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Abstract
Prenatal and postnatal cigarette smoke exposure enhances the risk of developing asthma.

Despite this as well as other smoking related risks, 11% of women still smoke during preg-

nancy. We hypothesized that cigarette smoke exposure during prenatal development gen-

erates long lasting differential methylation altering transcriptional activity that correlates with

disease. In a house dust mite (HDM) model of allergic airway disease, we measured airway

hyperresponsiveness (AHR) and airway inflammation between mice exposed prenatally to

cigarette smoke (CS) or filtered air (FA). DNAmethylation and gene expression were then

measured in lung tissue. We demonstrate that HDM-treated CS mice develop a more

severe allergic airway disease compared to HDM-treated FA mice including increased AHR

and airway inflammation. While DNA methylation changes between the two HDM-treated

groups failed to reach genome-wide significance, 99 DMRs had an uncorrected p-value <

0.001. 6 of these 99 DMRs were selected for validation, based on the immune function of

adjacent genes, and only 2 of the 6 DMRs confirmed the bisulfite sequencing data. Addition-

ally, genes near these 6 DMRs (Lif, Il27ra, Tle4, Ptk7, Nfatc2, and Runx3) are differentially

expressed between HDM-treated CS mice and HDM-treated FA mice. Our findings confirm

that prenatal exposure to cigarette smoke is sufficient to modify allergic airway disease;

however, it is unlikely that specific methylation changes account for the exposure-response

relationship. These findings highlight the important role in utero cigarette smoke exposure

plays in the development of allergic airway disease.

Introduction
Smoking during pregnancy has long been identified as an independent risk factor for short
term maternal and fetal outcomes, such as intrauterine growth restriction, ectopic pregnancy,
premature birth, and developmental deficiencies. Furthermore, this exposure can lead to long-
lasting changes in disease susceptibility, including asthma, behavioral disorders, obesity, and
respiratory illness [1]. In fact, pre- and postnatal cigarette smoke exposure is one of the
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strongest environmental risk factors of asthma [2], and the risk of developing asthma symp-
toms is doubled when exposed early in life [3]. However, the mechanisms that result in child-
hood asthma following maternal smoking during pregnancy are largely unknown.

Despite the well know risks of smoking during pregnancy, an estimated 23% of women
reported they smoked 3 months prior to pregnancy while 11% of pregnant women continue to
smoke throughout pregnancy in the United States [4]. In the same report, 16% of women
smoked 4 months after pregnancy. However, this may underestimate those affected by cigarette
smoke as it does not include second hand or environmental cigarette smoke.

Cigarette smoke is known to influence epigenetic mechanisms, including epigenetic
machinery [5, 6], post-translational histone modifications [7, 8], and DNAmethylation [9, 10].
DNAmethylation changes due to cigarette smoke can occur quite rapidly and persist for
extended periods of time [11, 12]. One known association is the methylation of RUNX3 with a
history of smoking in bladder tumors [13]. We have previously reported that Runx3 is differen-
tially methylated in allergic airway disease in mice [14]; this is supported by the report that
Runx3 deficient mouse spontaneously develop a phenotype resembling allergic airway disease
[15].

Based on these observations, we hypothesized that cigarette smoke exposure during prenatal
development generates long lasting differential methylation altering transcriptional activity
that corresponds with altered disease.

Materials and Methods

Mice
C57BL/6J mice were purchased from Jackson Laboratories. Animals were housed under stan-
dard conditions and protocols were approved by the Institutional Animal Care and Use Com-
mittee of the University of Colorado Denver.

Cigarette Smoke Exposure
12 week old C57BL/6J females were exposed to cigarette smoke at ~50 mg/m3 TSP (equivalent
to about a pack a day or a heavy smoker) or filtered air for 5 hours/day, 5 days/week for 4
weeks (1 week acclimation included) prior to mating with C57BL/6J males. Cigarette smoke
was generated by the TE-10 smoking machine (Teague Enterprises) from 2R4F research ciga-
rettes (University of Kentucky). Cigarette smoke contained a mixture of both side and main-
stream smoke. Exposure was continued until birth of pups at which time all exposures were
stopped and mothers and pups were placed under normal housing conditions.

Phenotyping
Allergic airway disease was induced using an adapted house dust mite model [16]. Briefly, mice
were sensitized to 10 μg of filtered house dust mite extract (HDM, GREER Labs) or saline
through intraperitoneal (i.p) injection on days 0 and 7 followed by sensitization on days 14 and
15 with 5 μg HDM or saline administered intratracheally using a microsprayer (Penn Century).
On day 17, mice were anesthetized by an i.p. injection of pentobarbital sodium (60 mg/kg). Fol-
lowing tracheostomy, pancuronium bromide (0.25 mg/kg) was administered, and mice were
ventilated on a small animal ventilator (flexiVent FV-FXM1; SCIREQ). Airway resistance was
measured through forced oscillation techniques (flexiVent FV-FXM1; SCIREQ) over increasing
doses of methacholine. Following procedure, a cardiac stick was performed to euthanize the
mouse and collect blood, then whole lung lavage (WLL) was collected. Lung tissue was perfused
with phosphate buffered saline then snap frozen in liquid nitrogen. Cytokines in the lung lavage
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and IgE in the serum were measured using ELISAMAX Standard Sets and protocols from Bio-
Legend. Additional information is provided in the supplemental methods (S1 Appendix).

Bisulfite Sequencing and Data Analysis
To measure DNAmethylation in whole lung tissue, bisulfite sequencing was performed utiliz-
ing Agilent’s SureSelect Methyl-Seq Target Enrichment System for Illumina Multiplexed
Sequencing. Experimental procedures followed SureSelect Human Methyl-Seq Protocol Ver-
sion B using SureSelect Methyl-Seq Reagent Kit and Mouse Methyl-Seq Capture Library. Addi-
tional information is provided in the supplemental methods (S1 Appendix).

Bisulfite-sequencing reads were handled using bwa-meth [17] which also tabulated percent
methylation at each CpG motif. Correlating sets of adjacent CpG sites were clustered together
using the Adjacent Site Clustering algorithm [18]. Each cluster was required to have a mini-
mum of three CpG sites to constitute a cluster. Methylation clusters were analyzed using a beta
regression weighted on sequence read depth, and multiple testing correction was performed
using the Benjamini-Hocheberg method [19].

Pyrosequencing
DMRs identified through bisulfite sequencing were confirmed through pyrosequencing PCR
on Qiagen’s Pyromark MD. Additional information is provided in the supplemental methods
(S1 Appendix).

RT-PCR
Differential expression was tested through qRT-PCR on the Viia7 Real-Time PCR system
(Applied Biosystems) using Taqman assays (Applied Biosystems). Additional information is
provided in the supplemental methods (S1 Appendix).

Statistics
Data were expressed as mean ±SEM. Individual comparisons between groups were confirmed
by a 1-tailed Mann-Whitney U test because we were testing only 1 outcome, that in utero ciga-
rette smoke caused increased allergic airway inflammation. Significant differences between
groups were identified by analysis of variance. For validation, pyrosequencing data was ana-
lyzed using a 1 tailed Mann-Whitney U test for HDM-treated CS mice versus HDM-treated
FA mice. A 2 tailed Mann-Whitney U test was applied to qRT-PCR data to compare HDM-
treated CS mice versus HDM-treated FA mice. GraphPad Prism version 5.04 (GraphPad Soft-
ware, La Jolla, CA) was used to perform statistical calculations. Pathway analysis was per-
formed using Ingenuity Pathway Analysis (IPA) software.

Results

In utero cigarette smoke exposure alters HDM-induced allergic airway
disease
These results support previously published data that mice exposed during gestation to cigarette
smoke (CS) develop a more severe allergic airway disease phenotype [20–24]. HMD-treated
mice exposed to CS during gestation demonstrate increased AHR compared to HDM-treated
mice exposed to filtered air (FA) during gestation. Following challenge with HDM, enhanced
airway inflammation is observed in CS mice compared to FA mice with an increase in total
cells and eosinophils in WLL (Fig 1A–1D). Both HDM-treated CS and FA mice differ from
their respective saline-treated mice counterparts in terms of AHR and cellular infiltration.
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Fig 1. In utero cigarette smoke exposure enhanced the severity of HDM-induced allergic airway
disease. (A) airway hyperresponsiveness (HDM-treated FA solid line closed square, HDM-treated CS solid
line closed circle, saline-treated FA dashed line open square, and saline-treated CS dashed line open circle),
(B) total cell in WLL, and (C) concentration of eosinophils, (D) percentage of eosinophils in the WLL, (E) WLL
IL-4 cytokine levels, (F) WLL IL-5 cytokine levels, and (G) total IgE levels in the serum (HDM-treated CS white
bar, HDM-treated FA black bar, saline-treated CS white bar with black dots, and saline-treated FA black bar
with white dots, * p-value < 0.05, ** p-value < 0.01, *** p-value < 0.001).

doi:10.1371/journal.pone.0144087.g001
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There is no statistical difference observed for saline-treated mice treated with cigarette smoke
(Fig 1A–1D).

We observed no differences in IL-4 and IL-5 concentrations in WLL between HDM-treated
CS and FA mice (Fig 1E–1G). HDM-treatment resulted in increased concentrations of IL-4
and IL-5 in WLL compared to saline-treatment in both CS and FA treated mice. However, only
HDM-treated CS mice demonstrated a significant increase in total IgE in the serum compared
to saline-treated CS mice, and the lack of differences between HDM-treated and saline-treated
mice is limited by the measurement of total IgE and not antigen specific IgE (Fig 1E–1G).

DNAmethylation changes due to prenatal smoke exposure in allergic
airway disease
Agilent’s SureSelect targeted methyl-sequencing was performed in whole lung tissue to deter-
mine methylation patterns at specific sites throughout the genome. On average, each sample
approximated 64 million reads with 88% of the reads falling within the targeted regions with
greater than 50% of the regions with 20x coverage (S1 Table). Comparing DNAmethylation
between the HDM-treated groups failed to identify significant DMRs after multiple testing cor-
rection. Due to the lack of association and the increased noise in the data due to the admixture
of cell types in whole lung tissue, we therefore reduced the statistical threshold to investigate
suggestive DMRs. There are 99 suggestive DMRs with an uncorrected p-value< 0.001 (Fig 2A
and S2 Table). These DMRs have an average length of 93 base pairs, are primarily found in
gene bodies (intron, exon, 3’ untranslated region, or 5’ untranslated region; n = 56 or 57%; Fig
2C), and areas outside of CpG islands and shores (>3000 bases from the island; n = 58 or 59%;
Fig 2D). 45 DMRs are hypomethylated.

DMRs are annotated based on nearest gene, and these genes were uploaded into IPA.
Despite the small number of genes entered, 65 canonical pathways are enriched of which many
involved immune function (S3 Table). Ingenuity network analysis on the 99 DMRs identified 6
networks with a minimum score> 20 (Fig 2B).

DMRs selected for validation from the 99 DMRs (uncorrected p-value< 0.001) were chosen
based on known immune function of genes within 25kb of the DMR (Fig 3A and S4 Table).
Specific CpGs within each selected DMR were chosen for pyrosequencing based on percent dif-
ference between experimental groups, a significant t-test on individual CpGs, and ability to
design pyrosequencing primers. DMRs designated Runx3, Tle4, Nfatc2, Lif, Ptk7, and Il27ra
were tested. Lif, and Ptk7 validated methyl-sequencing data in addition Nfatc2 had a near sig-
nificant p-value (0.069) (Fig 3A and S4 Table). It is not unexpected that some of the DMRs did
not validate as methyl-sequencing analysis failed to identify any significant targets at genome-
wide significance and the reduced threshold increases our type I error.

Transcriptional expression of Runx3, Tle4, Nfatc2, Lif, Ptk7, and Il27ra were measured (Fig
3B). All genes tested demonstrated a significant change in expression with fold-changes rang-
ing from -2.33 to -1.76. Interestingly, the relationship between expression and methylation
does not always follow the canonical anti-correlated relationships. The association of gene
expression is variable with nearby DMRs suggesting the use of alternative mechanisms in gene
regulation.

We also performed subset analyses on methylation clusters within 25kb of asthma related
genes as defined by genetic association [25], Ingenuity Pathway Analysis, or overlap of the 2
lists (S5 Table). In aggregate, 329 genes were represented in this analysis. These more targeted
analyses focusing on asthma-associated genes did not identify methylation changes associated
with in utero cigarette smoke exposure. In summary, our results suggest that in utero cigarette
smoke exposure does not significantly alter the methylome in lung tissue of diseased mice.
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Discussion
Prenatal cigarette exposure is sufficient to alter the severity of HDM-induced allergic airway
disease, and these phenotypic changes are associated with specific molecular changes in the
lung. However, the association of methylation changes in lung tissue with in utero cigarette
smoke modified allergic airway disease remains unconvincing. Although methylation changes
in the genome-wide and subset analyses were not significant after multiple testing correction, it
remains uncertain if smaller shifts in methylation occur as some of the suggestive DMRs were
confirmed through pyrosequencing and nearby genes are enriched for immune pathways. In
addition, the variable association between methylation and expression suggests that alternative
mechanisms may regulate transcriptional activity, and future studies into the epigenetic mech-
anisms of prenatal cigarette smoke exposure on allergic airway disease should focus on specific
cell types and/or alternative mechanisms of transcriptional regulation.

Fig 2. DMRs lack genome-wide association with in utero cigarette smoke exposure in allergic airway disease. (A) Manhattan plot of the p-values from
a weighted beta regression for HDM-treated CS vs. HDM-treated FA mice. Each dot represents a p-value for correlating CpG clusters as identified through A-
clustering with a minimum of 3 adjacent CpGs within a cluster. The red horizontal line is the estimated genome-wide significance threshold of p = 3.6 x 10−7;
the blue line is the threshold for suggestive association (p = 0.001). Red dots denote suggestive DMRs with an unadjusted p-value < 0.001 (n = 99). (B) A
molecular network identified by Ingenuity Pathway Analysis of the genes nearest to the 99 DMRs. This network demonstrates that these genes have a
number of direct and shared interactions with each other. Network analysis was performed using only direct interactions and a minimum network score of 20.
Legend: genes are colored red (hypermethylated) or green (hypomethylated), horizontal ellipse = transcriptional regulator, square = cytokine, double
circle = group/complex, vertical diamond = enzyme, vertical rectangle = G-protein coupled receptor, circle = other, and triangle = phosphatase. Genomic
distribution of the top 99 DMRs by relationship to (C) gene and (D) CpG Island.

doi:10.1371/journal.pone.0144087.g002
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During gestation, the maternal immune system reduces Th1 IFN-γ cell-mediated response
to fetal antigens by developing a subtle Th2 state [26]. Fetal immunity reflects that of the moth-
ers, which is dominated by Th2 activity with reduced Th1 function, with underlying epigenetic
changes that control gene expression patterns [27]. At birth, the Th1/Th2 cell ratios shift to a
proper state; however, continuation of the Th2 state could affect an individual’s risk of develop-
ing allergic diseases [28]. Smoking during pregnancy is capable of altering proper immune
development leading to reduced innate TLR-mediated response [29], a higher Th2 response
and proliferation in cord blood mononuclear cells upon challenge [30, 31], and reduced IFNγ
production [32]. The suggestive DMRs in this study highlight immune dysfunction through
the enrichment of not just immune pathways in general, but to those important to allergic dis-
ease, including IL-4 signaling, NFAT regulation of immune response, CD28 signaling in Th
cells, and so on.

A limitation in this study is that the methylation experiment was completed on whole lung
tissue with an admixture of cells. Cell type specific expression and methylation patterns
increases variance in the analysis creating a higher threshold for discovery. The small pheno-
typic differences likely could not overcome the noise in the system, and this could explain why
DMRs did not reach genome-wide significance. Increased sample size and/or read depth
would increase our ability to detect changes and compensate for the small phenotypic changes.
The measurement of epigenetic changes in environmental exposure and disease is a powerful
tool in studying the etiology of asthma which creates a mechanistic link between environmen-
tal exposure and disease phenotype providing additional avenues of research into disease devel-
opment and severity.
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Fig 3. DMR validation is inconsistent despite consistent gene expression differences. (A) Mean methylation levels of 6 selected DMRs for internal
validation through pyrosequencing. y-axis = methylation percent (B) Mean transcription levels of 6 selected genes near the 6 selected DMRs. y-axis = delta
CT (HDM-treated CS white bar, HDM-treated FA black bar, * p-value < 0.05, ** p-value < 0.01)
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