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Abstract
Inter-temporal decisions involves assigning values to various payoffs occurring at different

temporal distances. Past research has used different approaches to study these decisions

made by humans and animals. For instance, considering that people discount future payoffs

at a constant rate (e.g., exponential discounting) or at variable rate (e.g., hyperbolic dis-

counting). In this research, we question the widely assumed, but seldom questioned, notion

across many of the existing approaches that the decision space, where the decision-maker

perceives time and monetary payoffs, is a Euclidean space. By relaxing the rigid assump-

tion of Euclidean space, we propose that the decision space is a more flexible Riemannian

space of Constant Negative Curvature. We test our proposal by deriving a discount func-

tion, which uses the distance in the Negative Curvature space instead of Euclidean tempo-

ral distance. The distance function includes both perceived values of time as well as money,

unlike past work which has considered just time. By doing so we are able to explain many of

the empirical findings in inter-temporal decision-making literature. We provide converging

evidence for our proposal by estimating the curvature of the decision space utilizing mani-

fold learning algorithm and showing that the characteristics (i.e., metric properties) of the

decision space resembles those of the Negative Curvature space rather than the Euclidean

space. We conclude by presenting new theoretical predictions derived from our proposal

and implications for how non-normative behavior is defined.

Introduction
Inter-temporal decisions involve deciding in favor of an outcome occurring in the present (e.g.
receiving $200 now) versus that occurring in the future (e.g. receiving $300 after 6 months).
Inter-temporal decisions are common among humans and animals and affect many decisions
such as whether to have a health check-up right now or delay and face the consequences, save
versus spend now, consume indulgent food now and face the consequences later, hoard food
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now or wait till later. Across both human and animal studies, it has generally been found that
organisms i.e. the decision-makers, are likely to overweigh immediate, but smaller rewards
over delayed and larger rewards. These trade-off decisions significantly influence impulse con-
trol, addictive behavior, retirement savings, investment, procrastination, attitude towards cli-
mate change, etc. [1–7]. Therefore, understanding how humans and animals make inter-
temporal decisions is a much-researched area having implications in myriad domains.

Many computational models have been presented to explain inter-temporal decisions.
These models use discount functions, which are decay/depreciation functions (see [8]) where
the current monetary or non-monetary reward decays as its receipt is pushed into the future.
The first formal discount function came from the Discounted Utility (DU) model by Samuel-
son [9]. The DUmodel, which proposes a constant rate discount function (e.g. exponential dis-
counting), was presented as the normative model suggesting how decision-makers should
behave when presented with inter-temporal decisions [10]. Constant rate discounting works as
follows: the utility of $x decays at a constant rate per unit of time. $x today would be worth $xδ
after one year, $xδ2 after 2 years and so on. Here δ is<1 and remains constant over the time
horizon. As an alternate to the DU model, variable rate discount models have also been pro-
posed to explain empirical evidence in inter-temporal decision-making. Variable rate discount
models, (e.g., hyperbolic discounting models) [11, 12], suggest that people’s discount rate
decreases over time i.e. it is higher in proximate time intervals but lower in distant intervals.
One simple way to understand differences between constant rate and variable rate discount
models is to compare them to a bucket of water with a hole that leaks water as one pushes it
along a straight path. If we replace the water with money and the straight line with the tempo-
ral line then according to constant rate models, for each unit of temporal distance covered, the
leakage (depreciation) is at a constant rate. In this manuscript, for ease of description, we use
money as a reward or source of utility. Money can be replaced with any other source of utility.
For variable rate models, the leakage is a function of temporal distance covered. Another way
to see the difference between constant rate and variable rate models is to consider their corre-
sponding differential equations. If we assume that at time t = 0 the initial monetary value is
$y and y(t) represents the residual value at time t then constant rate models can be conceptual-

ized as a solution to linear autonomous first order differential equation of the form:
dy
dt
y
¼ �c

where ψ is the constant discount rate. On the other hand, variable rate models can be conceptu-
alized as a solution to the linear nonautonomous first order differential equation of the form:
dy
dt
y
¼ �OðtÞ where the discount rate is a function of time. At a broader level this captures the

main difference between these two types of models.
As with any line of research, questions have been raised about both the constant rate and

the variable rate models, including questions about their ability to explain empirical evidence,
their theoretical underpinnings and their predictive/explanatory power [13]. Moreover recent
research has suggested that recognizing the way we perceive time may not be the same as objec-
tive time, could help us better understand inter-temporal decisions. Specifically, some distinc-
tions between constant and variable rate models fade if we formulate time perception to be
non-linear (e.g., logarithmic) [14, 15].

Before we describe some commonalities between various discount models, we first need to
explain a term that we will be using frequently to discuss our proposed model i.e., “decision
space”? One of the objectives of research involving any type of decision-making is to under-
stand how the organism or the decision-maker perceives a decision-object (e.g. given informa-
tion). Such a perception forms her subjective experience of decision objects and the decision
hinges on this perception. We refer to the space where information is perceived and the
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decision is made as the decision space or decision surface of that decision-maker. If we take the
context of inter-temporal decision-making, then the subjective perception of time and reward/
money occurs in the inter-temporal decision space of the decision-maker.

Despite their much-discussed differences, there are some important commonalities among
the various discount models. First, most existing models assume the inter-temporal decision
space to be a metric space. For instance, a decision of comparing the receipt of $100 now to
receiving $250 at a point in time eighteen months in the future has been studied using a dis-
count function of temporal distance estimate (e.g., δ(t) where t is the distance between these 2
points in time). The assumption of a metric space implies that by using a metric we can esti-
mate the length of a time interval used in decision-making. Specifically, if t1 < t2 < t3 are three
points on a temporal line then inter-temporal decision space being metric space means that (i)
the distance between t1 and t1, d(t1 ! t1) = 0, (ii) d(t1 ! t2)>0, (iii) d(t1 ! t2) = d(t2 ! t1) and
(iv) d(t1 ! t2)+d(t2 ! t3)�d(t1 ! t3). The important aspect of considering the inter-temporal
space to be a metric space is that we need to know what is the geometry of the surface on which
the distance is being measured because any accurate distance estimate is entirely dependent on
the surface on which the distance is being measured and is defined by the unique metric of that
surface. Therefore, by thinking of temporal comparisons in terms of distance (which almost all
the previous research does), a discussion of the geometry of the surface on which temporal dis-
tance is being measured is unavoidable.

This brings in the second point on which all existing models of inter-temporal decision-
making converge. Existing models assume the metric of the inter-temporal decision space to be
a Euclidean metric since the temporal distance between t1 and t2 (where t2 > t1) is calculated

as: dðt1 ! t2Þ ¼ t2 � t1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt2 � t1Þ2

q
, which is similar to measuring the Euclidean distance

between points (t1, 0) and (t2, 0). The decision space is assumed to be a metric space with an
underlying Euclidean geometry.

Therefore, an important similarity across all existing models of inter-temporal decision-
making is the assumption of a Euclidean decision space. However, despite such a fundamental
assumption of a Euclidean space, to the best of our knowledge, no research has ever questioned
this assumption and neither has anyone empirically tested for whether the assumption is true
or not. Let us explain next why this might be so.

Such an unquestioning assumption of a Euclidean space is not surprising. Due to its intui-
tive appeal Euclidean geometry has always had a pervasive influence on scientific inquiry. The
best example of this influence can be seen in Kant’s ([16, 17]: originally published in 1781)
arguments suggesting that Euclidean space is a-priori intuition in human judgments. It
matches with how the world appears visually to us and is incredibly accurate in many everyday
predictions. Given the intuitive appeal and face-validity of Euclidean space, it is not surprising
to see that in the fields that explore human preferences, whenever metric space needed to be
defined, either we explicitly assumed the metric space to be Euclidean ([18] pg 417, [19] pg
674) or implicitly used it to model behavior without further testing for its veracity empirically.
While Kant’s argument could be accepted before the introduction of non-Euclidean geome-
tries, it seems less defensible now to assume without empirical investigation that the geometric
space underlying inter-temporal decision can only be Euclidean. In keeping with [20] and [21],
who were among the first to consider the notion that the geometry of space around us is an
empirical matter that should be decided by measurements, we need to ask why should we
assume that time and rewards are perceived by the decision-maker in a Euclidean space? What
is the basis for such an assumption? Does empirical evidence support such an assumption?
Might there be a different geometry involved when time and rewards are perceived by the deci-
sion maker?

Riemannian Geometry and Inter-Temporal Decision-Making
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First, we need to ask whether our conclusions, predictions, and explanations would change
if we considered a Euclidean geometry when the geometry was actually non-Euclidean? The
straightforward answer is that if the space is curved and we assume it to be flat, we will intro-
duce distortions in measuring the shortest distance (called the geodesic distance). It is analo-
gous to assuming that the earth is flat and trying to measure distance between two points.
However, once we know that the surface of the earth is spherical then we can use the correct
metric to estimate distance. Similarly, if we considered the wrong geometry for the inter-tem-
poral decision space, we would be introducing distortions in our measurements and subse-
quently in how we assess the discounting process. In such a situation infinite distance
functions can be proposed and some of them would work some of the times. This is the current
situation in inter-temporal distance estimates. Therefore, determining the correct geometry of
the decision space is the essential first step needed to apply the appropriate metric to calculate
distances on that space and as a consequence our distance estimates would be distortion-free.
Second, it would help us build a theoretical model that would better explain the empirical find-
ings and help make further theoretical predictions.

Overview
How does a decision-maker evaluate the utility from different bundles of time and correspond-
ing monetary pay-offs for that time? He does so by perceiving those bundles at different dis-
tances in his decision space. To compare different bundles he brings each bundle to the present
(origin) and calculates the discounted utility from each bundle. The discounting is a function
of the perceived distance. Therefore, in this research our attempt is to find out the correct
geometry of the decision space to ensure that our distance estimates are accurate.

Previewing briefly, in this research, we present a new model of inter-temporal decision-
making by relaxing the current restrictive assumption that the decision space is a Euclidean
space. We develop our theory on the proposal that the decision space resembles the metric
properties of a more flexible Riemannian space of constant negative Gaussian curvature. This
implies that the metric used by the decision maker is not Euclidean but the more general Rie-
mannian metric. We further suggest that both temporal distance and reward influence the
magnitude of discounting. We discuss this proposal in detail in a later section (The Proposed
Model). In order to maintain consistency, we use the term Riemannian space throughout the
manuscript. Another term that can be used is Riemannian manifold. In questioning the Euclid-
ean nature of the decision space we follow previous research in other domains that have con-
sidered non-Euclidean spaces. Apart from the most well known use of non-Euclidean space in
the general theory of relativity [22], researchers in many domains, such as Embedding of net-
works [23], binocular vision and perception [24–26] to name a few have questioned the Euclid-
ean assumption and searched for solutions using non-Euclidean spaces.

Two arguments, interestingly opposing, can be raised against our research. One that inter-
temporal decision-making is a relatively smaller problem that doesn’t require the mathematical
complexity of curved spaces. We argue that this may be true if we narrowly define the domain
of inter-temporal decisions. However, if we consider the concept of a decision space, which
plays a critical role in almost every decision we make, this approach has implications for many
types of decisions. Conversely, the second argument could question the need for replacing the
current Euclidean assumption, which makes it easy to understand and apply existing discount-
ing models, with an elaborate process of questioning the geometry of the decision space. Again,
we argue that it is not appropriate for us as researchers to keep assuming something because it
is easy to understand and not question it or test for it empirically. For a quick reference to sym-
bols used in this manuscript, please refer to S1 Text.

Riemannian Geometry and Inter-Temporal Decision-Making
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The remaining part of the manuscript is structured in the following manner. First, in order
to build our proposition that a Riemannian space of constant negative curvature underlies the
decision space, we provide a brief overview of Riemannian space and Gaussian curvature and
explain Riemannian spaces of constant negative curvature (we will refer to it as Negative Cur-
vature spaces or negatively curved spaces). Our discussion of these topics is nowhere close to
being exhaustive. These topics are active areas of research across many disciplines. For more
in-depth understanding, please refer to the following sources: [27–34]. For a lucid overview see
[35, 36]. For a discussion of non-Euclidean geometry using real projective geometry see [37].
(For a detailed explanation of their mathematical roots please refer to S2 Text). Second, we
present our proposed geometric theory of inter-temporal decision making. We explain how
information is perceived in the decision space. Third, we use two approaches, analytical and
empirical, to test our proposed theory. We test it analytically by examining whether we can
explain the existing findings in inter-temporal decision making when we utilize a discount
function that uses distance in the negatively curved space instead of the Euclidean temporal
distance as used in past work. Empirically, we estimate the curvature of the decision space, uti-
lizing inter-temporal decisions made by participants, to test whether it is Euclidean or Negative
Curvature space. Finally, we conclude with further theoretical predictions that can be derived
from the proposed geometric theory.

Geometries and Distances
Riemann [20] proposed that spaces do not have any inherent geometry instead they are akin to
a continuum where points are specified by their coordinates. Whenever a specific metric is
used to measure the distance between two points, it means that an assumption has been made
about the geometry of the surface since a metric is unique to a geometry. The problem is that
different metrics can be used to estimate the distance and hence, different geometries can be
imposed. However, which is the correct metric can be verified only when one knows what is
the geometry of the surface on which the points are located. Let’s refer back to the example of a

ruler (with the familiar Euclidean metric ds ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx21 þ dx22 þ ::dx2n

p
) versus a cooked spaghetti.

If asked to measure the distance between any two points, we can use the ruler or the spaghetti
as our measure. If we used the ruler we will get “a” distance estimate, irrespective of whether
the surface is flat or curved. The estimate with the ruler would be correct for the flat surface.
However, if the surface were curved then the distance estimate using the ruler would be dis-
torted because the ruler is not faithfully representing each point in its distance estimate. The
fact that we are getting “an” estimate does not mean that we have the “right” estimate. But how
can we know that we have the right estimate? It is possible only if we knew the geometry of the
surface on which the points are located. We can attest to the veracity of our estimate only if we
empirically test for the geometry of the surface. Hence, [21] had proposed that assumed geome-
try should always be empirically verified.

In order to identify the right geometry we should have the ability to distinguish between
infinite geometries that are possible between points. Such ability would allow us to decide, for
instance, whether the right metric is a ruler or a spaghetti. The Gaussian curvature proves to be
a very useful measure for such differentiation since it differentiates curved surfaces from flat
surfaces (please refer to Text A in S2 Text). The Gaussian curvature (K) informs us how curved
a specific surface is with respect to a flat surface, at a given point. The magnitude of (K) tells us
how much the surface is bending. If the Gaussian curvature of a surface is the same at every
point then we have a constant curvature geometry. An example is a globe on which, the Gauss-
ian curvature is the same at each point. On the other hand, if we consider a crumpled paper,
each point on it has a different Gaussian curvature. Pertinent to our research, we will be

Riemannian Geometry and Inter-Temporal Decision-Making

PLOS ONE | DOI:10.1371/journal.pone.0145159 March 28, 2016 5 / 22



considering constant curvature geometries. Moreover, the sign, positive or negative, of the
Gaussian curvature informs us of the type of geometry in a particular point p’s neighborhood.
Specifically, at every point on a surface if K = 0 then the neighborhood of p would resemble a
flat surface and its intrinsic geometry would be Euclidean. If K> 0 then it would resemble a
surface like a piece of sphere and its intrinsic geometry would be Elliptical. If K< 0 then it
would resemble a saddle and its intrinsic geometry would be Gauss-Bolyai-Lobachevskian/
Hyperbolic. Since K can have any value between −1 and1, we can think about constant cur-
vature geometries not as three separate geometries, but instead as a continuum of infinite
geometries where the Euclidean geometry is a special case. In sum, the Gaussian curvature of
the space helps distinguish among various geometries.

The geometry we assume for a surface will dictate our choice of metric since each geometry
is defined by its unique metric. Therefore, a ruler ideal for measuring distances on surfaces
with K = 0 would not be right to use on a surface with K greater than zero. We now discuss the
model we use to calculate geodesic (the shortest path between two points) on the Negative Cur-
vature space (please refer to Text B in S2 Text). Since the Negative Curvature space is abstract
and hence, difficult to imagine, models are constructed that make it easier to measure distances
between points in such abstract spaces. These models tend to be Euclidean representations that
faithfully embody the key features of the non-Euclidean geometry. Researchers depend on vari-
ous models of Negative Curvature space such as Poincarè half space, Poincarè disk, and Bel-
trami-Klein model to understand the properties of the space. In our proposal we use the
hyperboloid model.

To understand the problem of assuming the wrong geometry, let’s compare the Euclidean
geodesic with the geodesic on a negatively curved space between two points p and q. We use
the geodesic (shortest distance) estimates for Euclidean distance and the distance on a hyper-
boloid. If p = (p1, p2, p3, . . . .pn) and q = (q1, q2, q3, . . . .qn) are two points in En (n-dimensional
Euclidean space) then their geodesic distance in the Euclidean space is

deðp;qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðq1 � p1Þ2 þ ðq2 � p2Þ2 þ � � � þ ðqn � pnÞ2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðqi � piÞ2
s ð1Þ

However, if these points are on a hyperboloid Hn � En, 1 where K = −1 then

dhðp;qÞ ¼ Cosh�1ð� < p; q >Þ

¼ Cosh�1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

Xn
i¼1

p2i

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

Xn
i¼1

q2i

s
�
Xn
i¼1

qipiÞ
ð2Þ

For any other value of K< 0

dhðp;qÞ ¼
Cosh�1ðK < p; q >Þffiffiffiffiffiffiffiffi�K

p ð3Þ

As these equations highlight, assuming the wrong geometry introduces distortions in esti-
mates of distance. Please see Text A in S3 Text for the detailed derivation of Eqs 2 and 3.

The Proposed Model
In this section, we first provide details of the proposed model and then derive various mathe-
matical relationships. We propose that the given information about time and money is
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perceived in (or mapped on to) the Negative Curvature decision space. Specifically, the follow-
ing points capture the essence of our proposal.

1. We suggest that the decision space where the perception of information and the subsequent
decision takes place resembles the metric properties of Negative Curvature space. The pro-
posal that the decision space is a Negative Curvature space in no way implies that the decision
space appears like a hyperboloid embedded in a higher dimension pseudo-Euclidean space to
a decision maker. Instead, what it means is that the metric properties of the inter-temporal
decision space, as perceived by the decision-maker, resemble the metric properties of the
Negative Curvature space. It is important to note that our proposal does not require any new
set of assumptions pertaining to the inter-temporal decision space being considered a metric
space. As we discussed earlier, existing research already assumes the inter-temporal decision
space to be a metric space and uses the Euclidean metric to assess inter-temporal distance.
Since the Euclidean space is a special case of Riemannian spaces of constant curvature, we do
not need to introduce any new assumptions. Our proposal actually relaxes a very restrictive
assumption of zero Gaussian curvature, which is required for a space to be a Euclidean space.

2. We further propose that the Gaussian curvature of the decision space is malleable. Although
the decision space would remain one with a negative curvature, the value of the Gaussian
curvature could change depending on various factors. We argue consistent with the view
espoused by Riemann [see [38] pg 98] that “the space in itself is nothing more than a three
dimensional manifold devoid of all form; it acquires a definite form only through the advent
of the material content filling it and determining its metric relations”. We propose that dis-
positional factors of the decision-maker, as well as contextual factors in which the decision
is being made, have the ability to change the Gaussian curvature of the decision space and
thus, in turn the metric relationship among objects perceived in it.

3. In our proposed model we consider the influence of both time and money on discounting.
Therefore, instead of using time as the sole influencer on the discounting process, we use
the distance in the time-money decision space. Specifically, when a decision maker is con-
sidering two bundles of time and money, (m1, t1) and (m2, t1), she is doing so from the van-
tage point of her subjective origin. The best way she can compare the two bundles is by
bringing the bundles, by discounting their value appropriately, to the origin. We propose
that the discounting factor she uses is the distance dh of a specific bundle from the point
on which it is situated in her inter-temporal decision space to the origin. The difference
between our method and previous ones is that previous methods use just time in the dis-
counting factor e.g. m1dt1 or m1

1þgt1
. In our model the discounted utility of the (m, t) bundle

is not due to the Euclidean distance between the origin and just t but due to the distance
between the origin and (ϕ(m), η(t)) in the Riemannian space, where ϕ(m) and η(t) are the
perceived values of money and time respectively.

As we demonstrate later, our model explains many of the existing findings in inter-temporal
literature such as those findings, which have been labeled as anomalies as well as those that
deal with time perception (e.g. the thesis that time is perceived logarithmically). Hence, our
proposal is more inclusive and general. Moreover, by presenting a positive theory of inter-tem-
poral decision-making, we not only explain the existing findings in the literature, we also pres-
ent predictions (section) based on the theory that can be empirically tested. Although one
could argue that we are relaxing geometric assumptions of the inter-temporal framework, we
are not adding any additional variables to the framework. Hence, our model is as parsimonious
as the others proposed previously.

Riemannian Geometry and Inter-Temporal Decision-Making
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As an aside, one could question why we are proposing the decision space to have a negative
curvature i.e., K< 0 ? Why not a positive curvature space with K> 0 ? K> 0 spaces are ellipti-
cal spaces. A good example of K> 0 space is a sphere/ball. Let’s imagine that we want to mea-
sure the distance between two points A (which is fixed) and B (which is moving) on a ball. As
B moves away, we first see that the distance between A and B increases. However, later as B
gets farther, its distance from A reduces; eventually B coincides with A and thus, the distance
becomes 0 between A and B. This happens because a ball (like elliptical spaces) is a closed sur-
face. If we consider the decision space to have K> 0, we will face some logical hurdles. For
example, this would imply that as an event moves away from the present time, it’s perceived
temporal distance first increases and then decreases. In other words, this would require us to
think of time as circular where after a finite delay, the future coincides with the present. It is a
notion that is hard to justify logically as well as experientially.

In the next section we derive various mathematical relationships to understand how infor-
mation is perceived in the inter-temporal decision space.

Distance Perception in the Decision Space
We use the distance estimate on a hyperboloid to formulate the distance estimate on the inter-
temporal decision space. Let’s consider a decision-maker who is contemplating an inter-tempo-
ral choice problem from his vantage point at the origin (i.e the present). The decision-maker is
asked to make a choice between receiving $m1 after t1 delay, versus receiving $m2 after t2 delay
(wherem2>m1 and t2> t1). To decide, he has to compute a discounted value ofm1 andm2.
Let ϕ(m) denote the value (utility) one perceives in any given amount of money (here ϕ(.) is a
monotonically increasing function). According to existing literature, if we assume ϕ(m) =m, we
would predict that the decision-maker would choosem2 after t2 delay ifm1d

t1 < m2d
t2 (expo-

nential discounting) or m1

1þgt1
< m2

1þgt2
(hyperbolic discounting). δ< 1 and γ is the discounting

parameter. We acknowledge that there are various discount functions. The use of exponential
and hyperbolic is just to give an example.

In our proposal, we suggest that the decision maker would choosem1 if ϕ(m1)f(dh1)<
ϕ(m2)f(dh2). This implies that discounting is not a function of t (temporal distance) instead it
is a function of dh; the perceived distance between the origin and any money-time bundle in
the Negative Curvature decision space. η(t) is a monotonically increasing function of t and
denotes the magnitude one perceives of any given time interval. Our proposed model can be
described as a two-stage model just like any standard discounting model. In the first stage
both ϕ(m) and η(t) are used to assess distance from the origin. While in the second stage that
distance is used to discount the values of ϕ(m). The following Eq (3), for a particular time/
money bundle ($m at time t), dh represents the distance of that bundle from the origin (status
quo) in the inter-temporal decision space according to

dh ¼
Cosh�1

ffiffiffiffiffiffiffiffi�K
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2ðmÞ þ Z2ðtÞ � 1

K

r !
ffiffiffiffiffiffiffiffi�K

p ; K < 0
ð4Þ

Please see Text B in S3 Text for a detailed derivation of Eq 4.
In order to make our exposition simpler we adopted the following steps. First, we assumed

the Gaussian curvature K to be −1 (however, we can certainly generalize this for any value of
K 2 (−1, 0)). Second, in order to present the equations in the manuscript concisely we specify

Γ (gamma) to be as follows G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2ðmÞ þ Z2ðtÞ

p
. Substituting K = −1 in Eq (4), we can
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write the simplified version of it as

dh ¼ Cosh�1ðGÞ ð5Þ

Please see Text C in S3 Text for a verification of Eq (5) using a different approach. Next we
will describe some properties of dh that will be used at different points in the manuscript. In the
subsequent subsection, we derive the discount function.

Inferring from Eq (5), the following are some relevant properties of dh

@dh
@t

¼ Z0ðtÞ
G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 � 1

p ð6Þ

@dh
@m

¼ �0ðmÞ
G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 � 1

p ð7Þ

Since ϕ(m) and η(t) are monotonic functions ofm and t respectively:

lim
t!1

@dh
@t

¼ 0 ð8Þ

This means that for a constantm, as t approaches infinity, the rate of change of dh
approaches zero. In other words, dh remains largely unchanged for increasing values of t.

lim
m!1

@dh
@m

¼ 0 ð9Þ

Similar to the interpretation of Eqs (8) and (9) shows that for any constant value of t, dh
remains largely unchanged for higher values ofm. While we can increasem, its perceived mag-
nitude remains unchanged in the Negative Curvature decision space.

@2dh
@t2

< 0 ð10Þ

Eq (10) simply shows that dh is a concave function with respect to t.
We next apply dh, the distance estimate in the Negative Curvature decision space, to inter-

temporal decision situations and derive the discount function. We begin by discussing the leak-
ing bucket analogy.

Leaking bucket and Discount Function
Let’s revisit the Leaking bucket analogy introduced earlier. If a bucket leaks water only when
we walk, then inter-temporal decision-making is analogous to predicting how much water
will be left in a leaking bucket after walking a certain distance. That is, what would be the dis-
counted values of money after a delay. The approach in existing research has been to assume
that the surface on which we walk is a Euclidean surface with time being the only dimension
and all the functions that have been developed to explain the loss of water are associated to the
variable/constant size of the hole in the bucket.

We suggest that one way to account for the loss of water is to consider the surface we walk
on to have a constant negative Gaussian curvature, instead of the more restrictive assumption
of zero Gaussian curvature (i.e, a flat Euclidean surface). We further propose that the size of
the hole is constant (i.e., the same amount of water leaks for every unit of distance travelled).
Hence, we can assume the water in the bucket to be money and let y0 be the initial amount of
money in the bucket and ψ be the fraction of money lost per unit of distance travelled on the
Negative Curvature surface (note, that we are conceptualizing time to be a continuous variable,
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however, one would arrive at similar conclusions by treating time as a discrete variable. The
only modification in that instance would be the use of first order difference equations rather
than differential equations). Formally, this can be written in the form of a differential equation
as

d�ðyÞ
ddh

¼ �c�ðyÞ ð11Þ

) �ðydhÞ ¼ �ðy0Þe�cdh ð12Þ

Please see Text D in S3 Text for a complete solution of Eq 11. One way to understand ϕ(ydh)
and ϕ(y0) in Eq (12) is to think of the former as the discounted value of the latter. If we substi-
tute dh with time t in Eq (12) and assume ϕ(y) = y (i.e., linear function), we get the exponential
discounting function used in the DU models [5]. Now if we assume ψ = 1 (unit loss/constant
unit discounting) and substitute the value of dh from Eq (5), we get

�ðydhÞ ¼ �ðy0Þe�Cosh�1ðGÞ ð13Þ

More generally, if the Gaussian curvature of the surface is K< 0 then

�ðydhÞ ¼ �ðy0Þe
�Cosh�1ð ffiffiffiffiffi�K

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2ðy0ÞþZ2ðtÞ�1

K

p
Þffiffiffiffiffi

�K
p ð14Þ

To maintain consistency we will use Eq (13) quite frequently in the remaining portion of
the manuscript. An easy way to understand what distance means in this formulation is to keep
eitherm or t constant. Whenm is kept constant then distance indicates the perceived magni-
tude of time. Similarly, if t is kept constant then distance shows the perceived magnitude of
money.

Next, we provide support for the notion that the decision space is Negative Curvature space
through two different methods. First, if our proposal is true then using Eq (13), we should be
able to explain the existing inter-temporal findings documented in literature [39, 40]. Second,
empirically we should find that the metric properties of the decision space resemble the metric
properties of the Negative Curvature space more than those of the Euclidean space.

Explaining Inter-temporal Findings
Some of the findings that we discuss are inconsistent with only the DU (constant rate discount)
model and some with both the DU and the hyperbolic discounting (variable rate discount) model.

Common Difference Effect
If (x, t) denotes receiving $x at time t then the stationarity property of DU model requires
that when (x1, t1)�(x2, t2) where x2 > x1 and t2 > t1 then (x1, t1 + n)�(x2, t2 + n) for n> 0
also known as constant willingness to wait [15]. However, empirical evidence suggests that
(x1, t1 + n)�(x2, t2 + n) (please see [41] for a description of this effect). In other words, violation
of stationarity property leads to a preference reversal such that a smaller, sooner reward is pre-
ferred over a larger, later reward in the near-future but a larger, later reward is preferred over
a smaller, sooner reward in the distant-future (see [12, 42]). It has been argued that the DU
model is unable to explain the preference reversal because it assumes a time independent, con-
stant rate of discounting. In order to explain preference reversal, the model has to have a vari-
able discount rate which changes (decreases) with time. Would decisions made in the Negative
Curvature decision space be able to explain such preference reversals?
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The discount function is e−Cosh
−1(Γ) (from Eq 13). Therefore, the discount rate can be

described as

cðm; t0Þ ¼
�@e�Cosh�1ðGÞ

@t
e�Cosh�1ðGÞ

¼ Z0ðtÞ
G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 � 1

p
ð15Þ

From Eqs (6) and (8), limt!1 ψ(m, t0) = 0 i.e., as t ! 1; Z0ðtÞ
G
ffiffiffiffiffiffiffiffi
G2�1

p ¼ 0. This means that the

rate at which the value of reward depreciates in Negative Curvature space is variable and
decreases with increasing time. Hence, preference reversals in inter-temporal decisions can be
explained by our Negative Curvature model.

Temporal Sub-additivity
Temporal sub additivity (or sub additive time discounting) is steeper discounting when a delay
is divided into parts compared to when it is undivided [40]. For instance, assume the decision-
maker is indifferent between $100 now and $150 in 1 year and is also indifferent between $150
in 1 year and $200 in 2 years. However, he appears to prefer $200 in 2 years over $100 now.
Therefore, we observe that when the same duration of 2 years is presented as a whole it leads to
less discounting as compared to when it is divided into parts. It is inconsistent with both the
DU and hyperbolic discounting models. We now show that if we consider the decision space to
be negatively curved we can explain temporal sub additivity.

From Eq (10), we know that dh is a concave function. Therefore, if we keepm constant,

dhðt1 þ t2Þ � dhðt1Þ þ dhðt2Þ ð16Þ

In other words, dividing a fixed duration of time into smaller intervals makes it appear
more than the same undivided duration.

How would this perception change discounting? Let’s take a duration t and divide it into two
subdivisions t1 and t2 where t1 + t2 = t while keeping the monetary value constant. Now consider
two situations A and B. In A, an initial amount y0 is first discounted over t1. If the discounted val-
ues at the end of t1 is y1 then from Eq (12), y1 ¼ y0e

�cdh1 If we further discount y1 over t2 then
the discounted value at the end of t2 would be y2 ¼ ðy0e�cdh1Þe�cdh2 ) y2

y0
¼ e�cðdh1þdh2Þ. On the

other hand, lets consider the other situation B where y0 has been discounted for the entire dura-
tion t. If yt is the discounted value at the end of t, then yt ¼ y0e

�cdht ) yt
y0
¼ e�cdht . From Eq (16)

dht < dh1 þ dh2 ) yt
y0
> y2

y0
. In other words, y0 will discounted less over the entire time period t

than when t is divided in intervals t1 and t2. Hence, our Negative Curvature model can explain
temporal sub-additivity.

Logarithmic time perception
Following the Weber-Fechner and Steven’s law [43], it has been proposed that the perception
of time follows logarithmic pattern and the perceived time intervals of the same objective dura-
tion gradually shrink as one considers the distant future [14]. Such a shrinkage is a novel
notion that is incompatible with both the DU and hyperbolic models. More recently, [15], sec-
tion 4 also suggested that variable rate discounting may be caused by a non- linear (logarith-
mic) perception of time by the decision-maker.

However, we can explain such a shrinking in a negatively curved decision space.
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Since Cosh�1ðoÞ ¼ ln ðoþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2 � 1

p Þ where ω> 1, using Eq (5)

dh ¼ ln ðGþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 � 1

p
Þ ð17Þ

Eq (17) shows that perceived distances in the Negative Curvature decision space follow a
logarithmic pattern. Unlike past research which has just shown that time follows a logarithmic
pattern, our model predicts such a pattern for both time and money. From Eqs (8) and (9), we
can see that the perceived magnitude of an extra unit of time/money in the decision space
decreases as the objective value of time/money increases. Therefore, the predictions of Weber-
Fechner law or previous logarithmic functions are subsumed in our model.

Absolute Magnitude Effect
This effect suggests that larger monetary amounts are discounted less steeply than smaller
amounts [5, 39]. Consider a decision-maker who is indifferent between receiving $100 now
versus $200 after 6 months and is also indifferent between receiving $3000 now versus $4500
in 6 months. This example highlights that for small amounts the discount rate is higher than
for large amounts.

We can explain why the absolute magnitude effect occurs if we consider the decision space
to be negatively curved. From Eq (15), we see that limm ! 1 ψ(m, t0) = 0 which means the dis-
count rate declines as the amount increases. In other words, in the negatively curved decision
space for the same duration of time, the discount rate is lower for high monetary outcomes
than for low monetary outcomes.

Preference for Improving Sequences
It has been empirically shown that people prefer improving sequences (where the worst out-
come occurs temporally first and the best outcome last) to diminishing sequences (where the
best outcome occurs temporally first and the worst outcome last, see [44, 45]).

Again, using a negatively curved decision space we can explain why an improving sequence
is preferred. Ifm3 >m2 >m1 wherem1,m2, andm3 are different values of money, we know
from Eq (15) that ψ(m, t0) declines with increasing values ofm. That is, as suggested in explain-
ing the Absolute Magnitude effect, the discount rate decreases with increasing amount of
money such thatm3 would depreciate the least andm1 would depreciate the most. Therefore, if
the decision-maker has to temporally order consumption ofm1,m2,m3, she would prefer to
delaym3 since it will depreciate the least and consumem1 the soonest.

Until now, analytically we provided support for our proposal that the inter-temporal deci-
sion space resembles the metric properties of Riemannian space of constant negative curvature.
We also were able to explain the findings in inter-temporal decision-making using our Nega-
tive Curvature model. We next present the second set of evidence where we attempt to learn
the Gaussian curvature of the decision space to determine whether it is Euclidean or not.

Learning the Curvature of the Decision Space
Any attempt to empirically learn the curvature of the decision space poses an intriguing ques-
tion: if we cannot see the shape of the decision space, how can we infer its curvature. For exam-
ple, we know that a sphere is not a Euclidean surface because we can observe its shape and
find out that it is not a flat surface. However, we don’t have such a vantage point for the inter-
temporal decision space, so how can we infer its curvature? The answer to this question lies in
Gauss’s “Theorema Egregium” which proves that the Gaussian curvature of a surface, while
defined with respect to the higher dimension space that the surface is embedded in, is an
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intrinsic property of the surface. Our understanding of the earth’s geometry illustrates this very
elegantly. Although it has only been a few decades, since we were able to rise above the earth
into space and actually observe that the earth is spherical, scientists were able to infer quite
accurately from measurements taken on the surface of the earth that its shape was spherical
and not flat. More generally, “Theorema Egregium” implies that for any surface a two-dimen-
sional bug living on it, who is unable to holistically view the surface from afar, can still measure
the curvature of the surface. Thus, for surfaces with a constant Gaussian curvature, measure-
ments on that surface itself can reveal its nature i.e. whether the surface is elliptical, hyperbolic,
or Euclidean. Utilizing this property, we do not need to rise above the decision space or observe
it from a distance in order to infer its shape. By taking measurements that inform us about dis-
tances on the decision space, we can infer its curvature.

We used Riemannian space learning method to estimate the Gaussian curvature of the
inter-temporal decision space. In using this method we face two challenges. First, since the dis-
tance estimation process is happening in the mind of the decision maker we cannot visibly see
his distance estimates. Second, we cannot provide the decision maker with an objective yard-
stick for measuring distances i.e. a direct metric assessment of distances. Hence, we use latent
distance estimates that are inferred through the inter-temporal choices/tradeoffs the decision-
maker makes (we discuss this in detail in later sections).

The Riemannian manifold learning method offers a distinct advantage since we do not need
to specify the function that maps the time and money information to the decision space. Simi-
lar to any MDS we don’t need to know how objective points are mapped into subjective points.
All we need is a measure of distance among each combination of points. Hence, by freeing us
from mapping constraints, the procedure provides confirmatory evidence as to the nature of
the decision surface. The only input that the method needs in order to determine the nature of
the surface is the distance a decision maker perceives between various combinations of money
and time. First, we discuss the algorithms to assess the nature of the decision surface (Negative
Curvature or Euclidean) then discuss the procedure for collecting the data and how this data
was used to infer perceived distances in the decision space.

Algorithms
We used two different algorithms to test whether the decision surface was Euclidean or Nega-

tive Curvature. The input for each algorithm was the nðn�1Þ
2

values of the inter-point distance dij
(e.g., if n = 5, we had ten values of dij). These algorithms fit values of dij to assess if the decision
space is Negative Curvature or Euclidean.

For the Negative Curvature algorithm, we utilized Weierstrass coordinates to parametrically
represent points on the surface of a hyperboloid [46]. Here (r, θ) are the polar coordinates in E3

and K is the Gaussian curvature.
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0
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The Negative Curvature algorithm calculated the following:
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1. n x 3 values of the Weierstrass coordinates [xn, yn, zn] from n x 2 values of the polar coordi-

nates ðŷn; r̂nÞ and the Gaussian Curvature K̂ .

2. nðn�1Þ
2 values of d̂ hði; jÞ between all pairs of points i and j using Weierstrass coordinates from

the previous step and Eq (3).

3. �2 ¼Pi

P
jðdij � d̂ hði; jÞÞ2

These steps were repeated until �2 was minimized. In each repetition, the values of ðŷn; r̂ nÞ
and the Gaussian Curvature K̂ were modified using simulated annealing [47]. Once it converged,

the Negative Curvature algorithm provided values of the polar coordinates ðŷn; r̂ nÞ and K̂ .
The Euclidean algorithm worked in a similar manner except that the polar coordinates were

modified by simulated annealing to approximate the radial distance. The algorithms used here
are similar to [48] but with three differences. First, for the Negative Curvature algorithm, we
used Weierstrass coordinates to parametrically represent points on the surface, second, we
directly measured the Negative Curvature distance (instead of estimating it indirectly from a
pseudo Euclidean distance) and third, we used simulated annealing instead of Powell’s method.
Please refer to S1 Table for a test of these algorithms with simulated data.

Procedure
To test our proposed model, we ran two separate studies. The studies used participants who
filled out online surveys. The data was anonymous. The study procedure was approved by the
University of Utah’s Institutional Review Board. Approval Number: IRB_00040903. In study 1,
forty participants were recruited from Amazon mechanical turk and completed the study for
monetary compensation. In study 2, forty-four undergraduate participants took part in the
study for partial course credit. In both studies participants were instructed that they would be
making inter-temporal decisions.

Across both studies, a matching procedure was used to elicit participants’ responses to vari-
ous inter-temporal choices. For instance, participants were asked to fill an amount such that
they would be indifferent between the following 2 payoffs: $100 in 1 month versus $___ in 18
months. In the given instance if yj is the amount filled by the participants, yi is $100 and dij is
the perceived distance between yi and yj in the decision space, then dij can be calculated in the
following manner:

We know from Eq 13 that

yi ¼ yje
�dij

dij ¼ ln
yj
yi

� � ð19Þ

In both studies we used 5 temporal points to elicit different inter-temporal choices (In study
1 these points were: now, 1 year from now, 2 years from now, 5 years from now, and 7 years
from now. In study 2 they were: now, 1 month from now, 9 months from now, 18 months
from now, and 36 months from now). We also used two different values of yi: $100 and $200.
For one set of the matching task we kept yi as $100 and elicited values of yj for the five different
points in time. We repeated this procedure for another value of yi as $200. The matching proce-
dure questions with yi = $100 or $200 were randomized (participants provided a total of 20 val-
ues of yj, 10 each for yi = $100 and yi = $200). Finally, we calculated the inter-point distance dij
by averaging

yj
yi
across yi = $100 and $200 and using it as the input in Eq (19). The rationale for
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using two values of yi was to reduce the impact of outlier responses by using the average value

of
yj
yi
.

The data was then used to determine the nature of the decision surface by examining how
inter-temporal distances were perceived in the decision space.

Results
Given the assumptions in past work, our default hypothesis was that the decision space is
Euclidean, hence, the base model for our comparison was the Euclidean model. To test whether
the Negative Curvature or the Euclidean algorithm provided a better solution, for each partici-
pant, we compared their root mean squared errors divided by the standard deviation of the dis-
tances. We used the following criteria to exclude participants’ responses from the analysis.

1. In order to test whether participants were paying full attention to the inter-temporal
choices, in both studies, we had included a test question, which asked participants to not
respond to that question. If participants answered that specific question it would indicate
that they were not reading the instructions completely. The program automatically termi-
nated the data collection for such participants.

2. We excluded responses from participants that displayed more than 1 instance of preferring a
smaller, later reward over a larger, sooner reward. An example would be someone who is
indifferent between receiving $100 today and $200 after 1 year. He is also indifferent between
receiving $100 today and $150 after 2 years.

Study 1. Of the 40 participants, responses from 5 participants were not used based on the
two criteria specified above. Responses from the remaining 35 participants were analyzed by
subjecting each participant’s response to both algorithms (detailed results for each participant
are summarized in Table A of S2 Table). The Negative Curvature algorithm provided a better
fit (lower RMSE/standard deviation ratio) for 25 participants, the Euclidean and the Negative
Curvature algorithms provided near identical fit for 6 participants, the Euclidean algorithm
provided a better fit for 1, the Negative Curvature fit was less than 1% better than the Euclidean
fit for 2 participants, and for 1 participant (participant #29) while the Negative Curvature algo-
rithm provided a better fit, the estimated Gaussian curvature was near zero (indicating a
Euclidean solution). Taking a more conservative approach, we classified the cases in which the
fit from the Negative Curvature algorithm was less than 1% better than the Euclidean algo-
rithm as a tie and considered all ties as evidence against the negatively curved decision space.
This means out of 35 participants, the Negative Curvature algorithm provided a better fit in 25
cases (χ2(1, N = 35) = 6.42, p<.01). One could argue that the better fit of the Negative Curva-
ture algorithm is because it has one extra parameter (K) than the Euclidean algorithm (where
K is always zero). The following is one way to address this concern. As shown in Table A in S2
Table, when inter-point distances are sampled from a Euclidean surface, the Negative Curva-
ture algorithm accurately recovers the Gaussian curvature as zero. In other words, this algo-
rithm can identify the Gaussian curvature from both the Euclidean as well as the negative
curvature data. If we utilize only the output of this algorithm, we come up with the same con-
clusion as we arrived at by comparing the Negative Curvature algorithm with the Euclidean
algorithm: for 10 participants the Gaussian curvature was near zero while for 25 it was less
than zero.

Study 2. Of the 44 participants, responses from 6 were not used based on the two criteria
discussed above. For the remaining 38 participants, the pattern of result was similar to study 1.
The Negative Curvature algorithm provided a better fit (lower RMSE/standard deviation ratio)
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for 34 participants while the Euclidean algorithm provided a better fit for 3 participants; no dif-
ference (or a tie) in fit emerged for the remaining 1 participant. The results are summarized in
Table B of S2 Table. Again taking a more conservative approach, we classified the cases in
which the fit from the Negative Curvature algorithm was less than 1% better than the Euclidean
algorithm as a tie. By doing this, we obtained 31 cases where the Negative Curvature algorithm
provided a fit better than 1%, 4 cases where the hyperbolic and the Euclidean algorithm pro-
vided largely the same fit (less than 1% improvement) and 3 cases where the Euclidean algo-
rithm provided a better fit. A χ2 test shows that the Negative Curvature algorithm was a better
fit for the data, χ2(1, N = 38) = 15.158, p<.0001.

In sum, the results from the two studies provide empirical support to our proposal that the
inter-temporal decision space, where the information about time and money is perceived, met-
rically resembles a Negative Curvature space rather than a Euclidean space.

Robustness Check. One criticism of our findings could be that we are assuming a linear
transformation of money (i.e., ϕ(y) = y) in Eq (19). We utilized a linear transformation because
in much of past research be it animal behavior or human time discounting, researchers have
utilized a linear transformation of reward to utility. Therefore, if we consider precedence in
terms of empirical testing, the most common functional form was linear. Moreover, it has been
found that utilities of small monetary amounts are generally linear [49] and since we were
using small amounts such as $100 and $200 we felt that a linear transformation would suffice.

One option to test robustness of our findings is to calculate each participants’ unique ϕ(m)
and then calculate the Gaussian curvature K. Abdellaoui et. al [50] discuss a procedure for esti-
mating utility functions in inter-temporal contexts. However, that procedure requires a very
different data collection method where time weights are elicited in the first phase and then
those weights are used in the temporal discounting task. While this procedure may help us in
calculating an individual’s utility function, it may not provide a way to estimate distance dij
that is needed for our algorithm.

The second option is to utilize an empirically established functional form of ϕ(m), which
happens to be the functional form based on Steven’s law [43] and prospect theory ([51], page
294). So we considered ϕ(m) =mα. In the gain domain, past work has shown that α = .88 and if
α = 1 then ϕ(m) =m similar to what we assumed in our existing analysis. This resulted in using

the equation dij ¼ ln
yaj
ya
i

h i
. Next, to test the robustness of our conclusion that the Negative Cur-

vature space depicts the inter-temporal decision space better than a Euclidean space, we varied
alpha from.2 to 1.4 in increments of.2 and used those values to calculate dij. dij’s were then used
as inputs in both algorithms. The two figures in supporting information S1 Figures depict the
results we obtained across both studies (see Figure A in S1 Figures and Figure B in S1 Figures).
For all the values of α, the data still showed that the Negative Curvature algorithm provided a
better fit across studies 1 and 2 compared to the Euclidean algorithm. As expected, since the
scale changes (because changing functional forms changes the scaling), we find that the values
of K change. However, and importantly, the conclusions that a Negative Curvature algorithm
provides a better fit to the data remain unchanged.

Predictions
Analytically and empirically, we have provided evidence to support our proposal that the inter-
temporal decision space resembles the metric properties of negative curvature space i.e. it is
not Euclidean. As we had mentioned earlier, given that our geometric model of inter-temporal
decision making has theoretical underpinnings, not only does it have the ability to explain
existing instances of inter-temporal decision making, it also has the ability to make theoretical
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predictions that can be verified. In this section we put forth some predictions that can be
derived from our proposed model.

Loss/Gain and Gaussian Curvature
Past work has shown that delaying (accelerating) a gain (loss) is discounted more steeply than
accelerating (delaying) a gain (loss). The prevailing explanation is rooted in prospect theory,
which suggests that since losses loom larger than gains, delaying (accelerating) a gain (loss) is
an aversive outcome and thus, felt more acutely than accelerating (delaying) a gain (loss).

Using our geometric model, if ψ(m, t0) is the discount rate then the loss/gain discounting
asymmetry can be expressed as ψ(m, t0)loss > ψ(m, t0)gain. If in Eqs (14) and (15), we substitute
KL and KG as the Gaussian curvatures of the decision space in the loss and gain domain respec-
tively, then we can depict the loss/gain discounting asymmetry in the Negative Curvature deci-
sion space as

� @e
�

Cosh�1
ffiffiffiffiffiffiffiffiffi�KL
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This inequality would hold only if KG < KL where both KG and KL are less than zero. Please
see S4 Text for the complete solution.

It means for delayed-gains to be discounted more than accelerated-gains, the Gaussian cur-
vature of the decision space has to be less when a person considers a delayed-gain than when
he considers an accelerated-gain (or an accelerated-loss than a delayed-loss).

Predicting that the Gaussian curvatures for gains and losses would be different is an intrigu-
ing conjecture because it is analogous to the description of a malleable geometry suggested by
Riemann that we had discussed earlier. It would mean that the decision space is not a rigid con-
tainer with a fixed geometry; instead its geometry (based on different curvatures) evolves with
changes in the decision context. It leads to the proposal that inter-temporal decisions in the
loss and gain domain are different because loss and gain differentially alter the curvature of the
decision space.

We can extend this to make some interesting predictions in other domains where disposi-
tional or visceral factors are known to influence the discount rate. For instance, [52] showed
that children are able to display higher self-control with symbolic versus real reward (e.g., more
likely to be tempted by a real cake than an image of it). Similarly, [39], page 595 discuss how
proximity to sensory contact with a choice object increases the discount rate. Our model would
predict that proximity to sensory rewards influences the discount rate by altering the curvature
(and hence, the geometry) of the decision space.

Monetary subadditivity
In our geometric model, we can see that Eq (5) is sub-additive not just for time but also for
money. In other words, for a constant time duration

dhðm1 þm2Þ � dhðm1Þ þ dhðm2Þ ð21Þ
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Eq (21) would predict that the same amount of money over a fixed duration will be dis-
counted more when divided in parts than as a whole. In other words, if $x1 + $x2 = $X then $X
will be discounted less than the aggregate of $x1 and $x2 over a fixed time duration t. For
example, our model would predict that the discounted value of $500 in 1 year will be more
than the sum of discounted values of $200 and $300 in 1 year.

Subadditivity at distant time periods
As we discussed earlier, inter-temporal subadditivity is inconsistent with both the DU and
hyperbolic discounting models, but it can be explained if we conceptualize the decision space
to be negatively curved. However, very little is known about inter-temporal subadditivity at dis-
tant time periods. In other words, for the distant-future, would we observe a similar subaddi-
tive influence by dividing the time duration into smaller intervals as we observe for proximate
time or would temporal subadditivity attenuate at distant times?

We know from Eq (16) that if we divide a time duration t into t
n
and ðn�1Þt

n
then

dh
t
n
þ ðn� 1Þt

n

� �
� dh

t
n

� �
þ dh

ðn� 1Þt
n

� �
; 8n > 0

If we add interval g to t

) dh
ðt þ gÞ

n
þ ðn� 1Þðt þ gÞ

n

� �
� dh

ðt þ gÞ
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� �
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Now if g! 0 then

lim
g!0
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Consistent with existing research, Eq (22) shows that in the near-future discounting will be
more if the time duration is divided into intervals compared to when the same duration is kept
undivided.

However, if g!1 then

lim
g!1

@dh
ðt þ gÞ

n
þ ðn� 1Þðt þ gÞ

n

� �
@t

2
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3
775∽ lim
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n

� �
@t

þ
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n

� �
@t

2
664

3
775 ð23Þ

Therefore, Eq (23) predicts that at distant time periods, the subadditive influence on dis-
counting would be attenuated.

Conclusions
In this research we question the geometry underlying the inter-temporal decision space and
build a theoretical model based on an appropriate geometry that better explains the existing
empirical findings (anomalous or not) and helps make further theoretical predictions. Past
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research has assumed that the decision space (where time and money are perceived/experi-
enced by the decision-maker) is an Euclidean space. However, we propose that the decision
space is a Riemannian space with constant Negative Curvature.

We support our proposition through two approaches. First, we provide evidence, analyti-
cally, by deriving a new discount function, which uses the distance in the Negative Curvature
space instead of Euclidean temporal distance. By doing so we are able to explain the empirical
anomalies that have been shown in the inter-temporal literature. In other words, empirical
anomalies (such as common difference effect, absolute magnitude effect, temporal subadditivity,
logarithmic time perception, preference for improving sequence) that at times are inconsistent
with the DUmodel and/or the hyperbolic discounting model can be explained by considering
the geometry of the decision space to be non-Euclidean. Second, when we measure the Gaussian
curvature of the decision space through surface learning algorithms we find that the metric
properties of the decision space resemble those of the Negative Curvature space rather than the
Euclidean space.

By building a geometric model of the inter-temporal decision space, we question a widely
accepted notion that the surface underlying the decision space is Euclidean. By relaxing this
rigid assumption, we propose that a more flexible approach should be adopted so that we can
take into account dispositional factors of the decision-maker, as well as contextual factors in
which the decision is being made, to influence the geometry of the decision space and thereby
the metric relationship among the decision objects. Finally, by considering both time and
money in the distance function we are suggesting that both, together, influence inter-temporal
decisions. Such an integration of money helps us get richer insights rather than when only time
is considered to be the sole influencer.

If we look at the discount function in Eq (12), we find that it is analogous to the DU dis-
count function with one difference. Instead of assuming the inter-temporal space (where dis-
counting happens) to be a Euclidean space, we are assuming it be a more flexible negatively
curved space. One intriguing outcome of relaxing the rigid Euclidean assumption is that the
DU model, much criticized for its inability to explain anomalies, can now explain many anom-
alies. It also raises questions about how we define non-normative behavior and anomalies. By
assuming the wrong geometry we may conclude that the decision maker is behaving non-nor-
matively. However, our conclusion is flawed as it is based on the wrong assumption. Let’s con-
sider the analogy of a bug moving on a transparent globe to illustrate this point. Assume that
the bug is traveling along the great circle, which is the shortest (geodesic) path on a globe. How-
ever, assume further that we cannot observe the bug’s actual movements. All we can see is the
shadow of the bug’s movement, including the start and end points, on the floor caused by a
light bulb kept at the top of the globe. We are unaware of the shape of the object on which the
bug is actually moving, whether it is a globe, a cylinder, a saddle or a flat surface. Since, the
only thing we observe is the shadow on the floor, we could erroneously assume that the bug is
moving on a flat surface and try to predict the shortest distance it should move to go from the
start to the end point. By this error in our assumption, we would find the bug’s path to be quite
irrational (at times following a straight line when moving along the prime meridian on the
globe and at times a curved path as we see its shadow moving along the equator) since it would
not be moving by the shortest distance predicted by a flat surface. Unfortunately, it will be our
conclusion that is wrong since we are presuming the movement on the wrong surface; the bug
is quite consistent in its movement as it follows the shortest path on the globe, which is the
great circle.

Similarly, if we replace the globe with the decision space and the bug’s path with how
humans estimate inter-temporal distances, we see that it is our assumption of the geometry of
the space to be Euclidean which is at fault, rather than the decision-maker’s inter-temporal

Riemannian Geometry and Inter-Temporal Decision-Making

PLOS ONE | DOI:10.1371/journal.pone.0145159 March 28, 2016 19 / 22



choices. If we erroneously use the Euclidean distance between two inter-temporal points to
estimate how much an outcome needs to be discounted, we would reach the incorrect conclu-
sion that the decision-maker is non-normative. However, in reality the decision makers are
correctly estimating the distance along the shortest path but their decision space is negatively
curved. Therefore, if we identify the right geometry underlying their decision space, we would
see that they are actually responding normatively. In sum, a more flexible approach is to recog-
nize that the decision objects don’t fit into some pre-specified Euclidean space (with its estab-
lished geometric metric) but that the decision space is defined by the factors present during the
decision making process and can be more malleable than the rigid Euclidean space.
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