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Abstract

Here we report the widespread natural occurrence of a known antibiotic and antineoplastic
compound, hydroxyurea in animals from many taxonomic groups.

Hydroxyurea occurs in all the organisms we have examined including invertebrates (mol-
luscs and crustaceans), fishes from several major groups, amphibians and mammals. The
species with highest concentrations was an elasmobranch (sharks, skates and rays), the lit-
tle skate Leucoraja erinacea with levels up to 250 pM, high enough to have antiviral, antimi-
crobial and antineoplastic effects based on in vitro studies. Embryos of L. erinacea showed
increasing levels of hydroxyurea with development, indicating the capacity for hydroxyurea
synthesis. Certain tissues of other organisms (e.g. skin of the frog (64 uM), intestine of lob-
ster (138 uM) gills of the surf clam (100 pM)) had levels high enough to have antiviral effects
based on in vitro studies. Hydroxyurea is widely used clinically in the treatment of certain
human cancers, sickle cell anemia, psoriasis, myeloproliferative diseases, and has been
investigated as a potential treatment of HIV infection and its presence at high levels in tis-
sues of elasmobranchs and other organisms suggests a novel mechanism for fighting
disease that may explain the disease resistance of some groups. In light of the known pro-
duction of nitric oxide from exogenously applied hydroxyurea, endogenous hydoxyurea
may play a hitherto unknown role in nitric oxide dynamics.

Introduction

Hydroxyurea is a remarkable compound that has been known to science since1869 when it was
first synthesized [1]. Various studies show it has antiviral, antibacterial, and antineoplastic
properties [2]. Its mechanism of action involves inhibition of ribonucleotide reductase (EC
1.17.4.1) which inhibits DNA synthesis [3] in a variety of organisms. It is, or has been used in
the treatment of a variety of neoplastic diseases, sickle cell anemia, psoriasis, myeloproliferative
diseases and infectious diseases such as HIV [2]. It is listed as an “essential medicine” by the
World Health Organization [4]. Hydroxyurea, however, is virtually unknown in nature with
arecord of its presence in the bacterium Streptomyces garyphalus as an intermediate in cyclo-
serine synthesis [5] and a report in human plasma at levels close to the limits of detection
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(2.6 uM) [6]. We examined the levels of hydroxyurea in tissues of representative of invertebrate
and vertebrate groups.

Materials and Methods
Animals

Animals collected in Passamaquoddy Bay, New Brunswick, Canada were collected under
Department of Fisheries and Oceans Canada permit number 323401. Euthanasia procedures
for this specific study were approved by University of Guelph Animal Care Committee Proto-
col number 11R014. Surf clams, Spisula solidissima, were collected at low tide at Bar Road,

St. Andrews, New Brunswick Canada. Lobsters, Homarus americanus were purchased from

a local (Guelph, Ontario, Canada) seafood retailer. Hagfish, Eptatretus stouti tissues were
donated by D. Fudge, Department of Integrative Biology, University of Guelph. Little skates (L.
erinacea Mitchill 1825) of either sex were collected by otter trawl in Passamaquoddy Bay (New
Brunswick, Canada), before transport to holding facilities in the Hagen Aqualab, at the Univer-
sity of Guelph (Guelph, Ontario) where they were maintained for several months to several
years. Skate eggs were obtained from this colony. African lungfish (Protopterus dolloi) were
held and sampled as previously described [7]. Adult rainbow trout (Oncorhynchus mykiss Wal-
baum 1792) of either sex were purchased from a local fish farm (Belleville, Ontario) and trans-
ported to holding facilities at the University of Guelph. Trout were held as previously described
[8,9]. Frogs, Lithobates pipiens tissues were donated by P. Smith, Department of Integrative
Biology, University of Guelph. Sheep, Ovis aries, tissues were obtained from a local slaughter-
house (Guelph, Ontario, Canada). Animals collected in Passamaquoddy Bay, New Brunswick,
Canada were collected with permission of the Department of Fisheries and Oceans Canada
permit number 323401.

Sampling

Fish were euthanized by cervical section. Tissues were rapidly excised, frozen in liquid nitrogen
and stored at —80°C until used. Blood was drawn by cardiac (skates) or caudal (other fish)
puncture using heparinized syringes. Erythrocytes were separated from plasma by centrifuging
blood at 2,430 g for 10 minutes at 4°C. Sheep tissues were collected from a federally regulated
abattoir at the University of Guelph.

Preparation of tissues for use in hydroxyurea and urea assays

Tissues were homogenized in a small volume of ddH,O using a Polytron PT1200 homogenizer
set at high speeds (25, 000 rpm) for three 10 second bursts, with a cooling period of 30 seconds
between each burst. Homogenized samples were then spun at 9,700 g with a Sorval SA-600
rotor and 4°C for 10 minutes to remove cellular debris. The resulting supernatants and diluted
plasma samples were collected and deproteinized with 60% perchloric acid (PCA) to a final
concentration of 0.5M PCA. Acidified samples were then spun at 22,000 g for 20 minutes with
a Sorval SA-600 rotor and 4°C. The supernatants were collected for use in hydroxyurea and
urea assays and the pellets discarded.

Measurement of hydroxyurea and urea in biological samples

Determination of hydroxyurea content in deproteinized plasma and tissue samples followed
the colorimetric assay of Fabricius and Rajewsky [10]. Absorbance of hydroxyurea samples was
measured at 540 nm using a Cary 300 UV/Vis spectrophotometer (Agilent Technologies).
Urea was measured according to the protocol originally described by Rahmatullah and Boyde
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[11] at 525 nm. In our study, hydroxyurea was measured chemically by the method of Fabricius
and Rajewsky [10] with analate addition. Its identity was confirmed by gas-chromatography
mass spectrometry using the method of Scott et al. [12] in plasma and liver samples from L eri-
nacea (Fig 1).

Gas Chromatography-Mass Spectrometry (GC/MS)

Samples were derivatized as detailed in Scott et al. [12]. Once derivatized, tubes were cooled to
room temperature and the contents transferred to autosampler vials containing tapered inserts
before being placed in the autoinjector of the GCMS and run. Injections of 1 ml were used for
GCMS analysis. GC/MS operating conditions were adapted from those detailed in Table 26.3
of Scott et al. [12]. The GC/MS was operated in selected ion mode after electron impact frag-
mentation, selective for ion 277 (hydroxyurea tri-TMS).

Statistics

ANOVA with a Tukey Post Hoc Test was conducted to identify significant differences (P<0.05)
in HU or urea concentrations between tissues.

Results and Discussion

We initially found tissue specific accumulation of hydroxyurea in the elasmobranch L. erinacea
with values up to 250 uM in the spiral valve (intestine) (Fig 2a). The extensive literature on the
antibiotic and antineoplastic effects of hydroxyurea lead to the obvious conclusion that its bio-
logical role in animals is as part of the innate immune system to combat viral and other infec-
tions. The nominal concentrations we report for the little skate are in the range of
concentrations causing 50% inhibition (EDs() of a variety of processes including DNA synthe-
sis, ribonucleotide reductase activity in viruses and growth of some cell types (Table 1). The
use of the values presented in Table 1 in comparison to the values we report here has several
caveats that must be considered. Firstly, the times used for determination of the EDs, reported
in Table 1 range from 10 minutes to several days in vitro. However, according to Haber’s law,
the severity of a toxic effect depends on the total exposure (i.e. exposure concentration multi-
plied by the duration of exposure) [13]. Maintenance of chronic high levels of hydroxyurea in
vivo would thus reduce the concentration needed for a given effect. Thus, the hydroxyurea lev-
els we report would be even more effective in vivo than the values in Table 1 would predict. Sec-
ondly, our hydroxyurea tissue concentrations are likely to be underestimates in the vertebrates
we examined since hydroxyurea reacts with hemoglobin and some would be destroyed during
preparation in tissues with substantial blood supplies [14]. Concentrations in the spleen espe-
cially may be higher than measured since, as a storage site for erythrocytes the spleen has the
highest concentrations of hemoglobin of any tissue.

The values we report for L. erinacea are in the range that would affect some viral and bacte-
rial processes (Fig 2a and Table 1). Generally, viral processes are more susceptible to inhibition
by hydroxyurea than bacterial or mammalian cell lines (Table 1) [31]. Interestingly, our plasma
concentrations for L. erinacea (87 uM) correspond to the range maintained to treat human
HIV Type 1 patients (10-130 uM): the range that inhibits HIV in vitro [32].

Elasmobranchs are an ancient vertebrate group with unusual physiological and biochemical
characteristics [33]. They are the earliest known vertebrate group to have an adaptive immune
system using antibodies. Among the features of their biology that has attracted public interest
is their anecdotal resistance to disease, especially cancer. There is little hard science to validate
such claims but the available literature records few viral and bacterial diseases from this group
in spite of a considerable interest [34]. Among vertebrates, the incidence of neoplasia is lowest
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Fig 1. A: Fragmentation pattern for derivatized hydroxuyrea (hydroxyurea triTMS). B: Overlaid GC-MS
chromatograms of a 10 pg/ml standard of hyroxyurea (maroon), deproteinized liver sample from L. erinacea
(green), and deproteinized plasma sample from L. erinacea (red). Peaks at elution time ~5.4 min represents
hydroxyurea while peaks at ~ 7.8 min represents tropic acid (10 ug/ml) an internal standard in all three
samples. Chromatograms were selective for ions 277 (representative of hydroxyurea triTMS) and 280
(representative of tropic acid-diTMS). X-axis = minutes, Y-axis = kCps.

doi:10.1371/journal.pone.0142890.g001

in elasmobranchs [35,36]. Reports of the unusual occurrence of bacteria in plasma [37] and tis-
sues [38] of apparently healthy elasmobranchs may also be due to the effects of hydroxyurea in
preventing bacterial growth.

Although the mechanism of synthesis of hydroxyurea in vivo is not currently known, the
presence of hydroxyurea in embryos from eggs of L. erinacea and the increase in concentration
as the embryo grows (Fig 1b) provides evidence of the capacity for hydroxyurea synthesis in L.
erinacea.

Levels of hydroxyurea in tissues of other species including invertebrates and vertebrates are
for the most part lower than those of the little skate (Fig 3a—3g). Similar to the situation in the
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Fig 2. A: The distribution of hydroxyurea and urea in the blood plasma and tissues of adult little skates (L. erinacea, n = 5). Hydroxyurea was non-detectable
in erythrocytes. Values are means * standard error (SE) of the mean. Values with the same letter above the bar are not significantly different from each other.
B: Whole body hydroxyurea concentrations (mean uM + SE) measured in little skate (L. erinacea) embryos at stages 2 and 3 of development according to
criteria described by Hoff [30]. Values are from whole embryos with yolk sacs removed from both stage 2 and 3 embryos. Values are means + standard error
(SE) of the mean. Values with the same letter above the bar are not significantly different from each other.

doi:10.1371/journal.pone.0142890.9002
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Table 1. Effective dose levels of hydroxyurea at which 50% of a process is inhibited (EDs,). Values are reported in either micromolar (uM) or millimolar

(mM).
Process

DNA synthesis

Ribonucleotide
reductase

Growth

Viral replication

Survival

EDso Time System Reference
50 uM 3 hours  Helacells [15]
100 uM 30 min He La cells [16]
132 yM 1 hour Ascites tumor cells [17]
200 uM 48 hours  Chlamydia trachomatis [18]
250 uM 24 hours  Murine mastocytoma cells P815, human myelogenous leukemia [19]
K562 cells
1 mM 48 hours  Chlamydia trachomatis [18]
10-30 uM 10 min T4 phage [20]
150-160 uM 10 min Escherichia coli [20]
1 mM 24 hours  Murine leukemia cells [19]
19.7 uM 45 hours  Chinese hamster cells [21]
65 uM 45 hours Hela cells [21]
180 uM 72 hours  A549 lung carcinoma cells [22]
2.5 mM 18 hours  Pseudomonas aeruginosa [23]
60 uM 72 hours Hepatitis C in OR6 cells [24]
75 pM (from Fig 3c of 7 days HIV virus [25]
reference)
100 pM (from Fig 1c of Not HIV virus [26]
reference) given
1mM 1 week Vaccinia in Chinese hamster cells [27]
2 uM 6 days Leishmania mexicana [28]
400 uM 1 hour Chinese hamster cells [29]

doi:10.1371/journal.pone.0142890.t001

skate, the distribution is tissue specific. In the surf clam, S. solidissima levels were high in man-
tle (100 uM) and in the lobster, H. americanus high levels were found in the intestine

(138 uM). In the non-elasmobranch vertebrates, levels were generally low with the highest lev-
els being found in skin (64 uM) of the frog L. pipiens. In the lungfish, P. annectens, the highest
levels were found in the gills (38 uM). In the trout, O. mykiss, the highest levels were found in
the pyloric caecae (32 uM). In the sheep, O. aries, the highest levels were in kidney (25 uM). If
one assumes that endogenous hydroxyurea confers some defense against viral or other infec-
tion, significantly higher levels in some tissues may mean these are sites that need to be
defended most.

The tissue specific distribution of hydroxyurea indicates either it can be synthesized locally
or transported and concentrated. Its structural similarity to urea (both are polar, with a low
molecular weight differing only in the presence of a hydroxyl group) suggests it could be trans-
ported by the same carriers as urea but the tissue distribution of these 2 compounds in L. erina-
cea is very different (Fig 2a). The main organic osmolyte of marine elasmobranchs is urea that
is accumulated to levels more than one thousand times that of hydroxyurea [33] (Fig 2a). In
general, tissue specific differences in urea content are small (~20%). Hydroxyurea concentra-
tions, on the other hand can vary by as much as 25 fold between tissues. Thus there must be
transporters that can distinguish urea and hydroxyurea and these are known in mammals [39].
In vitro studies show hydroxyurea is far less permeant than urea in mouse erythrocytes due to
the capacity of the urea transporter B (UT-B) to distinguish between them [39]. Several carriers
for hydroxyurea have been identified including the organic anion transporting polypeptides
(OATP) OATP1A2, OATP1BI and OATP1B3, organic cation transorters (OCT), OCTN1 and
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Fig 3. Hydroxyurea levels in tissues of A) the surf clam S. solidissima n = 1-3); B) American lobster, H. americanus n = 5-6; C) Pacific hagfish E.
stouti, n = 2-4; D) African lungdfish, P. annectens, n = 2-7; E) rainbow trout, O. mykiss, n = 6; F) frog, L. pipiens, n = 6; G) the sheep, O. aries, n = 5-6.
Values are means * standard error (SE) of the mean. Values with the same letter above the bar are not significantly different from each other. Tissues of
the clam were not included in the statistical analysis due to the low n values. There were no differences between tissues of the Pacific hagfish or trout. Due to
the low n value for plasma, gill and eggs of the lundfish is these tissues were not included in the analysis and have no letter above the bar.

doi:10.1371/journal.pone.0142890.9003

OCTN?2 and urea transporters A and B [40]. Active transport of hydroxyurea by OCT1B3 has
also been suggested [40].

An important consideration in understanding the impact of retaining high levels of
hydroxyurea in tissues is its inhibitory effect of ribonucleotide reductase (RR), an enzyme
needed by all cells for DNA synthesis. Mammalian RR is less susceptible to inhibition by
hydroxyurea than viral or bacterial RR (Table 1). This would be important for inhibition of
viral and bacterial replication without affecting mammalian cell growth. Hydroxyurea thus
could provide a level of protection against viral and other challenges as part of the innate
immune defense mechanism.

Our findings of hydroxyurea in a mammal, although at levels 5-10 fold lower than in the
elasmobranch, may be particularly important for understanding mammalian disease resis-
tance. Exogenously applied hydroxyurea has been shown to stimulate nitric oxide production
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in mammalian systems [41,42]. Nitric oxide synthase plays a key role in the killing of patho-
genic organisms by phagocytes [43] although the mechanism is not known [44]. We suggest a
role for naturally occurring hydroxyurea in phagocyte function via the following mechanism.

Nitric oxide is produced from arginine by nitric oxide synthase (NOS) via the intermediate
hydroxyarginine. Arginase is known to react with hydroxyarginine in vitro to produce
hydroxyurea instead of urea [45]. We propose that in vivo some hydroxyarginine is diverted to
hydroxyurea synthesis by arginase and the hydroxyurea converted to NO as depicted in Fig 4.
This mechanism helps explain the paradoxical colocalization of arginase and NOS in cells such
as human endothelial cells [46]. In endothelial cells arginine metabolism is highly compart-
mentalized [47] and arginase is known to compete with NOS for arginine [48].

Conclusions

Our finding that hydroxyurea occurs in many animal groups at levels that could act as a
defense against viral and other challenges implies: a) a new component to the innate immune
system of animals that may explain superior disease resistance of some groups and b) a new
intermediate in the pathway for NO production in animals.
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