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Abstract

Background

Semen is a major vehicle for HIV transmission. Prostatic acid phosphatase (PAP) frag-

ments, such as PAP248-286, in human semen can form amyloid fibrils to enhance HIV

infection. Other endogenous or exogenous factors present during sexual intercourse have

also been reported to promote the formation of seminal amyloid fibrils.

Methodology and Principal Findings

Here, we demonstrated that a synthetic 15-residue peptide derived from the HIV-1 gp120

coreceptor-binding region, designated enhancing peptide 2 (EP2), can rapidly self-assem-

ble into nanofibers. These EP2-derivated nanofibers promptly accelerated the formation of

semen amyloid fibrils by PAP248-286, as shown by Thioflavin T (ThT) and Congo red

assays. The amyloid fibrils presented similar morphology, assessed via transmission elec-

tron microscopy (TEM), in the presence or absence of EP2. Circular dichroism (CD) spec-

troscopy revealed that EP2 accelerates PAP248-286 amyloid fibril formation by promoting

the structural transition of PAP248-286 from a random coil into a cross-β-sheet. Newly

formed semen amyloid fibrils effectively enhanced HIV-1 infection in TZM-bl cells and U87

cells by promoting the binding of HIV-1 virions to target cells.

Conclusions and Significance

Nanofibers composed of EP2 promote the formation of PAP248-286 amyloid fibrils and

enhance HIV-1 infection.
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Introduction
In 2013, an estimated 35 million people were living with human immunodeficiency virus
(HIV) worldwide, and approximately 2.1 million people were newly infected with HIV [1].
Sexual transmission of HIV, including both heterosexual and homosexual transmission, is
responsible for the majority of HIV infections in many developing countries. Identification of
the host and viral factors that significantly enhance HIV infection is critical for developing
strategies to prevent sexual transmission of HIV [2–4].

Semen acts as a vector for HIV transmission through sexual intercourse and plays an impor-
tant role in the spread of HIV/AIDS [5]. Semen harbors several crucial biological factors that
may affect the spread of HIV [6–8]. Notably, semen boosts HIV infectivity and impairs the
antiviral efficacy of microbicides [9]. Seminal amyloid fibrils have been shown to enhance HIV
infectivity. One of the best-characterized seminal amyloid fibrils is SEVI (semen-derived
enhancer of virus infection). SEVI fibrils are formed by a peptide derived from residues 248 to
286 of prostatic acid phosphatase (PAP). This peptide, designated PAP248-286, can reportedly
enhance the infectious titer of HIV-1 by up to five orders of magnitude [10, 11]. Other PAP
fragments (e.g., PAP85-120) and semenogelins (SEM1 and SEM2) also promote HIV-1 infec-
tion by forming amyloid fibrils in seminal fluid [12–14]. Seminal plasma or bacterial curli pro-
teins may promote the formation of seminal amyloid fibrils [15, 16]. Collectively, seminal
amyloid fibrils are exploited by HIV to promote its infection via sexual transmission.

We previously demonstrated that three peptides, termed enhancing peptides (EPs), derived
from the HIV-1MN envelope gp120 glycoprotein blocked T-20-mediated anti-HIV activity
[17]. Coincidentally, several short peptides derived from the HIV-1 gp120 and gp41 envelope
glycoproteins were found to assemble spontaneously into stable nanofibrils and significantly
facilitate HIV infection [18–20]. More recently, our group demonstrated that some EPs can
also form amyloid fibrils and are able to enhance HIV-1 infection [21]. However, it is unclear
whether these EPs directly enhance HIV-1 infection through the formation of amyloid fibrils
or whether other indirect mechanisms of action are responsible. One EP, a 15-residue peptide
derived from the HIV-1MN gp120 coreceptor-binding region (EP2, aa 417–431, QCKIK-
QIINMWQEVG), was found to enhance HIV-1 infection. Gp120 is considered an Ig superan-
tigen (Ig-SAg) [22]. Gp120 residues 421–433 (KQIINMWQEVGK) form a B cell
superantigenic (Sag) site on the protein and contain amino acids that are critical for binding to
host CD4 receptors. The 421–433 epitope is conserved in simian immunodeficiency virus
(SIV) and relatively conserved in diverse HIV strains. Residues 421–433 of gp120 are recog-
nized by immunoglobulins (Igs) and catalyze its hydrolysis through a serine protease-like
mechanism in uninfected humans [23]. Conserved sequences exist between EP2 and residues
421–433 of gp120. Notably, the EP2 sequence is found in a short peptide fragment (INMWQG)
that is produced by gp120 degradation in native gp120-loaded rat hepatocytes [24]. Therefore,
EP2 might be a critical factor in enhancing HIV infection. In this study, we examined the effect
of EP2 on the conversion of PAP248-286 into amyloid fibrils and its potential role in enhanc-
ing HIV-1 infection.

Materials and Methods

Peptides, cell culture, plasmids and reagents
The peptide PAP248-286 was synthesized and purified by GL Biochem (Shanghai, China) into
a lyophilized powder. The lyophilized PAP248-286 peptide (>95% purity) was dissolved in
phosphate-buffered saline (PBS) to a concentration of 10 mg/ml. EP2 was synthesized and
purified by Huada Biotech Company (Shanghai, China). Lyophilized EP2 (>90% purity) was
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dissolved in dimethylsulfoxide (DMSO) or deionized water to a concentration of 10 mg/ml.
Stock solutions of the peptides were divided into aliquots and stored at -20°C. MT-2 cells,
TZM-bl cells, U87-CD4-CCR5 cells, the pNL4-3E-R-Luc plasmid, HIV-1 Env-encoding plas-
mids and the peGFP-Vpr plasmid were obtained from the National Institutes of Health AIDS
Research and Reference Reagent Program. GHOST (3) Hi-5 and HEK-293 T cells were pur-
chased from the ATCC (Manassas, VA). Plasmids encoding CXCR4-tropic HIV-1 NL4-3,
CCR5-tropic HIV-1 SF-162, and dual-tropic 81A and NL4-3 infectious clones were kindly pro-
vided by Jan Münch of Ulm University (Ulm, Badenwürttemberg, Germany). Polyethylenei-
mine (PEI), hen egg-white lysozyme (HEWL), bovine insulin, thioflavin T and Congo Red Kits
were purchased from Sigma-Aldrich (St. Louis, MO). ProteoStat Amyloid Plaque Detection
Kits were purchased from Enzo Life Sciences (Plymouth Meeting, PA).

Assaying the capacity of EP2 peptides to self-assemble into nanofibers
in vitro
The ability of EP2 to self-assemble into nanofibers was evaluated by two methods based on
ThT fluorescence assays. First, a concentration-dependent experiment was performed. For this
assay, 5 μl samples containing graded concentrations of EP2 (2, 1, 0.5, 0.25 and 0.125 mg/ml in
PBS) were stained using 195 μl ThT (50 μM in PBS) [19, 25]. Fluorescence intensity was mea-
sured using an RF-5301 PC spectrofluorophotometer (Shimadzu) with an excitation wave-
length of 440 nm (5 nm bandwidth) and an emission wavelength of 482 nm (10 nm
bandwidth). Second, a time-dependent experiment was performed. For this assay, a 5 μl EP2
sample (2 mg/ml in PBS) was added to 195 μl ThT (50 μM in PBS), and ThT fluorescence
intensity (averaging over 30 s) was measured every 5 min for 30 min using an RF-5301 PC
spectrofluorophotometer. The size and zeta potential of the EP2 formed fibers (1 mg/ml in
deionized water) were determined at 25°C using a Zetasizer Nano ZS instrument (Malvern,
Worcestershire, UK). Each measurement was performed in triplicate. EP2 fiber morphology at
two different final concentrations (300 and 10 μg/ml) at two time points following agitation (1
min and 48 h) was visualized on an H-7650 transmission electron microscope using an acceler-
ating voltage of 80 kV (Hitachi Limited, Tokyo, Japan).

Observing EP2 and PAP248-286 fibril morphology via TEM
Fibrils were generated by incubating 3 mg/ml PAP248-286 in the presence or absence of EP2
(100 μg/ml) with agitation at 1,400 rpm at 37°C in an Eppendorf Thermomixer (Hamburg,
Germany). Fibril morphology was visualized via TEM at different time points following agita-
tion. To accomplish this, PAP248-286 fibers (300 μg/ml) incubated with or without EP2
(10 μg/ml) were collected at different time points following agitation (0, 4, 8, 12, 24 and 48 h).
All samples were tenfold diluted in PBS buffer. The samples were then deposited on glow-dis-
charged, carbon-coated grids for 2 min and negatively stained with 2% phosphotungstic acid
for another 2 min. Amyloid fibril morphology was visualized as described above.

Effects of EP2 on PAP248-286 aggregation
To select the optimum concentration of EP2 to foster the aggregation of PAP248-286, graded
concentrations of EP2 (0, 25, 100 and 400 μg/ml) were agitated with PAP248-286 (3 mg/ml) at
1,400 rpm at 37°C. After screening, 3 mg/ml PAP248-286 in the presence or absence of EP2
(100 μg/ml) was agitated at 37°C for 48 h at 1,400 rpm. Individual solutions of PAP248-286
and EP2 alone were agitated under the same conditions to serve as negative controls. Aggrega-
tion was examined at different time points (0, 2, 4, 6, 8, 12, 24, 36 and 48 h) by ThT and Congo
red staining as previously described [19, 25]. For the ThT assay, 5 μl samples were added to
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195 μl ThT working solution (50 μM). After mixing, the fluorescence intensity was measured
as described above. For the Congo red staining assay, 10 μl samples were added to 200 μl of
Congo red solution from a Congo Red Kit (Sigma). After incubating for 2 min at room temper-
ature, the mixtures were centrifuged at 12,000 rpm for 5 min, and the red-dyed fiber precipitate
was dissolved in 50 μl of DMSO. The absorbance was then measured at 490/650 nm using an
ELISA reader (Tecan, Research Triangle Park, NC). To analyze the effects of EP2 on the forma-
tion of other amyloid fibrils, HEWL and bovine insulin were used as controls [26, 27]. Briefly,
sample solutions were prepared by dissolving HEWL in 1 M NaCl solution (final HEWL con-
centration of 120 μM) with or without EP2 solution (final concentration of 100 μg/ml in deion-
ized water); small amounts of 0.1 M HCl were added to adjust the pH of solution to 4.2. Bovine
insulin samples (final concentration of 2 mg/ml) were prepared by diluting a fresh stock solu-
tion of 20 mg/ml (3.5 mM) bovine insulin in 0.04 M HCl (pH 1.6) into 20 mM phosphate and
0.1 M NaCl buffer (pH 7.4) with or without EP2 solution (final concentration of EP2 is 100 μg/
ml in deionized water) immediately prior to the experiment. The mixtures were agitated at
1,400 rpm at 37°C and examined at different time points via ThT assay [26]. EP2 (100 μg/ml)
alone was agitated under the same conditions as a negative control. To assess EP2 fiber stabil-
ity, we further detected the ThT fluorescence intensity of EP2 fibers (1 mg/ml) in 1 M NaCl
solution at different pH values (3.0, 7.4 and 10.0) at varying time points (0, 1, 2, 3, 4, 5, 6, 24
and 48 h).

CD spectroscopy analysis of fibril secondary structure
PAP248-286 (3 mg/ml) was agitated in the presence or absence of EP2 (100 μg/ml) at 1400
rpm at 37°C as described above. The secondary β-sheet structures of PAP248-286, EP2 and the
mixture of PAP248-286 and EP2 were examined at different time points after agitation (0, 8
and 48 h) using CD spectroscopy in the far-UV spectral region between 180 and 260 nm. The
formed fibers were diluted 15 times in PBS buffer prior to CD analysis. Therefore, the final con-
centrations of the PAP248-286 and EP2 fibers were 200 μg/ml and 6.67 μg/ml, respectively.
The CD spectra were reported at room temperature using a Jasco 715 spectropolarimeter
(Jasco Inc., Japan) equipped with a thermostat-controlled cell housing and cells with a 1-mm
path length [17]. Each spectrum was recorded at least three times to ensure the reproducibility
of the results. The spectra were corrected via the subtraction of a solvent-only blank. The quan-
tities of amyloid fibrils with different secondary structures were estimated based on the molar
residue ellipticity using Jasco software utilities as previously described [17, 28].

The effects of PAP248-286-formed amyloid fibrils on eGFP-labeled HIV-
1 virion binding to target cells
EGFP-labeled HIV-1 virions were produced by PEI-mediated cotransfection of 293T cells with
proviral DNA expression plasmids and peGFP-Vpr plasmids as previously described [29]. Cul-
ture supernatants were replaced with fresh medium after transfection overnight at 37°C. Two
days after transfection, culture supernatants were collected, clarified by sedimentation and
stored in aliquots at -80°C for later use.

The binding of eGFP-labeled HIV-1 virions to PAP248-286 amyloid fibrils was examined
by fluorescence microscopy. Briefly, 200 μg/ml PAP248-286, 6.67 μg/ml EP2 and mixtures of
PAP248-286 and EP2 collected at different time points following agitation (0, 8 and 48 h) were
stained with Proteostat dye from a ProteoStat Amyloid Plaque Detection Kit at room tempera-
ture as previously described [30]. The samples were incubated 1:1 with eGFP-labeled HIV-1
virions (R5-tropic) at 37°C for 30 min and imaged using a laser scanning Nikon A1 confocal
microscope (Nikon, Japan). The effects of PAP248-286-formed amyloid fibrils on the binding
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of eGFP-labeled HIV-1 virions to target cells were also measured by fluorescence microscopy
[11, 13]. First, PAP248-286 and EP2 samples were incubated 1:1 with eGFP-labeled HIV-1 viri-
ons at 37°C for 30 min. Then, 3×104/ml GHOST (3) Hi-5 cells were incubated with the pre-
treated HIV-1 virions at 37°C for another 30 min. The cells were then fixed in
paraformaldehyde and stained using a ProteoStat Amyloid Plaque Detection Kit and Hoechst
33342 stain (Enzo Life Sciences) for 30 min at room temperature. Finally, the cells were washed
three times with PBS buffer and imaged with a laser scanning confocal microscope (Nikon,
Japan).

Determination of the ability of PAP248-286-formed amyloid fibrils with
assistance of EP2 to enhance HIV-1 infection
HIV-1 Env-pseudotyped viruses were produced by cotransfecting cells with pNL4-3E-R-Luc
and the HIV-1 Env-encoding plasmid JR-FL via PEI transfection as previously described [31–
33]. To determine the ability of PAP248-286-formed amyloid fibrils (3 mg/ml) to enhance
pseudotyped HIV-1 infection in the presence of EP2 (100 μg/ml), U87-CD4-CCR5 cells were
seeded into 96-well microtiter plates at 1 × 104 cells/well and incubated at 37°C overnight. Agi-
tated peptide solutions (final PAP248-286 concentration of 30 μg/ml) were incubated with
HIV-1 Env-pseudotyped virus for 5 min. Following this, U87-CD4-CCR5 cells were incubated
with the peptide-virus mixtures at 37°C for 3 h. To minimize the toxic effects caused by amy-
loid fibrils, the culture supernatants were replaced with fresh medium after 3 h. The cells were
collected 72 h post-infection, and luciferase activity was detected using a luciferase assay kit
(Promega, Madison, WI). Furthermore, CXCR4-tropic NL4-3, CCR5-tropic SF-162, and dual-
tropic 81A and NL4-3 infectious HIV-1 clones were produced by transfection using proviral
DNA expression plasmids and PEI transfection reagent as previously described [10, 11]. To
assess HIV-1 virion infectivity in the presence of the agitated peptide solutions, TZM-bl cells at
a density of 1 × 104 cells/well were incubated for 3 h with different infectious HIV-1 clones in
the absence or presence of agitated peptide solutions at different time points (final PAP248-
286 concentration of 30 μg/ml). The culture supernatants were then replaced with fresh
medium. At 72 h post-infection, the cells were collected, washed and lysed with a lysing
reagent, and luciferase activity was detected using a luciferase assay kit (Promega, Madison,
WI). Data were analyzed using SPSS version 19.0 via one-way ANOVA and Dunnett’s post hoc
multiple comparisons test (IBM Corporation, Armonk, NY).

Results

EP2 peptides rapidly self-assemble into nanofibers in PBS
To evaluate the capacity of EP2 peptides to form fibers and assess the characteristics of such
fibers in vitro, we diluted a DMSO-containing stock solution of EP2 peptides into PBS. ThT,
which is the most commonly used dye for detecting amyloid fibril formation, was used to assess
the formation of EP2 nanofibers. The results showed that EP2 could form fibrils almost imme-
diately following dilution into PBS buffer in a concentration-dependent manner at room tem-
perature (Fig 1A). A time-dependent assay showed that a 2 mg/ml EP2 solution rapidly (in 1
min) formed fibers (Fig 1B). The size and the zeta potential of the EP2 fibers were determined
using a Zetasizer Nano ZS instrument. Zeta potential is widely used to quantitate the magni-
tude of a charge. A solution or dispersion with high zeta potential (more than 30 mV) is con-
sidered to be electrostatically stabilized, while colloids with low zeta potentials (from 0 to 30
mV) have a tendency to aggregate. The mean hydrodynamic size of the EP2 fibrils was 9.4±1.7
nm (Fig 1C), and their zeta potential was +16.7±1.0 mV (Fig 1D); these values suggest that EP2
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forms nanofibers. We next utilized TEM to evaluate EP2 nanofibers formed at a normal con-
centration (final concentration of 300 μg/ml) and at a very low concentration (final concentra-
tion of 10 μg/ml) at 1 min and 48 h following dilution into PBS. For the samples at a normal
concentration, branching, needle-like, short fibrils were revealed at both 1 min and 48 h (Fig
1E). For the samples at a low concentration, granular species with no fiber-like structures were
observed at 1 min after dilution, and both granular species and small fibers were found at 48 h
(Fig 1F). Collectively, these results confirm that the EP2 peptide can rapidly self-assemble into
nanofibers in vitro.

EP2 greatly accelerates PAP248-286 amyloid fibril formation
Utilizing a variety of approaches, we next investigated whether EP2-formed nanofibers pro-
mote PAP248-286 amyloid fibril formation. Following dilution into PBS, PAP248-286 (3 mg/
ml) could not sponentanously form amyloid fibrils at room temperature; this condition was
tested for over 72 hours. Thus, unlike EP2, PAP248-286 cannot form fibers under physiological
conditions. However, after agitating PAP248-286 at a concentration of 3 mg/ml in PBS at 37°C
for 12 h at 1,400 rpm, small fibers were observed under TEM. At 24 h after agitation, branch-
ing, needle-like, long amyloid fibrils were revealed, suggesting that PAP248-286 slowly forms
amyloid fibrils under agitation (Fig 2).

To determine how EP2 (100 μg/ml) affects PAP248-286 amyloid fibril formation, the pres-
ence of amyloid fibrils at different time points after agitation (0, 4, 8, 12, 24 and 48 h) in the
presence of EP2 was evaulated by TEM. As shown in Fig 2, in the presence of EP2, PAP248-
286 amyloid fibrils formed after shaking for 4 h; in the absence of EP2, fibril formation
occurred after shaking for 24 h. These results suggest that EP2 accelarates PAP248-286 amyloid
fibril formation.

We next measured the kinetics of amyloid formation and PAP248-286 aggregation in the
presence or absence of EP2. As shown in Fig 3A, EP2 increased the rate of PAP248-286 amy-
loid fibril formation after agitation in a concentration-dependent manner, as assessed by ThT
fluorescence assay. Moreover, the addition of preformed EP2 fibrils (100 μg/ml) reduced the
lag time of PAP248-286 amyloid fibril formation by approximately 2 h, as measured by both
ThT fluorescence and Congo red assay (Fig 3B and 3C). In contrast, the lag time of PAP248-
286 amyloid fibril formation in the absence of EP2 was approximately 8 to 12 h. EP2 alone did
not bind to either ThT or Congo red amyloid-specific dyes at the lowest tested concentration
(2.5 μg/ml for the ThT assay and approximately 5 μg/ml for the Congo red assay). Overall, the
addition of the EP2 peptide increased the rate of fibrillization. Furthermore, we observed that
EP2 promoted the aggregation of HEWL into amyloid fibrils with an approximate lag time of 2
to 4 h, as measured by ThT assay (Fig 3D); the lag time of HEWL fibril formation in the
absence of EP2 was approximately 8 to 10 h at pH 4.2 (Fig 3D). We further tested how the
addition of EP2 seeds to insulin affects fibril formation at 37°C at neutral pH under stirring. In
the presence of EP2 seeds, insulin fibril formation was significantly accelerated (Fig 3E). The
lag times of insulin fibril formation with and without EP2 seeds were approximately 2 h and 8
to 10 h, respectively. Stability testing showed that EP2 fibers were fairly stable at different pH
values for up to 48 h (Fig 3F). These results further confirm that EP2 nanofibers accelerate the
formation of PAP248-286 amyloid fibrils.

Fig 1. EP2 self-assembles into amyloid fibrils. (A) Different concentrations of EP2 formed amyloid fibrils immediately after gradient dilution, as shown by
ThT assay results. (B) EP2 (2 mg/ml) rapidly formed amyloid aggregates, as shown by ThT assay results (every 5 min for 30 min). Readings from a blank
control were subtracted from all samples. (C) The mean hydrodynamic size of EP2 fibrils (1 mg/ml). (D) The zeta potential of EP2 fibrils (1 mg/ml). EP2 alone
at a (E) final concentration of 300 μg/ml and a (F) final concentration of 10 μg/ml was imaged at two time points (1 min and 48 h) as a negative control. The
scale bar is 1 μm.

doi:10.1371/journal.pone.0144522.g001
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EP2 promotes PAP248-286 beta-sheet formation, as shown by CD
spectroscopy
Beta-sheet aggregation is a distinguishing feature of amyloid fibril formation. To determine the
effects of EP2 on PAP248-286 β-sheet aggregation, we evaluated the conformational changes
associated with PAP248-286 aggregation in the presence or absence of EP2 by characterizing
the CD spectra associated with each condition. As shown in Fig 4A, the spectra of PAP248-286
with or without EP2 with no agitation revealed the presence of a characteristic random coiled
structure. After shaking for 8 h at 37°C, in the presence of EP2, PAP248-286 underwent an
obvious transition from a random coil structure to a β-sheet conformation with a minimum
absorbance at 220 nm (Fig 4B). The spectrum of PAP246-248 alone showed the formation of a
characteristic random coil structure at 8 h, indicating that β-sheet aggregation had not
occurred (Fig 4B). After agitation for 48 h, PAP248-286 displayed a typical β-sheet structure
whether in the presence of absence of EP2 (Fig 4C). As shown in Fig 4A–4C, EP2 alone dis-
played a random coil structure. These results indicate that EP2 accelerates PAP248-286 amy-
loid fibril formation by promoting the structural transition of PAP248-286 from a random coil
to a cross-β-sheet conformation.

PAP248-286 amyloid fibrils formed in the presence of EP2 enhanced
HIV-1 virion binding to target cells
Fluoresence confocal microscopy revealed that HIV-1 virions can bind to PAP248-286 amyloid
fibrils (Fig 5A). Amyloid fibrils were stained for visualization using an amyloid-specific red
fluorescent dye (ProteoStat Amyloid Plaque Detection Kit). After staining, amyloid fibrils were
incubated with eGFP-labeled HIV-1 virions (R5-tropic) for 3 h, and two-color images of the
amyloid fibers (red) and HIV-1 virions (green) were created using fluorescence confocal
microscopy. As shown in Fig 5A, regardless of the presence of EP2, PAP248-286 amyloid fibrils
could aggregate HIV-1 virions at different time points following agitation. Furthermore, the
presence of amyloid fibrils enhanced the attachment of HIV-1 virions to target cells, as verified
by three-color imaging of the fibrils (red), virions (green), and cells (blue; Fig 5B). Taken
together, these data suggest that, regardless of the presence of EP2, PAP248-286 amyloid fibrils
promote interactions beween HIV-1 virions and target cells.

PAP248-286 amyloid fibrils formed in the presence of EP2 retained the
ability to enhance HIV-1 infection
Based on the above findings, we utilized an infection assay to investigate whether PAP248-286
amyloid fibrils formed in the presence of EP2 could enhance HIV-1 infection. In the absence of
EP2, only PAP248-286 amyloid fibrils collected after 36 to 48 h of shaking at 37°C could
increase the infectivity of R5-tropic HIV-1 Env-pseudotyped viruses on U87-CD4-CCR5 cells.
No enhancement was observed if the amyloid fibrils were collected prior to 24 h of agitation
(Fig 6A). Conversely, PAP248-286 amyloid fibrils formed in the presence of EP2 significantly
enhanced HIV-1 infectivity after shaking for only 2 to 4 h at 37°C (Fig 6A). This finding may
be attributed to the accelerated formation of PAP248-286 amyloid fibrils mediated by EP2. The
infectivity-enhancing properties of PAP248-286 amyloid fibrils formed in the presence or

Fig 2. EP2 accelerates PAP248-286 amyloid fibril formation, as shown by TEM. PAP248-286 (3 mg/ml)
was agitated to allow fibril formation in the presence or absence of EP2 (100 μg/ml). Amyloid fibril samples
(300 μg/ml) collected at different time points following agitation (0, 4, 8, 12, 24 and 48 h) were visualized by
negative staining under TEM. The scale bar is 1 μm.

doi:10.1371/journal.pone.0144522.g002
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absence of EP2 were also tested in TZM-bl cells infected with R5-tropic, X4-tropic and dual-
tropic infectious HIV-1 clones. As expected, similar results were observed when using amyloid
fibrils formed after 2 h of agitation in the presence of EP2; these fibrils exhibited a progressively

Fig 3. EP2 greatly accelerates PAP248-286 amyloid fibril formation, as shown by ThT assay. (A) EP2 promoted PAP248-286 amyloid fibril formation (3
mg/ml) in a concentration-dependent manner, as shown by ThT assay. EP2 (100 μg/ml) reduced the lag time of amyloid fibril formation, as shown by both
ThT fluorescence (B) and Congo red assays (C). (D) EP2 (100 μg/ml) promoted the formation of amyloid fibrils from hen egg-white lysozyme (HEWL,
120 μM), as shown by ThT assay. EP2 alone served as a negative control. Readings for a blank control were subtracted from all samples.

doi:10.1371/journal.pone.0144522.g003

Fig 4. EP2 promoted PAP248-286 to undergo a structural transition to a beta-sheet conformation by CD spectroscopy. A 3 mg/ml sample of
PAP248-286 was agitated in the presence or absence of EP2 (100 μg/ml). Sample spectra were collected at the following time points after agitation: (A) 0 h,
(B) 8 h and (C) 48 h. Readings from a blank control were subtracted from all samples.

doi:10.1371/journal.pone.0144522.g004
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increasing ability to enhance the infectivity of the different infectious HIV-1 clones (Fig 6B–
6D). PAP248-286 amyloid fibrils formed in the absence of EP2 also possessed the ability to
enhance HIV infectivity after shaking for 12 to 48 h (Fig 6B–6D).

Fig 5. EP2 enhanced PAP248-286 fibril formation and promoted the attachment of HIV-1 virions to target cells. (A) ProteoStat-stained amyloid fibrils
at different time points following agitation (100 μg/ml, red) were mixed with eGFP-labeled HIV-1 virions (green, R5 strains) for 3 h, and the samples were
imaged using fluorescence confocal microscopy. The scale bar is 5 μm. (B) ProteoStat-stained amyloid fibrils at different time points following agitation
(200 μg/ml, red) were added to eGFP-labeled HIV-1 virions (green, R5 strains), and the mixtures were added to GHOST (3) Hi-5 cells (blue). The effects of
fibril presence on the binding of HIV-1 virions to target cells were assessed using fluorescence confocal microscopy. The scale bar is 10 μm.

doi:10.1371/journal.pone.0144522.g005

Fig 6. EP2 promoted PAP248-286 amyloid fibril formation and thereby enhanced HIV infection. Fibrils were generated by incubating 3 mg/ml PAP248-
286 in the presence or absence of EP2 (100 μg/ml). At the indicated time points, (A) the addition of fibril samples (30 μg/ml) increased the infectivity of
R5-tropic HIV-1JR-FL Env-pseudotyped viruses in target cells. The fibril samples promoted the infectivity of different infectious HIV clones, including R5-tropic
(B), X4-tropic (C) and dual-tropic infectious HIV-1 clones (D). The means (± standard deviations) of triplicate samples are shown. RLU/s, relative light units/
second. One-way ANOVA and Dunnett’s post hoc multiple comparisons test were used to statistically analyze differences between the group of viruses
treated with PAP248-286 amyloid fibrils and the group of viruses treated with amyloid fibrils plus EP2 (*p<0.05; **p<0.01).

doi:10.1371/journal.pone.0144522.g006
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Discussion
Seminal plasma proteins, such as PAP fragments (e.g., PAP248-286), or bacterial curli proteins
may promote the formation of seminal amyloid fibrils, which in turn dramatically enhance
HIV-1 infection. These amyloid fibrils in semen are considered an endogenous enhancer of
viral infection and are important for sexual transmission of HIV-1 [10, 30, 34]. Here, we
reported the details of the interaction between a short peptide derived from the HIV-1 gp120
coreceptor-binding region (EP2) and seminal amyloid fibrils.

Numerous envelope glycoprotein complexes disassemble when HIV-1 particles reach target
cell surfaces; this disassembly results in the release of gp120 [35]. Lysosomal or ubiquitin-medi-
ated intracellular degradation pathways play a vital role in the degradation of HIV-1 envelope
proteins [24, 36]. Several studies have demonstrated that gp120 is internalized by binding to
either CD4/CCR5 or to the mannose 6-phosphate receptor (MPR) and that internalized gp120
is cleaved into small peptides or amino acids in the cytoplasm by lysosome/ubiquitin enzymes
[36, 37]. Gp120 is also degraded by catalytic antibodies through a nucleophilic mechanism due
to host immune responses [23, 38, 39]. Indeed, it is critical to determine whether EP2 seeds
exist in the human body during HIV transmission. Interestingly, residues 421–433
(KQIINMWQEVGK) are located in the B cell SAg site of gp120; immunoglobulins, such as
IgMs, IgAs and isolated L chain subunits, hydrolyze the peptide bonds located within this epi-
tope via a nucleophilic mechanism [23]. This vulnerability of the 421–433 epitope can induce
the production of powerful neutralizing IgA antibodies in long-term survivors of HIV infection
[40]. Following the degradation of gp120, several short peptide fragments, including
INMWQG, QVFYRTGD and RTGDIIGDIRK, have been found in native gp120-loaded rat
hepatocytes [24]. Notably, using liquid chromatography-mass spectrometry/mass spectrome-
try analysis (LC-MS/MS), our groups have found that the sequences of some fragments in
HIV-1 culture supernatants matched those of previously reported short EPs derived from
gp120 (data not shown). More extensive studies of HIV-infected patients will be conducted in
the future. Collectively, the present data indicate that biologically relevant EP2 analogs might
be present in nature.

Many different types of soluble proteins and peptides can form amyloid fibers. These fibers
are insoluble, highly ordered, extremely strong and resistant to degradation [41]. In general,
amyloid fibril formation occurs in the following three stages: (i) monomers are converted into
small oligomers in entropically unfavorable folded conformations, (ii) fibrils grow after nucle-
ation, and (iii) fibrils rapidly aggregate until equilibrium is reached [42]. As we previously dem-
onstrated, at high concentrations, select EPs (up to 1 mg/ml) can assemble into amyloid fibrils
to enhance HIV infectivity [21]. Notably, EP2, a 15-residue peptide derived from the HIV-1MN

gp120 coreceptor-binding region (QCKIKQIINMWQEVG), contains the short peptide frag-
ment INMWQG, which is a degradation product of gp120. Furthermore, the sequence of EP2
also overlaps with residues 421–433 (KQIINMWQEVGK), which can be hydrolyzed by Ig. In
the present study, we investigated the effects of EP2 on seminal amyloid fibril-mediated
enhancement of HIV-1 infection.

Amyloid fibrils are polypeptide-based polymers or highly organized protein filaments that
vary in size (commonly at the low micrometer level) and in formation kinetics. Recently, it has
been discovered that a subset of short peptides can undergo spontaneous assembly into ordered
nanofibrils [19, 43]. Nanofibrils are nanoscale amyloid fibrils. Evidence suggests that nanofi-
brils and amyloid fibrils differ both in morphology and length [19, 28, 44]. Here, we showed
that EP2 can very rapidly form fibrils by self-aggregation following dilution into PBS at room
temperature (Fig 1A and 1B). Analysis of the mean hydrodynamic size and zeta potential of
the EP2 fibrils suggested that these fibrils are indeed nanofibrils (Fig 1C and 1D); these results
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are consistent with a previous report by Yolamanova et al. [19]. Zeta potential is associated
with the degree of electrostatic repulsion in a dispersion. At low zeta potential (from 0 to 30
mV), attractive forces may exceed this repulsion, and the dispersion may break and flocculate
[45, 46]. We found that EP2 fibers have a zeta potential of +16.7±1.0 mV, which suggests that
EP2 in solution has a tendency to aggregate. Furthermore, the positive zeta potential of EP2
fibers may neutralize the negative charge repulsion that exists between HIV virions and target
cells [11]. Nanofiber formation was further confirmed by TEM. Compared with SEVI amyloid
fibrils (typically straight and rod-like), EP2 nanofibers are shorter and more malleable (Fig 1E
and 1F).

Theoretically, PAP fragments, such as PAP248-286, do not enhance HIV-1 infection when
in monomeric form. Therefore, to act as SEVI amyloid fibrils, PAP fragments must form amy-
loid fibrils. This formation is controlled by the rate of amyloidogenesis. However, the creation
of SEVI amyloid fibrils is challenging due to the stochastic nature of the amyloid assembly pro-
cess. We further investigated whether the presence of EP2 nanofibers can accelerate the forma-
tion of PAP248-286 (a fragment of PAP that is present in human semen) amyloid fibrils. As
shown in Fig 3, the addition of a very low concentration of preformed EP2 fibrils to a solution
of PAP248-286 dramatically reduced the lag time of amyloid fibril formation (approximately 2
h) and therefore significantly increased the rate of amyloid fibril formation, as measured by
both ThT fluorescence and Congo red assays. TEM results further confirmed the above conclu-
sions (Fig 2). Therefore, EP2, which is derived from the HIV-1 envelope protein gp120, accela-
rates the formation of semen amyloid fibrils by PAP fragments, such as PAP248-286.

Fig 7. Schematic representation of EP2’smechanism in promoting PAP248-286 amyloid fibril formation and enhancing HIV-1 infection. (A)
PAP248-286 amyloid fibrils enhanced HIV-1 infection. Under agitation at 37°C, PAP248-286 slowly (~ 24 h) formed amyloid fibrils, which enhanced HIV-1
infection. (B) EP2 promoted the formation of PAP248-286 amyloid fibrils. Without agitation, EP2 rapidly (~ 1 min) self-assembled into nanofibers. These
nanofibers accelerated (~ 4 h) the formation of amyloid fibrils, which enhanced HIV-1 infection.

doi:10.1371/journal.pone.0144522.g007
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We next determined whether PAP248-286 amyloid fibrils formed in the presence of EP2
enhanced HIV-1 infectivity in a similar manner to semen amyloid fibrils generated de novo. As
shown in Fig 6, PAP248-286 amyloid fibrils formed in the presence of EP2 exhibited an
increased ability to enhance HIV-1 infection by R5-tropic, X4-tropic and dual-tropic infectious
clones compared to amyloid fibrils formed in the absence of EP2.

The PAP248-286 monomer lacks significant ordered secondary structure. The cross-β-sheet
structure common to all amyloid fibrils is created by intermolecular associations of β-sheets
that are stabilized by hydrogen bonds [15, 16]. Similar to amyloid fibrils formed in the absence
of EP2, those formed in the presence of EP2 exhibited an obvious transition from a random
coil structure to a β-sheet formation after shaking for 8 h at 37°C. These results suggest that
EP2 can promote the transition of PAP248-286 from a random coil structure into a β-sheet
conformation (Fig 4).

Previous studies have shown that the natural positive charge of PAP248-286 amyloid fibrils
(pI = 10.21) facilitates the attachment of HIV-1 virions to target cells. Thus, these amyloid
fibrils enhance viral infection by neutralizing the charge repulsion that otherwise exists
between HIV-1 virions and host cells [11]. Next, we utilized fluorescence confocal microscopy
to investigate whether EP2 nanofibers (the theoretical pI value of EP2 is 8.20) and PAP248-286
amyloid fibrils formed in the presence or absence of EP2 affect the binding of HIV-1 virions to
the surfaces of host cells. We found that, in the absence of EP2, PAP248-286 amyloid fibrils
could enhance the binding of HIV-1 virions to target cells after shaking for 48 h. However,
PAP248-286 amyloid fibrils formed in the presence of EP2 enhanced the binding of HIV-1
virions to target cells after shaking for only 8 h (Fig 5).

In summary, EP2, a 15-residue peptide derived from the HIV-1 gp120 coreceptor-binding
region, can self-assemble into nanofibers and accelerate the formation of amyloid fibrils by
PAP fragments, such as PAP248-286, in semen. These newly formed amyloid fibrils enhance
HIV-1 infection by promoting the binding of HIV-1 virions to target cells. The mechanism
underlying how EP2 seeds drive PAP248-286 amyloid formation and thereby enhance HIV-1
infection is detailed in Fig 7. Therefore, analogs of EP2 might be useful for the development of
novel HIV-1 entry inhibitors.
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