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Abstract

Hepatocellular carcinoma (HCC) is the most common form of liver cancer (~80%), and it is
one of the few cancer types with rising incidence in the United States. This highly invasive
cancer is very difficult to detect until its later stages, resulting in limited treatment options
and low survival rates. There is a dearth of knowledge regarding the mechanisms associ-
ated with the effects of biomechanical forces such as interstitial fluid flow (IFF) on hepato-
cellular carcinoma invasion. We hypothesized that interstitial fluid flow enhanced
hepatocellular carcinoma cell invasion through chemokine-mediated autologous chemo-
taxis. Utilizing a 3D in vitro invasion assay, we demonstrated that interstitial fluid flow pro-
moted invasion of hepatocellular carcinoma derived cell lines. Furthermore, we showed that
autologous chemotaxis influences this interstitial fluid flow-induced invasion of hepatocellu-
lar carcinoma derived cell lines via the C-X-C chemokine receptor type 4 (CXCR4)/C-X-C
motif chemokine 12 (CXCL12) signaling axis. We also demonstrated that mitogen-activated
protein kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling affects intersti-
tial fluid flow-induced invasion; however, this pathway was separate from CXCR4/CXCL12
signaling. This study demonstrates, for the first time, the potential role of interstitial fluid flow
in hepatocellular carcinoma invasion. Uncovering the mechanisms that control hepatocellu-
lar carcinoma invasion will aid in enhancing current liver cancer therapies and provide better
treatment options for patients.

Introduction

Worldwide, hepatocellular carcinoma (HCC) is the second leading cause of cancer-related
deaths with over 746,000 deaths annually [1]. In the United States, it is estimated that there will
be 35,560 new cases of HCC in 2015, making it one of the few types of cancer that is still
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increasing in incidence at a rate of approximately 3% per year [2]. Treatment of HCC remains
a challenge, with 5 year survival rates for patients with stages IIC and IVA (regional HCC) of
10% and for patients with stage IVB (distant HCC) as low as 3% [3]. Chronic hepatitis B or C
virus infection, non-alcoholic fatty liver disease, alcoholism, obesity, type 2 diabetes, exposure
to alfatoxins, and anabolic steroids may all play a role in the development and progression of
HCC [4]. The formation of intrahepatic metastases, which occurs in 51-75% of HCC tumors,
is an indicator of poor prognosis [5]. Furthermore intrahepatic metastasis can be aggressive as
observed in a study of 148 patients with intrahepatic HCC (stage IVA or III tumors), nearly
86% of the patients developed extrahepatic metastases occurring most frequently in the lungs
[6]. Identification of early stage HCC provides the best opportunities for effectively treating
this cancer; however, even if detected early, the most successful curative treatment options are
limited to resection of the diseased liver tissue or liver transplantation [7]. Unfortunately, stud-
ies have shown that HCC redevelops in more than 50% of patients with intrahepatic or extra-
hepatic metastases within the first year [8]. Treatments for late stage or recurring HCC are also
limited; palliative treatment options include transarterial chemoembolization or pharmaceuti-
cal interventions such as Sorafenib, a kinase inhibitor which has been shown in a Phase III clin-
ical trial of 602 patients to only improve overall survival by 12 weeks. [7, 9]. Poor outcomes
have been attributed to the dearth of HCC screening in the general population, limited treat-
ment options, and invasiveness of the cancer [10]. Therefore, a better understanding of the
molecular mechanisms that affect HCC development and progression is needed to develop
more effective strategies for diagnosing and treating HCC.

In recent years, many studies have emphasized the importance of the tumor microenviron-
ment in HCC progression [11]. Factors such as chronic inflammation, liver fibrosis, and cellu-
lar activity of hepatic stellate cells have been observed to alter the liver microenvironment [12].
However, the role of mechanical forces within the HCC tumor microenvironment remains
poorly understood. Within the tumor microenvironment, changes in biomechanical forces
such as solid stress [13], fluid pressure [14], and fluid flow [15-18] have been shown to alter
cancer progression [19, 20]. Interstitial fluid flow (IFF) is one of these altered forces in the
tumor microenvironment.

High permeability of tumor-associated vasculature has been shown to alter fluid movement,
likely due to changes in hydrostatic and oncotic pressure [19]. Previous studies identified that
most solid tumors have increased interstitial fluid pressure [21]. Interstitial fluid pressure in a
healthy liver was found to be -2.2 mmHg, while the interstitial fluid pressure in a hepatoma
ranged between 0-30 mmHg [22]. The resulting increase in tumor interstitial fluid pressure
leads to a steep pressure gradient between the tumor and stroma that drives elevated IFF [19,
23]. Computational models have predicted IFF velocities between 0.1-6.0 um/s under various
conditions [24]. IFF velocity in mice with VEGF ¢5-expressing tumors was measured to be 0.1-
0.5 um/s, and even greater velocities (1.0-8.0 um/s) were observed in mice with human cervical
carcinoma and melanoma xenografts [14, 25]. In vivo IFF velocities in cervical cancer patients
with pelvic lymph node metastases were measured to be between 10-55 um/s [14]. IFF has
been shown to affect various cellular processes such as differentiation [26], morphogenesis [17,
27], and protein secretion [23, 28]. In cancer, IFF can promote cancer cell invasion [29, 30],
alter stromal fibroblast behavior [31], and increase matrix metalloproteinase (MMP) secretion
[18]. Previous studies have revealed that cells can sense interstitial flow through glycocalyx-
mediated shear-stress sensing [32], autologous-gradient formation [24], and integrin activation
due to fluid-drag forces and cell-matrix adhesion [17]. In a mechanism referred to as ‘autolo-
gous chemotaxis’, IFF combines with autocrine chemoattractant secretion to form an autolo-
gous gradient that directs tumor-cell migration [24, 26, 28, 29, 31, 33]. Computational models
have shown that slow-moving fluid, in combination with cell-secreted proteins, can generate a
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pericellular chemoattractant gradient that is sufficient to trigger a physiological response such
as chemotaxis [24, 29]. Previous studies have also shown that human breast cancer cell lines
exhibit increased invasion in the direction of IFF via a CCR7-dependent mechanism, while gli-
oma cell invasion can occur through CXCR4-dependent autologous chemotaxis [28, 29]. In
HCC, studies have shown that CXCR4 and CXCL12 play a pivotal role in extrahepatic metasta-
sis [34], migration [35, 36], and patient prognosis [37]. To date, however, no studies have
examined the role of interstitial flow and autologous chemotaxis (potentially via CXCR4/
CXCL12) in HCC cell invasion.

We hypothesized that HCC cells invade in response to IFF through the autologous forma-
tion of a CXCL12 chemokine gradient. In the studies described here, we have analyzed the
effects of IFF on HCC cell invasion and have identified a key molecular pathway that is
involved in liver cancer cell invasion. We show that IFF-induced HCC invasion is dependent
on autologous chemotaxis via CXCR4 and CXCL12, as well as MEK/ERK activation. The
results of our studies suggest a potential role for IFF in the invasive potential of HCC.

Materials and Methods
Cell Isolation and Culture

Hepatoma-derived Huh7 and Hep3B cells were cultured in Roswell Park Memorial Institute
(RPMI) 1640 with L-glutamine (Cellgro, Manassas, VA) supplemented with 10% fetal bovine
serum (FBS) and 1% penicillin/streptomycin. HepG2 hepatoblastoma-derived cells were cul-
tured in Minimal Essential Medium (MEM) (Cellgro) supplemented with 10% FBS, 1% non-
essential amino acids (NEAA), 1% sodium pyruvate, and 1% penicillin/streptomycin on colla-
gen-coated cell-culture plates. Primary rat hepatocytes (PRHs) were isolated from 5-7 week
old male Sprague-Dawley rats using a 2-step perfusion method [38]. The rat liver was perfused
with 1X Liver Perfusion Buffer (Life Technologies) for 10 minutes. Next the rat liver is perfused
with collagenase buffer comprised of 0.5 uM CaCl2 and 23 pg/ml Liberase Blendzyme (Roche)
for 5 minutes at a flow rate of 30 ml/min. Upon completion of the perfusion, the rat liver was
removed and homogenized. The homogenized rat liver was filtered through a cheese cloth and
the primary rat hepatocytes were isolated via multiple centrifugations. Surgery and isolation of
rat hepatocytes were approved by the Institutional Animal Care and Use Committee of Drexel
University College of Medicine and complied with the Animal Welfare Act, the Public Health
Service Policy of Humane Care and Use of Laboratory Animals, and the National Institutes of
Health (United States) Guide for the Care and Use of Laboratory Animals [39, 40]. PRHs were
used within 3 hours of isolation to prevent hepatocyte de-differentiation. The PRHs were
maintained in Williams E medium (Life Technologies, Carlsbad, CA) supplemented with 2
mM L-glutamine, 1 mM sodium pyruvate, 4 pg/ml insulin, 2.2 pg/ml transferrin, 2.7 ng/ml
selenium (0.4X ITS, Life Technologies), 5 ug/ml hydrocortisone, 5 ng/ml epidermal growth fac-
tor, 10 pg/ml gentamycin, and 2% dimethyl sulfoxide. All cells were maintained in a humidified
37°C environment with 5% CO,.

3D Interstitial Flow Invasion Assay

The liver cells (5.0 x 10° cells/ml gel) were encapsulated in a gel comprised of 1.3 mg/ml rat tail
tendon type I collagen (BD Biosciences, San Jose, CA) and 1 mg/ml Matrigel (BD Biosciences)
and seeded into 12 mm diameter, 8 um pore diameter culture inserts (Millipore, Bellerica,
MA). Static and flow conditions were generated over the course of 24 hours by following a pre-
viously described method [29, 31, 41]. For the static condition, the level of basal medium out-
side of the transwell was level with the medium inside the transwell, resulting in little to no
hydrostatic pressure difference. The IFF condition was created by adding more basal medium
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to the inside of that transwell than the outside, resulting in a hydrostatic pressure difference of
approximately 1 mm Hg. This drove IFF through the collagen gel, with an average velocity of
approximately 0.05-0.1 pm/s (based on average volumetric flow rate and the cross-sectional
area of the gel). This velocity is on the lower end of velocities measured in or modeled for
tumors, but much higher than the IFF velocities predicted for normal hepatic lobules [14, 25,
42]. Cells that transmigrated through the porous membrane were fixed with 4% paraformalde-
hyde (Sigma-Aldrich, St. Louis, MO) and stained with 4’,6-diamidino-2-phenylindole (DAPI)
(2 pg/ml, MP Biomedicals, Santa Ana, CA). Fixed and stained cells were imaged by fluores-
cence microscopy. Both static and flow conditions were analyzed by counting five locations on
the fixed membranes. Percent invasion was calculated with the following equation:

(Average cell count) x (Membrane surface area)

% Invasion = * 100

(Image area) * (Number of cells seeded)

For specific experiments, pharmacological inhibitors, neutralizing antibodies, or recombi-
nant proteins were added to the cell/gel mixture before gel polymerization and in the media
used for the experiment at their respective target concentrations (Table 1).

Western Blot

Western blot was used to measure changes in total and phosphorylated protein levels in
response to IFF and specific inhibitors. Cells were lysed with radioimmunoprecipitation assay
(RIPA) buffer containing Halt protease and phosphatase inhibitor cocktail (Thermo Scientific,
Waltham, MA). For 3D samples, cells were first digested out of the gels with collagenase D
(0.5625 U/ml, Roche Life Science, Indianapolis, IN) for 45 minutes and then centrifuged for 10
minutes at 1,000 RPM. The following primary antibodies were used to detect the proteins of
interest: anti-CXCR4 (1:1,000, Abcam, Cambridge, England), MEK1/2 (1:1,000, Cell Signaling
Technology, Beverly, MA), phospho-MEK1/2 (Ser217/221) (1:1,000, Cell Signaling Technol-
ogy, Beverly, MA), ERK1/2 (1:1,000, Cell Signaling Technology, Beverly, MA), phospho-
ERK1/2 (Thr202/Tyr204) (1:1,000, Cell Signaling Technology, Beverly, MA), and B-actin
(13E5) (1:2,000, Cell Signaling Technology, Beverly, MA). The following secondary antibodies
were used: rabbit anti-mouse IgG-HRP (1:10,000, Abcam, Cambridge, England), goat anti-rab-
bit IgG-HRP (1:10,000, Abcam, Cambridge, England), and anti-rabbit IgG (1:2,000, Cell Sig-
naling Technology, Beverly, MA). Chemiluminescence imaging was conducted with a
FluorChem M imaging system (Proteinsimple, San Jose, California) and quantified with
AlphaView (Proteinsimple, San Jose, California). Target protein levels were normalized to B-
actin.

CXCL12 Chemotaxis Assay

Huh?7 cells (1.25 x 10 cells/ml gel) were added to the same type of gel and cell-culture inserts
used for the 3D flow invasion assay. Cells were exposed to a gradient of recombinant human

Table 1. List of inhibitors and neutralizing antibodies.

Agent

AMD3100

CXCL12 neutralizing antibody
uo126

FR180204

doi:10.1371/journal.pone.0142337.1001

Source Target Concentration References
R&D Systems CXCR4 12.6 uM [43]

R&D Systems CXCL12 3 pg/ml [44]
Selleckchem MEK1/2 25 uM [45, 46]
Tocris ERK1/2 10 uM [47]
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CXCL12 in a checkerboard method, by adding a known concentration of CXCL12 (10 nM) in
the medium only above, below, or above and below the gel (or a control condition with no
CXCL12) for 24 hours at 37°C with 5% CO,. Cells that migrated through the membrane of the
cell-culture insert were fixed and stained. Invasion was quantified following the same method
described for the 3D flow invasion assay.

Enzyme-linked immunosorbent assay (ELISA)

Protein from 2D cell lysates and medium were collected from approximately 8.0-11 x 10° HCC
cells after 4 days of incubation at 37°C and 5% CO, in a T75 flask with full media. Protein from
3D cell lysates and medium were collected from 5.0 x 10° liver cells after 1 day of incubation at
37°C and 5% CO, in a collagen/Matrigel matrix. Protease inhibitors were added to all cell
lysates and media. CXCL12 levels were quantified using a commercially available DuoSet
ELISA kit (R&D Systems, Minneapolis, MN). Standard curves were generated using known
concentrations of recombinant human CXCL12 and data were fit with a four parameter logistic
curve in MATLAB (MathWorks, Natick, MA).

Statistical Analysis

All data are presented as mean + standard error of the mean (SEM). All results for invasion
assays are based on a minimum of two independent experiments with sample size n > 3 for
each experiment. Statistical significance between two groups was determined by conducting a
Student’s t-test. For three or more groups, one or two-factor analysis of variance (ANOVA)
with a Bonferroni or Tukey’s multiple comparison test was utilized. GraphPad Prism 5 (San
Diego, CA) was used to perform statistical analyses.

Results
IFF enhances hepatocellular carcinoma cell invasion

A panel of human liver-derived cell lines consisting of Huh7 (human hepatoma cells), HepG2
(human hepatoblastoma cells), and Hep3B (human hepatoma cells with integrated hepatitis B
virus genome), along with PRHs, were exposed to IFF in the 3D flow invasion assay to quantify
the effects of IFF on cell invasion. Huh7, Hep3B, and HepG2 cells exposed to IFF showed
increased invasion in comparison to cells in static (no IFF) conditions (Fig 1A). Notably, the
percent invasion of Huh?7 cells exposed to IFF was much higher than Hep3B, HepG2, and
PRHs (Fig 1A). When data were normalized to their respective static controls, the hepatoma-
derived Huh7 and Hep3B cells showed the most dramatic response to interstitial flow, with
nearly a 5.5 fold increase in invasion due to IFF (Fig 1B). In contrast, HepG2 cells showed only
a 2.1 fold increase in cellular invasion in response to IFF (Fig 1B). PRHs exposed to IFF did not
show any significant changes in invasion.

IFF-induced hepatocellular carcinoma invasion depends on CXCR4

The chemokine receptor CXCR4 has been shown to mediate cellular functions such as prolifer-
ation, migration, invasion, and adhesion in a variety of cancer types [28, 34, 48]. Studies have
shown that HCC cells possess higher CXCR4 and CXCL12 protein levels in HCC metastases
compared to normal hepatic tissues [34, 35]. This evidence further suggested CXCR4/CXCL12
could potentially promote tumor cell migration. Additionally, IFF has been shown to enhance
glioma invasion through CXCR4/CXCL12-dependent autologous chemotaxis [28]. Thus we
hypothesized that IFF-induced HCC cell invasion depends on the CXCR4/CXCL12 chemokine
axis. To block CXCR4 activity, we incorporated the CXCR4 antagonist AMD3100 (12.6 pM)
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doi:10.1371/journal.pone.0142337.g001
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into the 3D invasion assay. AMD3100 significantly decreased IFF-induced invasion of both
Huh7 and Hep3B cells, but had no statistical effect on HepG2 cells and PRHs (Fig 2A). To
determine if the differences in IFF-induced invasion between Huh7, Hep3B, and HepG2 cells,
and their sensitivity to AMD3100, was due to CXCR4 expression, we performed western blot
analyses to measure CXCR4 levels. We confirmed the presence of CXCR4 in both 2D and 3D
cultures of all three cell lines (Fig 2B). A quantitative analysis of CXCR4 levels showed that
CXCR4 expression did not vary significantly between the cell lines, and IFF had no statistically
significant effect on CXCR4 levels in 3D conditions (Fig 2C). Overall, these findings suggest
that CXCR4 is necessary but not solely responsible for IFF invasion. Moreover, IFF does not
modulate levels of CXCR4, nor does responsiveness to IFF correlate with CXCR4 protein
expression in the cell lines tested.

IFF-induced Huh7 invasion requires an autologous CXCL12 gradient

Given the functional role of CXCR4 (Fig 2), we next investigated the involvement of CXCL12
in IFF-induced invasion of Huh7 cells. The Huh7 cells showed the strongest invasion response
to IFF; therefore, we proceeded with primarily this cell line in subsequent experiments. Incor-
porating a CXCL12 neutralizing antibody in the 3D invasion assay resulted in a significant
reduction in IFF-induced Huh7 invasion (Fig 3A), suggesting that CXCL12 is necessary for
IFF-induced invasion. Based on the functional response of the Huh7 cells in our serum-free
invasion assay conditions, it appeared that these cells are secreting CXCL12. One of the key fea-
tures of the hypothetical autologous chemotaxis mechanism is a pericellular chemoattractant
gradient caused by IFF. To diminish the relative magnitude of any cell- and IFF-generated
CXCLI12 gradient, we added a uniform 10 nM concentration of recombinant CXCLI2 to the
3D invasion assay. This resulted in decreased IFF-induced invasion compared to the untreated
condition (Fig 3B). This suggests that a CXCL12 gradient is necessary for IFF-induced inva-
sion, consistent with the previously hypothesized autologous chemotaxis mechanism [28]. We
also confirmed that Huh7 cells chemotact in response to CXCL12 through a 3D chemotaxis
assay (Fig 3C). Finally, to determine if CXCL12 secretion levels vary between the Huh7,
Hep3B, and HepG2 cells, which could potentially explain the differential responses to IFF,
intracellular and secreted CXCL12 in 2D and 3D (static) environments was quantified by
ELISA (Fig 3D). In the 2D conditions, the Hep3B cells secreted the greatest amount of
CXCL12 in the medium, while HepG2 secreted no detectable amounts. The lysates of the 2D
conditions exhibited low amounts of CXCL12 (~2 pg CXCL12/10° cells) for all three cell lines.
Between the three cell lines in 3D conditions, all three cell lines showed relatively similar levels
of CXCL12 in lysate and medium. While greater amounts of CXCL12 were measured in the
lysates of the cells in the 3D condition compared to the 2D condition, there was no clear corre-
lation between IFF-induced invasion and levels of CXCL12 secretion.

MEK/ERK signaling is required for IFF-induced hepatocellular
carcinoma cell invasion

Our previous results demonstrate that the CXCR4/CXCL12 signaling axis plays a critical role
in IFF-induced HCC invasion, but utilization of a CXCR4 antagonist and the CXCL12 neutral-
izing antibody does not eliminate this flow-induced invasion entirely (Figs 2 and 3). Rather
these results suggest that IFF-induced invasion of HCC cells is not regulated solely by CXCR4/
CXCL12 chemokine signaling, but may involve other molecular mediators. Previous studies
have observed elevated levels of MEK and ERK in HCC, which have been shown to contribute
to HCC cell proliferation, differentiation, tumor progression, alter cell cycle regulation and
apoptosis [49-51]. Given that increased MEK1/2 and ERK1/2 activity has been observed in
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compared to its respective control, B-actin. Percentage adjusted relative density compared to loading control
of respective sample. Static 3D sample, (white bar); Flow 3D Sample, (black bar). For 2D lysates (n = 3) and
3D lysates: Huh7 (n =5), HepG2 (n = 6), and Hep3B (n = 3). No statistical significance was observed
between static and flow conditions of respective cell lines.

doi:10.1371/journal.pone.0142337.9002

HCC, we investigated whether these kinases affect IFF-induced HCC invasion [49, 50]. Huh7
cells in the 3D invasion assay were treated with the MEK1/2 inhibitor U0126 (25 pM), which
resulted in a significant decrease in IFF-induced invasion compared to the vehicle (DMSO)
control (Fig 4A). Similarly, inhibition of ERK1/2 activity by FR180204 (10 uM) resulted in sig-
nificantly decreased IFF-induced invasion of Huh7 cells (Fig 4B). The inhibitor concentrations
used in these experiments were confirmed to be non-cytotoxic in 3D culture conditions (S1
Fig). A western blot was conducted on protein from Huh7 3D samples and showed no change
in total MEK1/2 levels between the static control and IFF condition (Fig 4C). Exposure to IFF
and/or AMD3100 had no effect on phosphorylated MEK1/2 (pMEK1/2) or ERK1/2 (pERK1/
2) levels in Huh?7 cells (Fig 4C). This lack of change in pMEK1/2 and pERK1/2 levels with IFF
or AMD3100 exposure suggests that IFF is not activating MEK or ERK via CXCR4 signaling.
We also verified that U0126 inhibits MEK1/2 activity by observing the loss of pERK1/2 with
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two-way ANOVA. (B) ERK1/2 inhibitor (FR180204) at 10 uM incorporated in the 3D invasion assay with Huh7 cells (n = 9). Significance between static vs.
flow, * = p < 0.05. # = p < 0.05 between static vs. flow conditions of the two treatment options assessed by a two-way ANOVA. (C) Western blot conducted to
detect the presence of total MEK1/2 protein collected from Huh7 cells under static and flow. pMEK1/2 was detected in Huh7 cells that were incorporated in
the 3D invasion assay and exposed to AMD3100. MEK1/2 and pMEK1/2 = 45kDa. pERK1/2 was detected in Huh7 cells that were incorporated in the 3D
invasion assay and exposed to treatments of U0126 or AMD3100. pERK1/2 = 42/44kDa. (D) pMEK was detected in Huh7, Hep3B, and HepG2 cells. (E)
Western blot conducted to detect total CXCR4 protein collected from Huh7 cells in 3D collagen gels treated with U0126, FR180204, and DMSO (vehicle
control). (F) Average CXCL12 expression measured from protein of Huh7 cells seeded in 3D collage gel and treated with U0126, FR180204, and DMSO
(vehicle control).

doi:10.1371/journal.pone.0142337.g004
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U0126 treatment (Fig 4C). Levels of pMEK1/2 were similar between Huh7, Hep3B, and
HepG2 cells, and IFF did not show any effect on these levels compared to their respective static
conditions (Fig 4D). Furthermore CXCR4 levels were measured from the lysates of Huh7 cells
seeded in a collagen gel with U0126 (25 uM) and FR180204 (10 uM) inhibitor treatments, and
DMSO vehicle control (Fig 4E). No change in CXCR4 levels in the Huh7 cell was observed
with MEK1/2 or ERK1/2 inhibition (S2 Fig). Similarly, there were no significant changes in
secreted or intracellular CXCL12 in Huh?7 cells treated with the MEK1/2 or ERK1/2 inhibitors
(Fig 4F). These findings suggest that MEK/ERK signaling is involved in IFF-induced invasion,
but is not upstream or downstream of CXCR4 and CXCL12. Instead, MEK/ERK may be modu-
lating other pathways necessary for IFF-induced invasion.

Discussion

Interstitial fluid flow is slow moving fluid flow that occurs in normal tissues; however, in
tumors this fluid flow is elevated, potentially driving increased cell invasion [17, 26, 28, 31, 33].
To date, several studies have demonstrated that IFF can drive glioma, melanoma, renal, and
breast cancer cell invasion [17, 28, 29, 31, 33, 52] via one of three proposed mechanisms: IFF-
induced tension transduced by cell-matrix adhesions, glycocalyx-mediated shear stress sensing
and downstream upregulation of matrix metalloproteinases, and autologous chemotaxis. In
this study, we demonstrate for the first time that IFF can induce invasion of hepatocellular car-
cinoma cells through the formation of autologous transcellular gradients of CXCL12. Further-
more, IFF-induced invasion of Huh7 cells requires MEK/ERK activity independent of CXCR4/
CXCL12 signaling. High expression of CXCR4 and CXCL12 has been observed in various car-
cinomas, resulting in increased cell migration and tumor angiogenesis [48, 53]. In hepatocellu-
lar carcinoma, CXCR4 and CXCL12 have been associated with variations in the cell cycle
resulting in increased risk of metastasis formation in bone, and elevated levels of the chemo-
kine enhances migration of the tumor cells [34, 36, 37]. We showed that HCC flow-induced
invasion occurs through a CXCR4-dependent mechanism (Fig 2). Tumor dissemination and
poor HCC prognosis have been linked to the expression of this chemokine receptor [35]. This
CXCR4-dependent mechanism is not complete without the secretion of its ligand CXCL12.
CXCL12, also known as stromal cell-derived factor 1 (SDF-1), has been shown to mediate
important cellular processes such as chemotaxis and leukocyte trafficking [54]. We observed
that CXCR4 and CXCL12 are necessary for IFF-induced invasion and that the levels of the che-
mokines did not change when exposed to IFF (Fig 3). The presence of CXCR4 and CXCL12
was necessary for IFF-induced invasion in HCC cells. A potential reason as to why non-HCC
cells such as the PRHs did not respond to flow-induced invasion could be due to the lack or
low levels of either the CXCR4 receptor or its ligand CXCLI12. Previous work identified
CXCR4 messenger RNA (mRNA) and protein levels in HCC tissues and cell lines, but could
not detect CXCR4 in normal hepatic tissues. Similarly, CXCL12 was detectable in HCC
patients’ ascites fluid but not in normal hepatic tissue [34]. No further experiments were con-
ducted with PRHs because they did not respond to IFF; instead, we focused our efforts to
uncover the molecular mechanisms of IFF-induced HCC cell invasion. Ultimately, we were
unable to identify any relationship between total protein levels of CXCR4 or CXCL12 and
response to IFF; however it is important to note that autologous chemotaxis does not require
increased expression of the receptor or secretion of the ligand, but requires the formation of a
gradient [24]. Furthermore we observed differences in IFF-induced invasion between the three
liver cancer cell lines in our study. It has been observed that Huh7 and Hep3B cells, exposed to
CXCL12, respond with rapid perinuclear translocation of CXCR4 while HepG2 cells do not
due to a receptor defect [35, 55]. Moreover, it was also previously shown that Huh7 cells
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showed a strong invasive response once exposed to CXCL12, which is quite similar to our find-
ings (Fig 3) [35]. In conclusion, we identified the CXCR4/CXCL12 signaling axis to be a signifi-
cant component in IFF-induced invasion in HCC; however, this signaling was not the only
mechanism involved in IFF-induced invasion of HCC cells, as shown by the presence of some
IFF-induced invasion even with inhibition of CXCR4 or CXCL12 (Figs 2A and 3B).

In the past twenty years, much emphasis has been placed on the RAF-MEK-ERK signaling
cascade to better understand its potential therapeutic benefits for cancer therapy. The MEK/
ERK signaling cascade has been observed to be highly active in HCC and shown to regulate
invasion and formation of metastasis in HCC cells [49]. Recent studies investigating the
molecular pathogenesis of HCC have revealed that blocking MEK/ERK signaling in HCC cells
results in multiple anticancer effects such as decreased HCC cell proliferation, growth, and
increased apoptosis [51]. In HCC tissue specimens, MEK/ERK signaling has been shown to be
constitutively activated in many specimens, and inhibition of the MEK/ERK pathway in our
study resulted in a significant decrease of IFF-induced invasion (Fig 4A and 4B) [49]. Some
studies have also suggested crosstalk between CXCR4/CXCL12 activation and MEK/ERK sig-
naling that influences cellular invasion [56]. One study demonstrated that CXCR4/CXCL12
signaling resulted in increased phosphorylation of ERK in Huh7 cells [43]. In contrast, we
demonstrated that CXCR4/CXCL12 signaling did not alter the MEK/ERK pathway in our
liver cell lines (Fig 4C). This could be a result of the differences in the experimental model;
our studies are performed in 3D, while the previous study used cells cultured in 2D. Further-
more, we determined that MEK/ERK signaling and chemokine signaling independently
altered HCC cell invasion (Fig 4E and 4F). Previous studies have observed MEK/ERK activity
to be constitutively elevated in HCC as well as other carcinomas, altering many cell functions
such as proliferation, differentiation, and apoptosis [49, 56]. We propose that MEK and ERK
signaling affect one or more cell functions that are essential for IFF-induced invasion; however
this signaling cascade is working independently from CXCR4/CXCL12 signaling axis. We
hypothesize that this high constitutively active MEK and ERK signaling are essential media-
tors for flow-induced invasion and could be affecting a different aspect of the invasion process
such as cellular adhesion, contractility, and matrix remodeling [57-59]. The MEK/ERK sig-
naling cascade has been implicated in the enhanced secretion of MMPs in HCC resulting in
increased cell migration and invasiveness [60, 61]. Activation of the MEK/ERK pathway along
with cell surface receptors have been shown to mediate invasion [44, 62]. However further
investigation would be required to elucidate the role of MEK/ERK signaling in IFF-induced
invasion.

In this study, we elucidated CXCR4/CXCL12-dependent autologous chemotaxis as a signif-
icant mechanism involved in IFF-induced invasion of HCC cells. Additionally we identified
MEK/ERK signaling as a significant contributor to IFF-induced invasion, but one that is inde-
pendent of the CXCR4/CXCL12-autologous chemotaxis mechanism. However as previously
mentioned, mechanisms of interstitial fluid flow mechanosensing are not fully understood.
The formation of autologous transcellular gradients is merely one potential mechanism that
cells may use to sense and respond to IFF. Another possible mechanism involves glycocalyx
shear stress sensing, where flow-induced stresses are transduced into and transmitted as solid
stresses through core proteins of the glycocalyx, leading to various intracellular signaling cas-
cades [15-17, 32]. These studies identified that IFF mechanotransduction occurs through gly-
cocalyx heparan sulfate proteoglycans and focal adhesion FAK-ERK signaling, resulting in
increased cell motility through increased MMP activity in 3D collagen gels [63]. Focal adhe-
sion kinase (FAK) signaling to mitogen-activated protein kinase (MAPK) has been observed
to be involved in migration and differentiation in HCC [57]. It may be possible that glycoca-
lyx-mediated IFF sensing in HCC could occur through signaling of FAK to MAPK activation
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resulting in increased cell motility. This may be a potential mechanism since we observed
MEK/ERK signaling, an important constituent in IFF-induced invasion in HCC, but could
not identify any relationship to our CXCR4/CXCL12 results. Additionally we observed
CXCR4 inhibition with AMD3100 did not completely eliminate HCC-flow induced invasion
(Fig 2A). CXCL12 could also act through an auxiliary receptor such as syndecan-4 (SDC-4), a
transmembrane heparan sulfate proteoglycan that has been shown to regulate the migration
response of HCC cells to CXCL12 gradients [43]. Alternatively, IFF could also induce invasion
through mechanisms entirely independent of CXCR4/CXCL12. Previous studies have shown
that IFF stimulated upstream invasion (against the direction of flow) of breast cancer cells
through activation of integrins and focal adhesion reorganization and polarization [17, 30].
Given the nature of our 3D flow invasion assay and study, we only measured downstream
invasion; invasion in the opposite direction would not be captured by our transwell system.
Since the changes we observed resulted in increased invasion in the direction of IFF, we can
also conclude that the mechanisms at play are likely separate from any induction of upstream
invasion, since we are explicitly not quantifying that component of the invasion response.

In conclusion, we demonstrated that IFF is a critical factor in hepatocellular carcinoma
invasion, and potentially drives invasion through two separate signaling pathways. First, we
show that HCC cells invade in response to IFF via a CXCR4/CXCL12-dependent mechanism.
Our findings suggest that this occurs through autologously generated pericellular gradients due
to HCC cell-secreted CXCL12 and IFF, corroborating previous studies of the autologous che-
motaxis mechanism [24, 28, 29, 52]. Second, we have evidence that the MEK/ERK pathway
plays a critical role in IFF-induced HCC invasion, but one that is not downstream of CXCR4/
CXCL12. Our study provides a better understanding of how biomechanical forces like IFF can
alter signaling pathways that drive hepatocellular carcinoma invasion, and may potentially pro-
vide a basis for investigating new therapeutic strategies for HCC. Ultimately, the goal is to
reduce HCC invasion and prevent HCC from spreading intraphepatically or metastasizing to
other organs. We have shown some HCC cells become invasive upon exposure to this subtle
fluid flow, and identifying these specific cells that respond strongly to flow could result in new
therapeutic strategies to prevent invasion. Based on our study, it is evident that biomechanical
forces such as IFF can affect HCC cell invasion. However, in order to better understand the
role of mechanical forces within the tumor microenvironment, the development of complex in
vitro models is required along with a greater understanding of how cellular machinery is uti-
lized to sense and react to these micro-environmental changes.

Supporting Information

S1 Fig. Live/Dead assay on Huh7 cells. A Live/Dead assay conducted on Huh?7 cells to con-
firm inhibitor concentrations used in experiments were non-cytotoxic in 3D culture condi-
tions.

(TIF)

$2 Fig. Quantitative western blot analysis of CXCR4 compared to B-actin. Percentage
adjusted relative density compared to loading control of respective 3D static sample. Huh7
cells were treated with U0126 at 25 uM or FR180204 at 10 pM.

(TIF)
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