criteria [24]) and 20 age- and sex-matched healthy controls. Four
MS patients and three controls were excluded due to excessive motion on MRI resulting in a
final sample size of 19 pediatric-onset MS and 16 healthy controls. MS patients were recruited
from the pediatric (The Hospital for Sick Children) MS program in Toronto, and were evalu-
ated for the present study at York University. Healthy controls were recruited through adver-
tisement. The research protocol was reviewed and approved by the Hospital for Sick Children
Research Ethics Board and York University Research Ethics Board (Human Participants
Review Committee). Written, informed consent was obtained from all participants and/or a
parent or legal guardian. Participants were excluded if they endorsed a history of head trauma,
alcohol abuse, illicit drug use, had visual or motor difficulties that would preclude testing, or
any other major medical illness. Controls were also required to be free of any neurological ill-
ness, previous or current mood disorder, or known learning disability. MS participants were
evaluated at least four weeks from clinical relapse or corticosteroid treatment. For each partici-
pant, the study took place in one 4-hour session consisting of questionnaires, neuropsychologi-
cal assessment, and the MRI scan.

Measures
Demographic and disease-related information were obtained from clinical records. The
Expanded Disability Status Scale (EDSS) score [25] within the last six months, relapse history,
disease duration, and medications were recorded. The following questionnaires were also
administered to all participants in order to compare to two groups on these measures: (a)
Dutch Handedness Questionnaire [26], (b) Centre for Epidemiological Studies Depression
Scale for Children (CES-DC) [27], (c) Pediatric Quality of Life Inventory Multidimensional
Fatigue Scale (PedsQL) [28] and (d) Barratt Simplified Measure of Social Status (BSMSS) [29].

MRI protocol
Data were acquired on a Siemens MAGNETOM 3T Tim Trio MRI scanner at York University
with a 32-channel head coil. The entire scanning protocol (90 minutes) comprised of T1-weighted
sagittal MPRAGE, resting-state fMRI, three task-based fMRI paradigms, DTI, proton-density
(PD), T2-weighted, and FLAIR sequences. Sagittal high-resolution three-dimensional (3D)
MPRAGE T1-weighted images were acquired (TR = 2300ms, TE = 2.96ms, field of view (FOV) =
256x240x192mm, number of slices = 192, voxel size = 1.0x1.0x1.0mm) for the purposes of brain
volume measurements, image registration and anatomical mapping. DTI images were recorded
using a 2D echo-planar imaging (EPI) sequence with diffusion weighting in 64 directions and b-
value of 1000s/mm2 (TR = 4600 ms, TE = 93ms, FOV = 256x256x108mm, number of slices = 36,
voxel size = 2.0x2.0x3.0mm). Resting-state fMRI images were recorded using a gradient-echo EPI
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sequence. The duration was six minutes (180 volumes, TR = 2000ms) and parameters included:
TE = 30ms, voxel size = 3.0x3.0x4.0mm3, matrix size = 63x85x34, 34 axial slices, flip angle = 90°.
Pulse oximetry and respiration were not recorded. During the resting-state sequence participants
were instructed to keep their eyes closed, remain motionless, stay awake, and not to think of any-
thing in particular. The PD, T2-weighted, and FLAIR acquisitions were used to define T2-lesion
volumes according to previously published methods [30]. Global and regional brain volumes were
obtained using the T1-weighted images also according to previously established methods [31].
Normalized thalamic volumes were calculated by dividing absolute thalamic volume by total brain
volume.

Diffusion Tensor Imaging processing
DTI processing was conducted using FMRIB Software Library (FSL) software library tools
(www.fmrib.ox.ac.uk/fsl/) [32]. First, DTI data were corrected for MRI eddy currents and head
motion using affine registration to a reference volume, i.e., the one without diffusion weighting
(b = 0). Then, images were brain-extracted using Brain Extraction Tool (BET) [33] and entered
into the program DTIFIT which fits a diffusion tensor model at each voxel. Images were cre-
ated for each subject representing FA, AD (λ1), RD [(λ2 + λ3)/2)] on a voxel-wise level. Tract-
Based Spatial Statistics (TBSS) analysis [34] created a nonlinear registration of all FA images to
a 1x1x1mm3 standard space (FMRIB58_FA), followed by creation of a mean FA image which
was further refined to create a mean FAWM skeleton thresholded at a FA value of 0.2. As all
subject’s FA images were in a standard space, the WM skeleton was applied yielding FA skele-
tonized images for each subject. The sameWM skeleton was applied to the AD and RD images.
For voxelwise analyses of DTI measures (FA, AD, RD), differences between groups were tested
in a general linear model (GLM) framework with unpaired t-tests using nonparametric permu-
tation testing (number of permutations = 5000), FSL’s randomise [35] and controlling for age
and sex. The generated spatial maps characterizing between-group differences were controlled
for multiple comparisons using threshold-free cluster enhancement, a method in which voxel-
wise p-values incorporate the amount of cluster-like local spatial support [36]. The generated
p-value maps were thresholded at p = .05.

Functional MRI data pre-processing
Functional MRI data preprocessing was conducted using a mixture of Analysis of Functional
NeuroImages (AFNI) [37] and FSL software library tools. The preprocessing steps included:
(a) removal of the first four volumes; (b) motion correction by realigning via rigid transforma-
tion to the first volume (scans with a maximum displacement of more than 3mm were dis-
carded); (c) removal of skull and non-brain tissue using FSL's BET; (d) spatial smoothing at a
Gaussian kernel of 5-mm full width at half maximum; (e) spatial transformation to ICBM152
template space [38] and resampling to 3mm3 voxels. The transformation was done using a
combination of 12-parameter affine transformation and nonlinear registration tools and incor-
porating the T1-weighted image; (f) regression of the functional data against six motion
parameter timeseries as well as four WM and four cerebrospinal fluid voxel timeseries in order
to remove non-neural contributions to the BOLD signal; and (g) temporal filtering in order to
retain frequencies between the range of 0.01 to 0.1 Hz.

Independent Components Analysis (ICA)
The functional connectivity analysis utilized an ICA-based approach (using FSL’s MELODIC,
Multivariate Exploratory Linear Decomposition into Independent Components) in combina-
tion with a dual regression technique [39]. The pre-processed fMRI data, which contained 176
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time points for each subject, were temporally concatenated across all subjects to create a single
4-dimensional dataset. This fMRI dataset was then decomposed into independent components
where the number of dimensions was automatically estimated using the Laplace approximation
to the Bayesian evidence of the model order [40]. Outputted components that were noise-
related (e.g. due to head motion, cardiac, respiratory, and CSF pulsations), scanner-related arti-
facts, and misregistrations were discarded before further analysis. For each retained component
(i.e. components considered meaningful and corresponding to canonical resting-state net-
works), dual regression was used to create subject-specific versions of these components [39].
For each ICA component (at the group or individual-level), the voxel-wise intensity values on
these spatial maps are parameter estimates (converted to z-scores) representing the amount of
co-activation or synchronization of those voxels with the particular component/network and
referred to throughout this manuscript as “functional connectivity”. We then tested for
between-group differences in parameter estimates using the same FSL randomise [35] non-
parametric permutation testing tool as described above for the DTI processing. Here, because
no clusters survived correction for multiple comparisons at p<0.05, an uncorrected p-value
threshold of 0.005 was selected with an arbitrary cluster threshold of>30 voxels [41]. Clusters
containing voxels spatially within or touching the network were considered significant. Subse-
quently, in order to further confirm our results, we computed within significant clusters mean
values across all voxels for each subject and performed between-group comparisons with anal-
ysis of variance, with Bonferonni correction for multiple comparisons. These mean values were
also used to correlate with the values of DTI measures from significant clusters.

Results
Demographic, disease-related, and structural MRI data are reported in Table 1. As reported in
Table 1 there were no differences between groups with respect to age, sex, socioeconomic sta-
tus, depression, fatigue, or handedness. Lower thalamic volumes were observed in the pediat-
ric-onset MS group compared to healthy control group. There were also no differences
between groups with respect to motion on either the DTI or resting-state fMRI scans based on
maximum displacement (in any direction, mm) relative to first volume (Table 1).

Correlation between DTI and demographic and disease-related
variables
Within the MS group, none of the DTI metrics showed a significant association with age, sex,
age of disease onset, disease duration, or EDSS. All FA, AD, and RD measures correlated signif-
icantly with T2- lesion volume (FA: r = -.782, p< .001; AD: r = .684, p = .001, and RD: r = .788,
p< .001 for correlations with the whole WM skeleton) as well as with thalamic volumes (FA: r
= .707, p = .001; AD: r = -.782, p< .001; RD: r = -.806, p< .001 for correlations with the whole
WM skeleton).

Between-group DTI differences
Pediatric-onset MS patients demonstrated lower WM FA compared to healthy controls of the
entire WM skeleton (t = 2.84, p = .008, reported in Table 2). Areas demonstrating the largest
differences between groups were the corpus callosum, posterior thalamic radiation, sagittal
stratum (including the inferior longitudinal fasciculus and inferior fronto-occipital fasciculus),
and corona radiata (Fig 1A, Table 2). The pediatric-onset MS group also demonstrated higher
entire WM skeleton RD, but no difference in AD compared to the healthy control group
(Table 2). Voxel-wise differences between groups in WM RD and AD are shown in S1 Fig.
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There were no brain regions in which the healthy controls showed lower FA or higher diffusiv-
ity relative to the MS patients.

Resting state networks
Group ICA of all 35 subjects revealed eight canonical resting-state networks (Fig 2) out of the
19 components that were outputted from ICA (n = 11 were discarded as noise/artifact related
or misregistration). These networks are a replication of commonly reported resting-state net-
works and were labelled accordingly [42–44]. These networks included the: (a) default-mode
network (3 components, including precuneus in Fig 2J), (b) primary and (c) secondary visual
networks, (d) salience network, (e) frontoparietal network (separate right and left components,

Table 1. Demographic, Disease-Related, and Structural MRI Data for all Subjects.

Variable Pediatric-onset MS (n = 19) Healthy Controls (n = 16) Between-groups comparison
(t-test or X2)

p-value

Mean (range) age at scan, years 18.7 (13–24) 19.1 (13–24) .403 .69

Sex (F/M) 14/5 11/5 .104 .748

Mean (SD) disease durationa,
months

64.5 (37.8)

Mean (SD) age at MS onsetb, years 13.2 (2.72)

Median (range) EDSS score 1.5 (0–4)

Median (range) total number of
relapses since MS onset

4 (1–13)

Current use of disease-modifying
therapies (Y/N)

17/2

Mean (SD) Socioeconomic status-
BSMSS score

44.3 (13.8) 39.0 (15.4) -1.04 .307

Mean (SD) Depression- CES-DC
score

14.9 (13.1) 11.9(8.0) -.801 .429

Mean (SD) Fatigue- PedsQL
Multidimensional Fatigue score

30.0 (13.4) 23.3(8.8) -1.677 .103

Handedness (Right/Left)c 16/3 15/1 1.756 .416

Mean (SD) Structural MRI metrics

T2-Lesion Volume (cm3) 14.1 (26.3)

T1-Lesion Volume (cm3) 8.94 (18.2)

Brain Volume (cm3) 1328 (127.9) 1296 (133.8) -.722 .476

Thalamic Volume (cm3) 11.64 (1.39) 12.65 (1.078) 2.38 .023*

Normalized thalamic volumed .00880 (.00090) .00978 (.00035) 4.10 < .001**

Mean (SD) motion (maximum
displacement in mm)

DTI 2.23 (1.67) 2.27 (1.10) .067 .947

Resting-state fMRI 1.06 (.774) 1.42 (.672) 1.46 .153

EDSS = Expanded Disability Status Scale; BSMSS = Barratt Simplified Measure of Social Status (BSMSS); CES-DC = Centre for Epidemiological Studies

Depression Scale for Children; PedsQL = Pediatric Quality of Life Inventory Multidimensional Fatigue Scale.
aMonths since first attack
bAge at first attack
cBased on Dutch Handedness Questionnaire
dNormalized thalamic volume = thalamic volume/ brain volume

*p < .05

**p < .01

doi:10.1371/journal.pone.0145906.t001
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and one bilateral component, Fig 2I), (f) sensorimotor network (2 components), and (g) dorsal
attention network. Overall, there were two components in which the pediatric-onset MS group
demonstrated higher functional connectivity than the healthy control group (Fig 2K). These
two components comprised the frontoparietal network bilaterally, and default mode network
precuneus. Within the bilateral frontoparietal network, higher functional connectivity was
demonstrated at the level of the anterior cingulate cortex and left middle frontal gyrus in the
pediatric MS group (statistics reported in Table 2). Within the default mode network precu-
neus, higher functional connectivity was demonstrated within the anterior cingulate cortex and
right precuneus. Healthy controls did not demonstrate higher connectivity relative to the MS
patients in any network.

Table 2. Differences Between Groups on DTI and fMRI Measures.

Measure (mean, SD) Pediatric MS (n = 19) Healthy Control (n = 16) t-test p-value

Fractional Anisotropy

Entire WM Skeleton .437 (.025) .458 (.015) 2.84 .008**

Within Significant FA voxelsa .551 (.041) .616 (.020) 5.84 < .001**

Corpus Callosum- Bodyb .637 (.058) .714 (.032) 5.02 < .001**

Corpus Callosum- Genub .644 (.065) .701 (.040) 3.05 .005**

Corpus Callosum- Spleniumb .748 (.049) .796 (.016) 4.63 < .001**

Posterior Thalamic Radiation- Leftb .596 (.053) .669 (.027) 5.26 < .001**

Posterior Thalamic Radiation- Rightb .601 (.043) .680 (.024) 6.50 < .001**

Corona Radiata- Left Superiorb .445 (.047) .497 (.029) 4.03 < .001**

Corona Radiata- Right Superiorb .443 (.046) .493 (.026) 4.02 < .001**

Corona Radiata- Left Posteriorb .485 (.050) .542 (.029) 4.15 < .001**

Corona Radiata- Right Posteriorb .463 (.047) .522 (.021) 4.91 < .001**

Sagittal Stratum- Leftb .536 (.041) .594 (.023) 4.75 < .001**

Sagittal Stratum- Rightb .536 (.045) .607 (.028) 5.44 < .001**

Axial Diffusivity (10-3mm2/sec)

Entire WM Skeleton 1.26 (.042) 1.24 (.023) -1.43 .163

Within Significant FA voxelsa 1.53 (.057) 1.51 (.029) -1.07 .294

Radial Diffusivity (10-3mm2/sec)

Entire WM Skeleton .622 (.052) .585 (.027) -2.51 .017*

Within Significant FA voxelsa .534 (.013) .433 (.049) -3.22 .004**

Functional connectivity (z-scores)c

Bilateral frontoparietal network- C1, Anterior cingulate cortex 3.20 (2.34) -2.67 (3.08) -6.40 < .001 **

Bilateral frontoparietal network- C2, Left middle frontal gyrus 11.92 (5.75) 3.43 (4.64) -4.74 < .001**

Precuneus network- C3, Right precuneus 9.51 (5.74) 1.49 (4.42) -4.56 < .001**

Precuneus network- C4, Anterior cingulate cortex 3.21 (4.66) -5.77 (4.83) -5.59 < .001**

a mean values reported are for only those voxels that demonstrated significantly different FA values between groups in t-test analysis
b mean values reported are for only those voxels that demonstrated significantly different FA values between groups in t-test analysis, restricted to certain

WM structures as defined by FSL’s JHU white-matter tractography atlas (Mori et al. 2008)
cmean values reported are for clusters depicted in Fig 2K. These clusters represent only those areas that differed significantly between groups in the

voxel-wise dual regression analysis.

*p < .05

**p < .01

doi:10.1371/journal.pone.0145906.t002
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Correlations between DTI measures and functional connectivity
Higher functional connectivity of the right precuneus within the default mode network (cluster
3, Fig 2K) was associated with lower FA and higher RD in the pediatric-onset MS group (all
correlations reported in Table 3). With respect to FA, functional connectivity of the right pre-
cuneus within the default mode network was significantly correlated with whole WM skeleton
FA (r = -.525, p = .021), and FA of the following structures: (a) genu of corpus callosum (FA:
r = -.553, p = .014; RD: r = .679, p = .001), (b) left sagittal stratum (FA: r = -.467, p = .044; RD:
r = .588, p = .008), and (c) right sagittal stratum (FA: r = -.615, p = .005; RD: r = .658, p = .002).
Widespread significant associations with RD were also found (all reported in Table 3). No sig-
nificant correlations between functional connectivity and DTI measures were present in the
healthy control group.

Discussion
We confirm a widespread loss of WM integrity in pediatric-onset MS as well as increased rest-
ing-state functional connectivity in two key resting-state networks (i.e. default mode and fron-
toparietal). We also show that reduced WMmicrostructural integrity is associated with higher
functional connectivity of the precuneus suggesting particular disruption of the default mode
network with WM damage.

The reduced WM FA seen in our cohort is congruent with other reports in pediatric MS [9–
15, 18]. The corpus callosum, posterior thalamic radiation, sagittal stratum, and corona radiata
were the WM regions most affected. These structures may be more vulnerable in pediatric MS
given that they are in close proximity to regions with high lesional probability (e.g. periventri-
cular areas), which are shown in Fig 1B. Several studies of DTI in pediatric MS have demon-
strated a prominent impact of MS on the corpus callosum [9, 10, 12, 14], which is likely related
to the fact that the corpus callosum represents the major WM structure in the brain. We also
found that all of our DTI measures, including FA of the corpus callosum, correlated with T2-
lesion volume suggesting Wallerian degeneration as a possible substrate for reduced white mat-
ter tract integrity.

Higher levels of resting state functional connectivity has similarly been observed in cogni-
tively intact (or minimally impaired) adults with early relapsing-remitting MS [45–47]. Our
cohort consisted of largely cognitively intact patients [48]. We speculate that the higher con-
nectivity in our pediatric MS patients contributed to their preservation of cognitive

Fig 1. Differences between groups in white matter FA. (a) WM skeleton (green) depicting areas in which
the pediatric-onset MS group demonstrated lower FA (blue) compared to the healthy control group (p < .01,
corrected). (b) Mean lesion map of the pediatric MS group with brighter (yellow) areas representing voxels
with higher probability of lesion occurrence. MNI152 template slice coordinates are also reported.

doi:10.1371/journal.pone.0145906.g001
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Fig 2. Differences between groups in functional connectivity of resting-state networks.Group ICA components (3D volumes) including (a) default
mode network, (b) primary visual network, (c) secondary visual network, (d) salience network, (e) right frontoparietal network, (f) left frontoparietal network,
(g) sensorimotor network, and (h) dorsal attention network. The ICA components are shown in FSL red-yellow encoding using a 3< z-score <10 threshold.
The (i) bilateral frontoparietal and (j) precuneus (posterior default-mode) networks were the only networks which demonstrated significant differences
between groups (p < .005 uncorrected, cluster size> 30 voxels). Areas in blue below these networks (k), with numbered clusters 1–4, indicate those areas

Functional and Structural Connectivity in Pediatric-Onset MS
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within these networks in which the pediatric-onset MS group demonstrated higher connectivity compared to healthy controls. C1 indicates the anterior
cingulate cluster and C2 the left middle frontal gyrus cluster of the bilateral frontoparietal network. C3 indicates the right precuneus and C4 the anterior
cingulate cluster of the precuneus posterior default-mode network. Statistics for the connectivity values of these clusters are referred to throughout the text.
All images are displayed in radiological convention. (Left = Right, Right = Left). The most informative slices are shown.

doi:10.1371/journal.pone.0145906.g002

Table 3. Correlation between DTI and Functional Connectivity Measures within Pediatric MS Group.

Measure (mean, SD) C1- FrontoPar,
ACC

C2- FrontoPar,
LMidFron

C3- Default mode,
RPrecuneus

C4- Default mode,
ACC

Fractional Anisotropy

Entire WM Skeleton -.329 (.169) -.153 (.532) -.525 (.021)* .042(.865)

Within Significant FA voxelsa -.181 (.459) .022 (.929) -.351 (.140) .035 (.886)

Corpus Callosum- Bodyb -.085 (.729) .104 (.672) -.252 (.298) .009 (.972)

Corpus Callosum- Genub -.296 (.218) -.083 (.735) -.553 (.014)* .028 (.909)

Corpus Callosum- Spleniumb -.288 (.232) .105 (.669) -.409 (.082) .021 (.932)

Posterior Thalamic Radiation- Leftb -.120 (.623) .088 (.720) -.094 (.703) .137 (.575)

Posterior Thalamic Radiation-
Rightb

-.004 (.986) .078 (.751) -.147 (.548) .022 (.930)

Corona Radiata- Left Superiorb .033 (.895) -.054 (.827) -.136 (.580) -.022 (.930)

Corona Radiata- Right Superiorb -.172 (.481) .103 (.675) -.152 (.534) .176 (.472)

Corona Radiata- Left Posteriorb -.088 (.721) .046 (.850) -.429 (.067) .093 (.706)

Corona Radiata- Right Posteriorb -.112 (.647) .170 (.486) -.348 (.144) -.054(.826)

Sagittal Stratum- Leftb -.111 (.651) -.078 (.751) -.467 (.044)* .061 (.804)

Sagittal Stratum- Rightb -.150 (.539) .045 (.855) -.615 (.005)** .014 (.955)

Radial Diffusivity (10-3mm2/sec)

Entire WM Skeleton .361 (.129) .014 (.956) .661 (.002)** -.040 (.872)

Within Significant FA voxels a .256 (.289) -.130 (.597) .486 (.035)* -.005 (.983)

Corpus Callosum- Bodyb .176 (.472) -.145 (.553) .350 (.141) .012 (.962)

Corpus Callosum- Genub .318 (.185) .105 (.669) .679 (.001)** -.043 (.862)

Corpus Callosum- Spleniumb .314 (.191) -.176 (.472) .501 (.029)* -.008 (.973)

Posterior Thalamic Radiation- Leftb .140 (.568) -.170 (.486) .217 (.372) -.109 (.656)

Posterior Thalamic Radiation-
Rightb

.084 (.733) -.201 (.408) .341 (.153) .034 (.891)

Corona Radiata- Left Superiorb .201 (.408) .037 (.880) .399 (.091) .102 (.677)

Corona Radiata- Right Superiorb .385 (.104) -.207 (.394) .273 (.259) -.132 (.591)

Corona Radiata- Left Posteriorb .245 (.313) -.141 (.566) .582 (.009)** -.052 (.831)

Corona Radiata- Right Posteriorb .227 (.351) -.176 (.471) .601 (.007)** .063 (.798)

Sagittal Stratum- Leftb .204 (.402) -.032 (.896) .588 (.008)** -.028 (.911)

Sagittal Stratum- Rightb .147 (.548) -.086 (.727) .658 (.002)** .013 (.957)

Functional connectivity measures correspond to those clusters depicted in Fig 2K and include C1 (anterior cingulate cortex) and C2 (left middle frontal

gyrus) of the bilateral frontoparietal network, C3 (right precuneus) and C4 (anterior cingulate cortex) of the precuneus default-mode network. Pearson

correlation coefficients (r-values) are reported with their corresponding p-values.
amean values reported are for only those voxels that demonstrated significantly different FA values between groups in t-test analysis.
bmean values reported are for only those voxels that demonstrated significantly different FA values between groups in t-test analysis, restricted to certain

WM structures as defined by FSL’s JHU white-matter tractography atlas (Mori et al. 2008).

*p < .05

**p < .01

doi:10.1371/journal.pone.0145906.t003
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performance. Serial studies, including patients with variable level of cognitive performance, are
required in order to determine whether subsequent loss of compensatory connectivity sub-
serves cognitive decline.

Within our pediatric MS cohort, higher default mode network functional connectivity was
associated with reduced FA and higher RD of WM. Similar findings of reduced tissue integrity
being associated with heightened connectivity of the default mode network during resting state
has also been reported in studies of adult MS [46, 49], suggesting increased cortical functional
activity may be necessary to overcome structural damage of WM pathways. Conceptually, loss
of tissue microstructure is unlikely to lead to improved connectivity of neural networks, but it
is possible that loss of tissue integrity leads to loss of inhibition which in turn leads to increased
functional connectivity [50, 51]. It is also possible that the brain responds to the reduction in
tissue microstructure by increasing connectivity within preferred and perhaps more essential
pathways, such as the more prominent resting-state networks including the default mode and
frontoparietal networks. No significant correlations between functional connectivity and DTI
were demonstrated in the healthy control group, which we speculate to be due to limited vari-
ability and lack of abnormal DTI values in this group.

In summary, we show both anatomical DTI and functional resting-state fMRI abnormalities
in pediatric MS. More extensive loss of WM integrity was associated with increased default
mode network connectivity at the level of the precuneus which could be interpreted to repre-
sent a compensatory response in a cohort of MS patients studied both at a younger age and at
an early stage of their disease. DTI and functional connectivity analysis in a larger sample of
pediatric-onset MS patients with longer disease duration and more variable cognitive
impairment will provide further insight into the relationship between functional network char-
acteristics, structural damage, and cognitive performance.

Supporting Information
S1 Fig. Differences Between Groups in White Matter AD and RD.WM skeleton (green)
depicting areas in which the pediatric-onset MS group demonstrated higher (blue) (Figure a)
AD and (Figure b) RD compared to the healthy control group (p< .01 corrected). MNI152
template slice coordinates are also reported.
(TIF)
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