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Abstract
A total of 89 trees of Korean pine (Pinus koraiensis) were destructively sampled from the

plantations in Heilongjiang Province, P.R. China. The sample trees were measured and cal-

culated for the biomass and carbon stocks of tree components (i.e., stem, branch, foliage

and root). Both compatible biomass and carbon stock models were developed with the total

biomass and total carbon stocks as the constraints, respectively. Four methods were used

to evaluate the carbon stocks of tree components. The first method predicted carbon stocks

directly by the compatible carbon stocks models (Method 1). The other three methods indi-

rectly predicted the carbon stocks in two steps: (1) estimating the biomass by the compati-

ble biomass models, and (2) multiplying the estimated biomass by three different carbon

conversion factors (i.e., carbon conversion factor 0.5 (Method 2), average carbon concen-

tration of the sample trees (Method 3), and average carbon concentration of each tree com-

ponent (Method 4)). The prediction errors of estimating the carbon stocks were compared

and tested for the differences between the four methods. The results showed that the com-

patible biomass and carbon models with tree diameter (D) as the sole independent variable

performed well so that Method 1 was the best method for predicting the carbon stocks of

tree components and total. There were significant differences among the four methods for

the carbon stock of stem. Method 2 produced the largest error, especially for stem and total.

Methods 3 and Method 4 were slightly worse than Method 1, but the differences were

not statistically significant. In practice, the indirect method using the mean carbon concen-

tration of individual trees was sufficient to obtain accurate carbon stocks estimation if carbon

stocks models are not available.

Introduction
Carbon stocks estimation for the plot or the national level with reliable and verifiable tech-
niques have always increased the social concerns [1–2], whereas the biomass calculation is the
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basis [3]. Compared to the popularized technique of remote sensing in biomass/carbon stocks
monitoring and estimation, the traditional statistical technique which expensively and labour-
intensively depends on the destructive sampling is still widely accepted due to high accurate
estimation on biomass/carbon stocks at both tree and forest levels [4–6]. Allometric model
always showed good performance for components (i.e., stem, branch, foliage and root) biomass
prediction of individual trees or forest and carbon stocks will be converted by the estimated
biomass combining with carbon conversion factor [7]. However, the accuracy of this method is
in great demand to the accuracy of the carbon conversion factor for that some of the conver-
sion factors were only empirical (e.g., 0.5) or simply conducted by species-specific of the trees
[8]. As a result, incorporating the comparison of biomass model into the carbon concentration
analysis is meaningful to the carbon stocks estimation.

A common practice for estimating tree carbon stocks is that tree biomass (total and com-
ponents) models are first developed based on field-sampled data, and then carbon stock is
calculated by multiplying the model-predicted biomass by a conversion factor of carbon con-
centration. The acceptable conversion factors include (1) the carbon concentration of 50% for
woody tissues and 50% for non-woody tissues, or (2) 50% for woody and 45% for non-woody
tissues [9–15]. In addition, carbon stock models were also established to directly predict car-
bon stocks of tree and components and total [16]. However, some noteworthy issues and
problems still existed in these methods. Some reported biomass and carbon models may not
satisfy the additivity or compatibility property among tree components and total equations.
The impact of the prediction errors of tree biomass on estimating carbon stock by using con-
version factors is lack of quantification.

Over the last decades, numerous allometric biomass models have been developed for many
tree species around the world [17–21]. To ensure the additivity or compatibility of tree total
and component biomass models, a variety of parameter estimation methods have been pro-
posed [22–24]. Generalized method of moments (GMM) has been proven the efficiency in
parameter estimation without the specification for the nature of the heteroscedasticity [25–27].
Maximum likelihood (ML) [23] and two-stage error-in-variable model (TSEM) [24] has been
also employed and given the introductions in the researches [27]. However, seemingly unre-
lated regressions (SUR) [22, 25] and non-linear seemingly unrelated regressions (NSUR) [23]
have been proven more general and flexible in recent years [28].

However, there have been limited efforts of developing tree carbon models, compared to
biomass models, using tree attributes such as tree diameter and height [16]. Therefore, the car-
bon stocks of tree components and total are computed as the tree biomass predictions multi-
plied by carbon conversion factors, either an acceptable common constant (e.g., 0.5) or an
empirical constant based on available data. Although this method worked well in some cases
[16], there is lack of effort for quantitatively evaluating the error sources of estimating carbon
stocks due to the biomass models and different carbon conversion factors, i.e., the prediction
error through a sequence of operations on tree carbon stocks estimations. Furthermore, to our
best knowledge, the additive system of biomass models performed well in estimating biomass
and carbon stocks of total and tree components [29].

Korean pine (Pinus koraiensis Sieb. et Zucc) forests mainly distribute in Xiaoxing’an Moun-
tain, and Changbai Mountain in Northeast of China. It is one of the important tree species for
plantations in the area. In addition to the good quality of its lumber for industrial uses, its
seeds are extensively harvested and sold as pine nuts, which have been the most widely traded
pine nut in international commerce. The objectives of this study were (1) to develop additive
systems of tree biomass and carbon stock models, (2) to evaluate four methods for estimating
the carbon stocks of tree total and components, including a direct method (carbon stock
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models), and three indirect methods (i.e., 3 carbon conversion factors), (3) to compare and test
the differences between the four methods.

Data and Method

Biomass and carbon stock data
The study area is located in Heilongjiang province in Northeast China (43°25' − 53°33' N, 121°
11' − 135°05' E) in which the forest area is 19.62 million hectares and the forest coverage is
43.16%. 5 counties were included in the study area (Fig 1) and the mean annual rainfall is 485
− 577mm and the mean annual temperature of 1.69 − 3.60°C. A total of 17 plots were selected
in the different age of forest stand with a total of 89 Korean pine trees were destructively sam-
pled in our study. The characteristics of the stand level for the study area were listed in Table 1.
The data collection process in each site has been permitted by the local authority of each loca-
tion. The names of the six official organizations were Mengjiagang forest farm, Boli forest
bureau, Acheng forest bureau, Qing’an forest bureau and Jidong forest bureau. The whole pro-
cess didn’t damage and disturb the natural environment. All the location of our study was car-
ried out in the state-owned forest land not the private forest.

The sample trees were destructively felled at the ground level with tree diameter at breast
height (D, cm), total tree height (H, m) and length of live crown (CL, m) measured and
recorded in the field immediately. Each stem was cut into sections by the length of 1 m with
each section weighed and recorded. Then, the live crowns were stratified into three layers along
the stem. In each crown layer, 3 − 5 branches were selected as the samples and the branches
and foliage were separated and weighed, respectively. We sampled about 50 − 100 g branches
and foliage with the record of fresh weight and then took the samples to laboratory for mois-
ture content determination. The tree roots were excavated using both a lifting machine and
manual digging. The zone of excavating roots was limited to a circle of 3 m in radius, and the
fine roots (< 5 mm) were not included. All roots of the sampled trees were divided into three
categories: large roots (diameter� 5 cm), medium roots (diameter 2 − 5 cm), and small roots
(diameter< 2 cm). Each root class was sampled (about 100 − 200 g), weighed, and taken to lab-
oratory for moisture content determination. All stem, branch, foliage, and root samples were
oven-dried at 80°C and weighted. The dry biomass of each component was calculated by multi-
plying the fresh weight of each component by the dry / fresh ratio of each component. For each
sample tree, the sum of branch dry biomass and foliage dry biomass yielded the crown dry bio-
mass. The sum of crown dry biomass and stem dry biomass gave the aboveground biomass.
The sum of aboveground dry biomass and root dry biomass produced the total tree biomass
(Fig 2).

For each oven-dried sample of stem, branch, foliage and root approximately 50 mg was
used for measuring carbon concentration using a Multi N/C 3000 analyzer with 1500 Solids
Module (Analytik Jena AG, Germany). The samples were then burned completely at 1200°C in
a vial containing pure oxygen, and the carbon emitted was measured with a non-dispersion
infrared ray (NDIR) analyzer. The carbon stock of each component was then calculated by
multiplying the biomass of each tree component by the respective carbon concentration. Thus,
the carbon stock of individual tree was obtained by summing the component estimates. The
carbon concentration for the each component and total tree were showed as Fig 3.

Model specification and estimation
The data used to fit the models has been supported by the official authority and has no negative
effect on the environment of human being and habitat of wildlife. Over the last two decades,
researchers have tried different allometric equations for modeling tree biomass. The following
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equation was considered excellent in performance and remarkable in flexibility [22, 30, 31].

Y ¼ aXb ð1Þ

where Y is response variable (tree biomass or carbon stocks), X is independent variable, a and b
are model parameters to be estimated. Diameter at breast height which was defined to be 1.3m

Fig 1. The geographical location of study area in the Heilongjiang province, China.

doi:10.1371/journal.pone.0145017.g001
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above the ground level, total tree height (H) and the combination forms were widely employed
in the models. In our study, variable D and the combination form D2H were used to develop
biomass and carbon stock models so that X can be D or D2H.

The additive systems of tree biomass and carbon stock models were formulated based on
the methods by Tang and Li [32], in which the total tree biomass and carbon stocks were used
as the constraints. The compatible biomass and carbon stock model which was derived from

Table 1. Summary of the characteristics of the stand level for the study area.

Study area Number of plots Plot size (ha) Age (year) Density (trees ha−1) Mean DBH (cm) Slope (°) Attitude (m)

Huanan 12 0.06–0.09 32–47 650–1650 15.5–22.0 < 5 194–263

Boli 2 0.27 35–44 2130–2135 12.6–12.7 12 382

Acheng 1 0.27 27 1470 12.7 0 269

Qing’an 1 0.27 32 804 17.4 < 5 228

Jingdong 1 0.27 37 1581 16.6 12 430

doi:10.1371/journal.pone.0145017.t001

Fig 2. DBH (cm), total tree height (H, m) and components and total biomass (SB, BB, FB, RB and TB
are stem, branch, foliage, root and total tree biomass in kg).

doi:10.1371/journal.pone.0145017.g002
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Eq 1 was showed as Eq 2.

Ysi ¼ aiX
bi=ð1þ r1iX

k1i þ r2iX
k2i þ r3iX

k3iÞ
Ybi ¼ air1iX

biþk1i=ð1þ r1iX
k1i þ r2iX

k2i þ r3iX
k3iÞ

Yfi ¼ air2iX
biþk2i=ð1þ r1iX

k1i þ r2iX
k2i þ r3iX

k3iÞ
Yri ¼ air3iX

biþk3i=ð1þ r1iX
k1i þ r2iX

k2i þ r3iX
k3iÞ

ð2Þ

8>>>>><
>>>>>:

where Ysi, Ybi, Yfi, Yri are biomass or carbon stock for the stem, branch, foliage and root respec-
tively. ai, bi, r1i, r2i, r3i, k1i, k2i and k3i are model parameters to be estimated using the jackknif-
ing technique. The subscript i = 1, 2 were biomass models based on Y = aDb and Y = a(D2H)b

which were defined as BM1, BM2 respectively and i = 3, 4 were carbon stock models based on
Y = aDb and Y = a(D2H)b which were defined as CM3, CM4. The detailed derivation process
for Eq 2 was showed in the Appendix.

Model [2] comprises a system of four nonlinear equations in our study. NSUR was applied
to estimate the model coefficients in these nonlinear simultaneous equations using SAS/ETS
PROCMODEL procedure [26]. NSUR employs the nonlinear joint generalized least squares to

Fig 3. Tree components carbon concentration (SCC, BCC, FCC, RCC, TCCwere stem, branch, foliage,
root and total carbon concentration).

doi:10.1371/journal.pone.0145017.g003
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explain the correlations in the system of nonlinear biomass and carbon stock models [23, 25,
28]. Besides, NSUR also allow each model of the system to specify its own weighting function
to overcome heteroscedasticity. To overcome the heteroscedasticity in biomass and carbon
stock model, weighted functions were multiplied at the two side of the non-linear function
with 1/Dx and (D2H)p so that this problem can be resolved. The weighting function of each
tree component for BM1 and CM3 was Yi = resid.Yi/D

p (i = 1, 3 which has been defined above)
and for BM2 and CM4 was Yi = resid.Yi/(D

2H)p. Error variance model ei = xp was developed
(ei is the model residual of the unweighted model, x is D or D2H) in which p was determined
for each component [28].

Model assessment and validation
In this study, jackknifing technique was used to assess the model parameters and validation
model performance. The entire data size by leaving one out (n-1, n is the sample size) were
used to estimate the model parameters, thus the one left sample not used in the model fitting
was employed to predict by the fitted model. The Ra

2 (Eq 3) for each component and the total
and the prediction for each left out independent variable were calculated for each round of fit-
ting. The mean and standard deviation for each parameter were calculated. Ra

2 was used to
assess the goodness-of-fit of the model. Due to the good performance in incorporating both
variance of prediction error and the bias of prediction, the root mean squared error of predic-
tion (RMSEp) was used as the model validation criteria [33, 34]. As a result, a total of five sta-
tistics (Eqs 5–9) were used to validate the model performance.

Adjusted coefficient of determination:

R2
a ¼ 1� ð1� R2Þ n� 1

n� p� 1

� �
ð3Þ

where

R2 ¼ 1�

Xn
i¼1

ðYi � Ŷi;�iÞ2

Xn
i¼1

ðYi � YÞ2
ð4Þ

Root mean squared error of prediction:

RMSEp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðYi � Ŷi;�iÞ2

n� p

vuuuut ð5Þ

Mean prediction error:

ME ¼ 1
n

Xn
i¼1

ðYi � Ŷi; �iÞ ð6Þ

Mean prediction error percent:

ME% ¼ 1
n

Xn
i¼1

Yi � Ŷi; �i

Yi

 !
� 100 ð7Þ
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Mean absolute error:

MAE ¼
Xn
i¼1

jYi � Ŷi;� i

n
j ð8Þ

Mean absolute percent error:

MAE% ¼ 1
n

Xn
i¼1

jYi � Ŷi; �i

Yi

j � 100 ð9Þ

Where Yi is the ith observed value of response variable (i.e., biomass or carbon stock), Ŷi;�i is

the ith predicted value for the dependent variable without inclusion in the fitting dataset, Y is
the mean of observed response variable, n is sample size, and p is the number of model
parameters.

Comparison of carbon stock estimation by four methods
Four methods were used in this study to evaluate the carbon stocks of tree components and
total: (1) the developed additive systems of carbon models (CM3 and CM4) were directly used
to compute the carbon stocks of tree components and total, given tree D and H (Method 1); (2)
the developed additive systems of biomass models (BM1 and BM2) were first used to estimate
the biomass of tree components and total, and then the predicted biomass was multiplied by
the carbon conversion factor 0.5 (Method 2); (3) the developed additive systems of biomass
models were first used to estimate the biomass of tree components and total, and then the pre-
dicted biomass was multiplied by the average carbon concentration of total tree (i.e., 0.48; Fig
3) (Method 3); and (Eq 4) the developed additive systems of biomass models were first used to
estimate the biomass of tree components and total, and then the predicted biomass was multi-
plied by the average carbon concentration of each tree component (i.e., stem 0.47, branch 0.48,
foliage 0.49, and root 0.48; Fig 3) (Method 4). The last three methods were considered as the
indirect methods.

Relative root mean squared error (RMSEr) (Eq 10) was used to compare the prediction
error of the four methods. Thus, the relative root mean squared error for carbon (RMSErc) was
calculated and RMSErc of indirect method was based on Eq 11.

RMSEr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðYi � Ŷi; �1Þ2

n� p

vuuuut � 1
Ŷ
� 100 ð10Þ

RMSErc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðCmi � Ĉmi; �miÞ2

n� p

vuuuut � 1

Ĉm

� 100 ð11Þ

where Cmi is the ith observed value of carbon stock for them tree components (m = 1, 2, 3, and

4 denotes stem, branch, foliage and root, respectively), Ĉmi; �mi is the ith predicted value of car-

bon stock without inclusion in the fitting dataset for them tree components. Ĉm is the mean of
predicted value of carbon stock for them tree components with the 89 rounding processes, and
the other symbols were defined as above.
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Given Eq 11, RMSErc of indirect method was derived as Eqs 12 and 13.

RMSErc ¼
1ffiffiffiffiffiffiffiffiffiffiffi
n� p

p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Wmi � Cmi%� Ŵmi; �mi�Cmk%
� �2s

1
n
�
Xn
i¼1

Ŵmi; �mi � Cmk%

� 100 ð12Þ

RMSErc ¼
1ffiffiffiffiffiffiffiffiffiffiffi
n� p

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Wmi �
Cmi%

Cmk%
� Ŵmi; �mi

� �2
s

� 1

Ŵm

� 100 ð13Þ

Where Wmi is the ith observed value of biomass for them tree components (m = 1, 2, 3, and 4

denotes stem, branch, foliage and root, respectively), Ŵmi; �mi is the ith predicted value of bio-

mass without inclusion in the fitting dataset for them tree components, Ŵm is the mean of pre-
dicted value of biomass of them tree components with the 89 rounding processes, Cmi% is the

ith observed value of carbon concentration for them tree components, Cmk% is the kth carbon
conversion factor used in the three indirect methods for them tree components (k = 1 denotes
carbon conversion factor 0.5, k = 2 denotes the average carbon concentration of total tree 0.48,
and k = 3 denotes the average carbon concentration of each tree component).

To test whether the significant difference will be produced by the four methods for predict-
ing carbon stocks of the tree components and total, the analysis of variance with randomized
completed block design (RCBD) was used [35–37], in which the treatment was the four meth-
ods and blocking was each tree because the four methods were applied to each tree simulta-
neously. The least significant difference (LSD) was used for multiple mean comparisons. The
PROC GLM procedure of SAS 9.3 was used for computation [38, 39], and the significance level
was set at α = 0.05.

Results

Model fitting and validation
The mean values and standard deviations of the each parameter for the compatible biomass
models (i.e., BM1 and BM2) and the carbon stock models (i.e., CM3 and CM4) using jackknif-
ing technique were listed in Table 2. The mean values and standard deviation of Ra

2 for com-
patible biomass and carbon stock models were listed in Table 3. Validation results based on
jackknifing technique for compatible biomass models were showed in Table 4 and for compati-
ble carbon stock models were showed in Table 5. The results indicated that the mean of Ra

2 of
all the components and total for BM1 and BM2 had Ra

2 � 0.75, and Ra
2 � 0.73, respectively,

while the jackknifing validation results were RMSEp� 22.10 kg, ME� ±0.28 kg (ME%� ±
7.24%), MAE� 12.89 kg (MAE� 28.01%) for all components and total of BM1 and RMSEp �
23.89 kg, ME� ±0.31 kg (ME%� ±8.19%), MAE� 13.67 kg (MAE� 31.01%) for BM2,
respectively. Similarly, the Ra

2 of tree components and total for CM3 and CM4 had Ra
2 � 0.74,

and Ra
2 � 0.74, respectively, while the validation results were RMSEp � 10.59 kg, ME� ±1.21

kg (ME%� ± 13.99%), MAE� 6.54 kg (MAE� 28.49%) for CM3 and RMSEp� 10.66 kg, ME
� ±1.32 kg (ME%� ±16.14%), MAE� 6.89 kg (MAE� 30.10%) for CM4 respectively.

It was evident that BM2 fitted the data better (higher Ra
2) than did BM1 for stem and root,

indicating that adding tree H into the biomass model increased the explanation power of these
two components. The jackknifing validation also proved this conclusion with significant larger
RMSEp, ME and MAE for stem and root for BM1 compared to BM2. However, BM2 was much
inferior to BM1 when considering the branch, foliage and the total. For CM3 and CM4, the
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comparison results explained the similar conclusion to BM1 and BM2. However, BM2 and
CM4 have much model parameters to be estimated and the correlations among these parame-
ters could not be ignored. Thus, we preferred to specify the compatible biomass and carbon
stock models using D as the only independent variable to make methods comparison.

Comparison of four methods in carbon stock prediction
Another statistic, namely, relative root mean squared error for carbon (RMSErc) was derived to
compare the carbon stock prediction of four methods [9, 16, 18, 40]. The RMSErc of all tree
components and total with the four methods was showed as Fig 4. For tree stem, Method 1 was
the best with the lowest RMSErc, followed by Method 4, Method 3, and Method 2. For tree
branch, Method 1 was the best method with the lowest RMSErc, followed by Method 4, Method
2 and Method 3. As for foliage, Method 1 was also the best, followed by Method 4, Method 3
and Method 2. The RMSErc of Method 1 for root was slightly larger than Method 2, and still
lower than Method 3 and Method 4. For the total, Method 1 was notably lower than Method 2
but slightly larger than Method 3 and Method 4.

To test the differences among the four methods, the prediction errors were used as the
response variable using analysis of variance (ANOVA) with least significant difference (LSD)
for multiple mean comparisons. The test results were showed in Table 6. The F-test in
ANOVA was statistically significant (p-value< 0.01) for stem, branch, foliage, root and total

Table 2. The mean and standard deviation of the parameter for biomass and carbon stockmodels.

Model parameter BM1 BM2 CM3 CM4

Mean Std Mean Std Mean Std Mean Std

ai 0.0891 0.0042 0.0374 0.0042 0.0451 0.0009 0.0201 0.0034

bi 2.4560 0.0128 2.5120 0.0201 2.5001 0.0108 0.9814 0.0204

r1i 0.0009 0.0011 0.0751 0.0012 0.0043 0.0012 0.1021 0.0075

r2i 0.0240 0.0025 0.2210 0.0032 0.0302 0.0082 0.4441 0.0037

r3i 0.0892 0.0141 0.0848 0.0142 0.0714 0.0212 0.1541 0.0850

k1i 1.8254 0.0014 0.4701 0.0021 1.2801 0.0310 0.1021 0.0454

k2i 0.6090 0.0347 -0.1302 0.0420 0.5205 0.0296 -0.1213 0.0421

k3i 0.4901 0.0424 0.4924 0.0801 0.5713 0.0585 0.1091 0.0577

The weighting factors were D2.33, D2.01, D1.67, D2.19 for BM1, (D2H)0.77, (D2H)0.82, (D2H)0.60, (D2H)0.75 for BM2, D2.22, D2.13, D1.93, D2.28 for CM3 and

(D2H)0.60, (D2H)0.67, (D2H)0.72, (D2H)0.81 for CM4 for stem, branch, foliage and root respectively.

doi:10.1371/journal.pone.0145017.t002

Table 3. The mean and standard deviation of Ra
2 for biomass and carbon stockmodels.

Models Statistics Stem Branch Foliage Root Total

BM1 Mean 0.88 0.78 0.79 0.75 0.90

Std 0.0021 0.0112 0.0074 0.0079 0.0019

BM2 Mean 0.91 0.73 0.76 0.81 0.89

Std 0.0013 0.0114 0.0061 0.0094 0.0069

CM3 Mean 0.91 0.77 0.76 0.74 0.89

Std 0.0011 0.0062 0.0051 0.0041 0.0010

CM4 Mean 0.93 0.75 0.74 0.77 0.88

Std 0.0011 0.0058 0.0049 0.0047 0.0008

doi:10.1371/journal.pone.0145017.t003
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tree carbon prediction. The blocking (trees) was also significant, indicating the differences
among the sampled trees were also relatively large.

The multiple mean comparison results indicated that (1) for stem, Method 1 was signifi-
cantly different fromMethod 2 and Method 3, but there was no difference between Method 3
and Method 4, as well as no difference between Method 1 and Method 4 (Table 6). One the
other hand, for branch, foliage, and root, there was no difference between the four methods.
For the total, there was no significant difference between Method 2 and Method 3, and no dif-
ference among Method 1, Method 3 and Method 4 (Table 6).

Discussion
To investigate which model is better for fitting the biomass and carbon stock data, tree diame-
ter alone and the combination of diameter and height were used as the predictor variables
for predicting the tree component and total biomass and carbon stocks in this study. Some
researchers also used other tree variables such as crown width, stand age, wood density, diame-
ter outside bark at the base of the live crown, crown height, and etc., which may performed
well in some studies [18, 23, 41–44]. However, given the practical difficulties and costs of
obtaining crown measurements, tree diameter and height are the most frequently used predic-
tors in model construction. In our study, adding H into the biomass and carbon stock models
only increased the Ra

2 of stem and root because the differences of tree height at the same tree
diameter contributed more information for the biomass/carbon stocks of stem and root [45]

Table 4. Jackknifing validation for compatible biomassmodels.

Model Component RMSEp(kg) ME(kg) ME% MAE(kg) MAE%

BM1 Stem 15.09 -0.21 -3.61 9.98 13.38

Branch 13.15 0.28 7.24 7.51 18.58

Foliage 4.39 0.06 7.17 2.91 28.01

Root 11.68 -0.13 -7.13 8.09 27.98

Total 22.10 0.08 3.14 12.89 10.94

BM2 Stem 14.13 0.09 1.23 8.69 11.49

Branch 13.38 0.31 7.61 7.98 19.25

Foliage 4.87 0.31 8.19 4.09 31.01

Root 10.01 -0.20 -6.41 7.31 24.32

Total 23.89 0.11 3.45 13.67 11.08

doi:10.1371/journal.pone.0145017.t004

Table 5. Jackknifing validation for compatible carbon stock models.

Model Component RMSEp(kg) ME(kg) ME% MAE(kg) MAE%

CM3 Stem 6.38 -0.18 -3.18 4.33 13.10

Branch 5.29 -0.05 -13.99 3.31 26.99

Foliage 2.20 0.02 8.63 1.51 18.66

Root 7.08 0.11 6.89 4.12 28.49

Total 10.59 1.21 4.30 6.54 16.19

CM4 Stem 5.15 0.11 1.24 2.70 8.65

Branch 5.38 -0.08 -16.14 3.51 30.10

Foliage 2.65 -0.03 -9.20 1.63 18.75

Root 6.48 0.09 6.30 4.10 28.05

Total 10.66 1.32 4.57 6.89 17.15

doi:10.1371/journal.pone.0145017.t005
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and the estimation errors of other tree components (branch, foliage) were increased consistent
with the decreased of Ra

2 after adding H into the models (Tables 3, 4 and 5). Therefore, we
chose D as the sole predictor variable in this study to develop the biomass and carbon stock
models. To ensure the additivity of the tree components and total, the compatible biomass and
carbon stock models were constructed with the total tree biomass and carbon stock as the con-
straints based on the allomatric equation [32]. Furthermore, the Ra

2 of some tree components
might be sacrificed to ensure the additivity for the components and total compared to fit each
component separately. Given NSUR is more flexible and has been widely accepted by forest
modelers [25, 27, 28], we used NSUR as the only parameter estimation method in this study
and did not compare NSUR against others parameter estimation methods.

Currently, the carbon stock calculation is based on either observed carbon concentrations
[46] or a commonly accepted carbon conversion factor 0.5, which is multiplied by the esti-
mated tree biomass [47]. However, the prediction error using indirect method is lack of evalua-
tion. In this study we used RMAErc to compare and evaluate carbon stocks of tree components

Fig 4. RMAErc of four methods for the carbon stock prediction of tree components and total. The error bars correspond to the lower and upper limits of
the 95% confidence intervals.

doi:10.1371/journal.pone.0145017.g004

Table 6. Comparison of treatment means between four methods of carbon stocks evaluation for each component and total, in which the same let-
ters indicate the difference between treatments are not statistically significant.

Method Stem Branch Foliage Root Total

Method 1 A C A A A B

Method 2 C A A A A

Method 3 B A A A A B

Method4 B C A A A B

doi:10.1371/journal.pone.0145017.t006
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of individual trees for the indirect method. The statistical tests (ANOVA with LSD) indicated
that, for stem, the indirect method using the carbon conversion factor 0.5 produced signifi-
cantly larger errors than the other two methods. Consequently, the larger prediction error for
stem would surely lead to the large prediction error for the total biomass because it is known
that more than 50% of the total biomass is located in the stem [16]. It seemed that the other
two indirect methods, using either the average carbon concentration of total tree (0.48)
(Method 3) or the average carbon concentration of each tree component (stem 0.47, branch
0.48, foliage 0.49, and root 0.48) (Method 4), were superior to the carbon conversion factor 0.5
(Method 2). Although the differences between Method 3 and Methods 4 was not significant,
Method 4 would require considerably more time and effort to collect in the field. Thus, Method
3 (the average carbon concentration of total tree) should be sufficient to obtain good carbon
stock prediction with the estimated tree biomass from the models. For branch, foliage and root,
the prediction error among the four methods was not significant, this can be explained that the
real carbon concentration of the three components are more close to the total tree concentra-
tion. Lehtonen et al. (2007) [48] analyzed the prediction error of biomass expansion factors
and the error from variable measurements and regression functions. Their results showed that
most of the error was due to the regression models. Therefore, it is crucial to develop and select
the “best” biomass models as the foundation for computing carbon stocks using indirect meth-
ods. In our study, we used diameter at breast height and the combination of diameter at breast
height and tree height to establish the biomass and carbon stock models. Based on goodness-
of-fit and validation results for the different kinds of models, we selected the model which
employed diameter at the breast height to make comparison among the four methods to
decrease the error of indirect methods deriving from the biomass model as large as possible.
There were no significant differences between Method 3 and Method 4 according to the total
prediction error estimation indicating that using observed average carbon concentration of
individual tree and / or tree components would lead to better prediction for carbon stocks. We
concluded that it was not necessary to measure the carbon concentrations for tree components
because they are time-consuming and costly. The average carbon concentration of individual
tree should be sufficient to obtain accurate computation for carbon stocks given reliable and
accurate estimation of biomass.

The results of our study were different from the study of [16], in which they used three
methods: 1) estimated total biomass was multiplied by weighted mean carbon concentration;
2) estimated tree compartment biomass was multiplied by average carbon concentration of
tree components; and 3) developing carbon stocks prediction model directly. Mello et al.
(2012) [16] found that there was no statistical difference among the three methods. However,
there were only 30 sample trees included in Mello et al. (2012) [16]. The small sample size
might lead to an insignificant comparison. In addition, the biomass and carbon models devel-
oped in Mello et al. (2012) [16] did not hold the additivity or compatibility of tree components
and total. In addition, the differences of prediction errors among the three methods at tree
component levels were not clear in the study of Mello et al. (2012) [16].

Conclusion
Four methods were used to predict carbon stocks of tree components and total for Korean pine
trees in the plantations of northeastern China. Based on the results of goodness-of-fit and
model performance statistics of the biomass and carbon stock models, we chose the compatible
systems of models with tree diameter as the sole independent variable in this study. The NSUR
method was used to estimate the parameters in these models. The prediction errors of four
methods for estimating carbon stocks of tree components and total were compared and tested.
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The direct method using the compatible carbon stocks models (Method 1) was the best
method for predicting the carbon stocks of stem and total. The indirect method using the aver-
age carbon concentration of tree (Method 3) and average carbon conversion of each tree com-
ponent (Method 4) produced relative small prediction errors, while the indirect method using
the carbon conversion factor 0.5 (Method 2) was the worse for estimating the carbon stocks for
tree components and total of Korean pine in this study. However, there were no significant dif-
ference between Method 3 and Method 4. Thus, the average carbon concentration of individual
tree rather than the average carbon concentration for each tree component is good enough to
calculate the carbon stocks for tree components and total.

Appendix
The variable allomatric equation takes the form of:

Y ¼ aXb ðA1Þ
If the response variable Y is tree biomass and the independent variable X is tree diameter at
breast height D, Eq [A1] becomes:

W ¼ aDb ðA2Þ

In this study, our additive systems of tree biomass were formulated based on the methods
by Tang and Li [32], in which the total tree biomass was used as the constraint as follows:

Wt ¼ Ws þ Wb þ Wf þ Wr ðA3Þ
where Ws, Wb, Wf, Wr and Wt are the biomass of stem, branch, foliage, root and total,
respectively.

Thus, based on Eq [A2], the additive system of tree biomass is as follows:

Ws ¼ a1D
b1

Wb ¼ a2D
b2

Wf ¼ a3D
b3

Wr ¼ a4D
b4

Wt ¼ Ws þWb þWf þWr ¼ a0D
b0

ðA4Þ

8>>>>>>><
>>>>>>>:

With the constraint of total biomass, the biomass of each tree component is further formulated
as follows:

Ws ¼
a1D

b1

a1D
b1 þ a2D

b2 þ a3D
b3 þ a4D

b4
� a0Db0

Wb ¼
a2D

b2

a1D
b1 þ a2D

b2 þ a3D
b3 þ a4D

b4
� a0Db0

Wf ¼
a3D

b3

a1D
b1 þ a2D

b2 þ a3D
b3 þ a4D

b4
� a0Db0

Wr ¼
a4D

b4

a1D
b1 þ a2D

b2 þ a3D
b3 þ a4D

b4
� a0Db0

ðA5Þ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

Dividing a1D
b1,a2D

b2,a3D
b3,a4D

b4, respectively, to the numerator and denominator of
each component equation in Eq [A5]. To simplify equation, we define: r1 = α2/α1, r2 =
α3/α1, r3 = α4/α1, k1 = b2−b1, k2 = b3−b1, k3 = b4−b1. Thus, we obtain the following
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equation system:

Ws ¼
a0D

b0

1þ a2
a1
� Db2�b1 þ a3

a1
� Db3�b1 þ a4

a1
� Db4�b1

Wb ¼
a0D

b0

a1
a2
� Db1�b2 þ 1þ a3

a2
� Db3�b2 þ a4

a2
� Db4�b2

Wf ¼
a0D

b0

a1
a3
� Db1�b3 þ a2

a3
� Db2�b3 þ 1þ a4

a3
� Db4�b3

Wr ¼
a0D

b0

a1
a4
� Db1�b4 þ a2

a4
� Db2�b4 þ a3

a4
� Db3�b4 þ 1

¼

Ws ¼
a0D

b0

1þ r1D
k1 þ r2D

k2 þ r3D
k3

Wb ¼
a0 � r1 � Db0þk1

1þ r1D
k1 þ r2D

k2 þ r3D
k3

Wf ¼
a0 � r2 � Db0þk2

1þ r1D
k1 þ r2D

k2 þ r3D
k3

Wr ¼
a0 � r3 � Db0þk3

1þ r1D
k1 þ r2D

k2 þ r3D
k3

ðA6Þ

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

Adding tree total height H to Eq [A2] results in another popular biomass model:

Y ¼ aðD2HÞb ðA7Þ

Following the same derivation process above, the compatible biomass and carbon stocks
models can be constructed as follows:

Ws ¼ a0D
2b0Hb0=ð1þ r1D

2k1Hk1 þ r2D
2k2Hk2 þ r3D

2k3Hk3Þ
Wb ¼ a0r1D

2k1þ2b0Hk1þb0=ð1þ r1D
2k1Hk1 þ r2D

2k2Hk2 þ r3D
2k3Hk3Þ

Wf ¼ a0r2D
2k2þ2b0Hk2þb0=ð1þ r1D

2k1Hk1 þ r2D
2k2Hk2 þ r3D

2k3Hk3Þ
wr ¼ a0r3D

2k3þ2b0Hk3þb0=ð1þ r1D
2k1Hk1 þ r2D

2k2Hk2 þ r3D
2k3Hk3Þ

ðA8Þ

8>>>><
>>>>:

where the model coefficients a0, b0, r1, r2, r3, k1, k2 and k3 are estimated from the tree biomass.
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