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Abstract
Particulate matter with an aerodynamic diameter <2.5 μm (PM2.5) represents a severe envi-

ronmental problem and is of negative impact on human health. Xi'an City, with a population

of 6.5 million, is among the highest concentrations of PM2.5 in China. In 2013, in total, there

were 191 days in Xi’an City on which PM2.5 concentrations were greater than 100 μg/m3.

Recently, a few studies have explored the potential causes of high PM2.5 concentration

using remote sensing data such as the MODIS aerosol optical thickness (AOT) product.

Linear regression is a commonly used method to find statistical relationships among PM2.5

concentrations and other pollutants, including CO, NO2, SO2, and O3, which can be indica-

tive of emission sources. The relationships of these variables, however, are usually compli-

cated and non-linear. Therefore, a generalized additive model (GAM) is used to estimate

the statistical relationships between potential variables and PM2.5 concentrations. This

model contains linear functions of SO2 and CO, univariate smoothing non-linear functions

of NO2, O3, AOT and temperature, and bivariate smoothing non-linear functions of location

and wind variables. The model can explain 69.50% of PM2.5 concentrations, with R2 =

0.691, which improves the result of a stepwise linear regression (R2 = 0.582) by 18.73%.

The two most significant variables, CO concentration and AOT, represent 20.65% and

19.54% of the deviance, respectively, while the three other gas-phase concentrations, SO2,

NO2, and O3 account for 10.88% of the total deviance. These results show that in Xi'an City,

the traffic and other industrial emissions are the primary source of PM2.5. Temperature,

location, and wind variables also non-linearly related with PM2.5.

Introduction
Particulate matter with an aerodynamic diameter less than 2.5 μm, termed PM2.5, is a mixture
of various gaseous and particulate components, and the primary source of PM2.5 is believed to
be anthropogenic emission such as combustion process [1]. The monitoring and study of
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PM2.5 is important because PM2.5 can negatively impact human health [2, 3]. Because of its
small size, PM2.5 has a long lifetime in the atmosphere and can be transmitted great distance,
leading to remote deposit locations in the respiratory tract of human beings. It can readily infil-
trate people's lungs, reach alveoli and hardly be eliminated from the body [4]. The primary
source of toxicity is the heavy metal elements and toxic organic matters attached on PM2.5,
which could affect the normal functions of human body, delay the human development, and
even cause heart disease and cancer after entering the body [5–7]. Individuals are more prone
to respiratory disease after long-term exposure to high concentrations of PM2.5; additionally,
the morbidity and mortality rates increase with exposure [8–10]. To protect public health,
PM2.5 standards were proposed by US Environmental Protection Agency (USEPA) in 1997,
with a short-term (24-h) standard value of 65 μg/m3 and a long-term (annual) standard value
of 15 μg/m3 for PM2.5 [11]. Following several modifications derived from scientific research on
the influence of PM2.5 on human health, the current short-term and long-term standards are
35 μg/m3 and 12 μg/m3, respectively [12].

In recent years, days with continuously high concentrations of PM2.5 have occurred fre-
quently in central and eastern China. Early death of 1.23 million people and 25 million DALYs
(disability-adjusted life years) lost are attributed tohigh concentrations of outdoor PM2.5

(2010) [3]. In January, 2013, approximately 600 million people living in a quarter of China's
land area are at risk of PM2.5 [13]. Therefore, monitoring, predicting, and controlling PM2.5 is
of great importance. On February 29, 2012, the Ministry of Environmental Protection of China
unveiled a new revised "Ambient air quality standard" (GB3095-2012), which set the primary
and secondary standards of PM2.5 concentrations for nature protection areas and residential
districts respectively. The primary standards set an average of 35 μg/m3 for 24-hour period and
15 μg/m3 for one year, while the secondary standards are 75 μg/m3 as a 24-hour average and
35 μg/m3 as an annual average, respectively. With an annual average PM2.5 concentration of
133 μg/m3 in 2013, Xi'an City features one of the highest average concentrations of PM2.5 in
China. Among 365 days in 2013, in total, there were 352 days and 259 days with concentrations
greater than 35 μg/m3 and 75 μg/m3, respectively [14]. Approximately 6.5 million people in
nine municipal districts, according to the sixth National Census of China in 2010, are often
exposed to high PM2.5 concentrations. The health impact of this exposure is a serious concern.
Research has shown that deaths caused by PM2.5 accounted for 1.6% of all deaths in Xi'an in
2010 [15]. Therefore, it is important to investigate the spatiotemporal and source patterns of
PM2.5 concentrations in Xi'an City.

A series of models have been proposed to discern the relationships of pollutants and meteo-
rological variables with PM2.5 concentrations. PM2.5 source apportionment models require the
physical and chemical features of the chemical components and the quantitative determination
theories [16, 17]. For these models, various chemical elements in PM2.5 are obtained with the
help of chemical experiments by using the measurement of dozens of chemical elements (e.g.,
carbon), certain water-soluble ions, and several types of organic matter [18, 19].

Satellite data is a source of air quality variables for estimating PM2.5 concentrations. The
Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical thickness (AOT)
product, an integral of aerosol extinction coefficients in the vertical direction from ground to
top of atmosphere, is the relevant satellite remote sensing product that could be used to study
variations in PM2.5 concentrations. MODIS product can be used to estimate and continuously
monitor air quality variation and factors globally, while the ground-based measurements are
only representatives at specific positions, primarily in urban regions, with a lack of spatial cov-
erage and sparse monitoring data in rural areas [20]. The experiment conducted in Jefferson
County, Alabama in 2002 demonstrated a strong relationship between AOT and PM2.5 with a
linear correlation coefficient of 0.7 [21]. The strong correlation, especially under clear sky
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conditions with less than 40–50% relative humidity, was also validated in six other locations
worldwide: Sydney, Delhi, Hong Kong, New York City, and Switzerland, where the linear cor-
relation coefficient between bin-averaged AOT and PM2.5 concentration is 0.96 [22], and
China [23–26]. Therefore, this product is substantiated by a series of experiments to demon-
strate that AOT values have strong positive correlations with PM2.5 concentrations [27–31].
However, the relationship between AOT values and PM2.5 concentrations is also complex and
non-linear, as they are both mixture that the ratios of components are different [32–36], and
the relationship depends on multiple factors such as aerosol concentrations, relative humidity,
and cloud coverage [22]. Seasonality appeared in the relationship between AOT and PM2.5

concentrations in the experiments conducted in the United States, Guangdong Province, and
North China [37–39]. In northern China, the strong seasonal variation of the relationship is
caused by the dominant aerosol types, implying that large dust particles and soil aerosols are
the primary types in spring and summer, and smoke and soot aerosols are the dominant types
in autumn and winter [39, 40].

In addition, gas-phase concentrations such as SO2 and NO2 could be the auxiliary variables
for PM2.5 concentrations prediction, since they are the precursor gas contents of secondary
ions of water-soluble inorganic salts [41], and can share a common emission source, be pro-
cessed in the atmosphere and partition to the particulate-phase. In China, the mass concentra-
tions of water-soluble inorganic salts and carbonaceous components make up more than 50%
of PM2.5 [42–44]. Moreover, a few studies showed that the variations of PM2.5 concentrations
were sensitive to meteorological variables [45, 46]. The integrated action of these variables,
such as temperature, humidity and wind renders PM2.5 concentrations highly variable between
different periods and regions.

A regular diurnal cycle with two maxima and two minima per day was obvious in the hourly
PM2.5 concentrations of Xi'an City [47].The AOT values during particulate matter events
including haze, dust storms, straw combustion, and fireworks displays, were twice as large as
those of normal days [48]. Based on the emissions of organic and elemental carbon, gasoline
engine exhaust, diesel exhaust and coal burning were the main contributors to PM2.5 in fall and
winter in Xi’an City [49]. In 2010, the concentrations of organic and elemental carbon in PM2.5

in winter were 2.62 and 1.75 times higher than those in summer, primarily due to traffic emis-
sions and adverse weather conditions [50]. Thus, the variation of PM2.5 in Xi’an city was
related to the above emissions and meteorological conditions.

For these studies, linear regression analysis is utilized to determine the types of variables
related to PM2.5. However, non-linear relationships between many variables render linear
regression model descriptions inaccurate. Moreover, due to the complex and various chemical
components of PM2.5 and the potential variables in different places and periods, their relation-
ships and variation patterns can be inadequate in Xi'an City. For instance, the dominant species
and their ratios are different for AOT in various seasons and areas, indicating that the relation-
ships between AOT and PM2.5 concentration to be seasonal and non-linear. Additionally, the
relationships (e.g., the effects, degrees and patterns) between meteorological variables and air
quality indexes, and PM2.5 concentrations are complex. We expect that effects of temperature,
wind directions and other variables are non-linear. Therefore, to understand the relationships
among the multiple sources and various types of variables, we will have to use non-linear
models.

The objective of this work is to explore statistical relationships between the variables and
PM2.5 concentrations in Xi'an City in 2013, identify the primary variables, and to interpret the
patterns of the relationships and understand the source patterns on the basis of the spatio-tem-
poral evolution of PM2.5 concentrations. Ground-based monitoring data are provided by sev-
eral ministries. Satellite remote sensing products will be used as well. Different types of data
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complement each other. Additionally, the comprehensive use of multi-source monitoring data
is valuable to determine the values and causes of PM2.5 concentration levels in different periods
and regions. Furthermore, a relationship between PM2.5 and its corresponding statistical vari-
ables such as pollutants and meteorological variables is constructed by applying a generalized
additive model (GAM), which describes the non-linear relationship between variables and
responses via nonparametric smoothing functions [51]. A series of experiments have demon-
strated that a generalized additive model works better than a linear regression model for vari-
ables with non-linear relationships [52–54]. The generalized additive model approach is
reliable and flexible for constructing relationships, exploring variables and making predictions
[55–58].

Materials and Methods

Study area and sampling sites
The study area includes nine urban districts in Xi'an City, which is the capital city of Shaanxi
Provence in China. Xi’an City, with an area of 3,581 square kilometers and a population of
6.5 million people, is located in the middle of the Yellow River’s Guanzhong Plain, with the
Qinling Mountains to the south and the Weihe River to the north. The terrain features high
elevations in the southeast and low elevations in the northwest. Days with continuous high
concentration of PM2.5 occur frequently in central and eastern China in recent years. The
annual average of PM2.5 concentration is 133 μg/m3 in Xi'an City, one of the cities with the
most severe air pollution in China.

The research in this paper is based on daily PM2.5 concentrations, reported by the Xi'an
environmental monitoring station [14] and obtained from 13 observation stations in Xi'an
between January 1 and December 31, 2013. Fig 1 shows the location of Xi'an City in China and
the distribution of the 13 observation stations on a digital elevation model (DEM) map. Sta-
tions 7 and 8 are located in mountainous regions with the elevations 500.2 m and 500.8 m
respectively, and other stations are in plain area with the elevations ranging from 388.1 m (sta-
tion 5) to 438.4 m (station 2). PM2.5 concentrations and four gas-phase concentrations (daily
average concentrations of SO2, NO2, CO and O3) are measured daily at the 13 observation
stations.

In Table 1, the PM2.5 concentrations and air quality are classified according to the defini-
tions in Technical Regulation on Ambient Air Quality Index (under review) (HJ 633–2012,
China's environment protection standard). The air quality conditions can be presented with
different colors. The time series of Fig 2 show the variation and seasonality of PM2.5 concentra-
tions in Xi'an in 2013. We can see from the time series that excellent and good air qualities are
primarily fromMay to August, and seriously polluted and severely polluted air qualities are
from January to March and form October to December. Especially, severely polluted air
qualities are in the whole winter (December, January, and February). Table 2 lists the summary
statistics of the PM2.5 monitoring data (raw dataset is S1 Appendix). Missing PM2.5 concentra-
tions data accounts for 10.7% (509/4745 data points). In other words, we use 89.3% of the raw
data (4236 data points) to conduct the following experiment.

Measurement of gas-phase concentrations and meteorological data
Daily average of gas-phase pollutant concentrations in the study area are also collected from
the 13 monitoring stations of the Xi'an environmental monitoring network [14] in Xi'an
City. These indices include daily average concentrations of SO2, NO2, CO and O3 measured at
each station. Table 2 lists the summary statistics of these indices with a few missing observa-
tions. Similar to the time series of PM2.5 concentrations shown in Fig 2, the time series of four
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gas-phase concentrations and temperature in Fig 3 also show seasonality. The season with rela-
tively high PM2.5 concentrations is winter. The pattern is identical with that of SO2 concentra-
tions. While the largest values of NO2 and CO concentrations appear in both winter and
spring, and the largest O3 concentrations occur in summer. Besides, the spatial differences of
each variable change with the ranges of daily observations in 13 stations, as shown in the verti-
cal black lines.

The meteorological data in study area consists of daily temperature (daily maximum tem-
perature, minimum temperature and mean temperature), wind direction and wind scale in

Fig 1. The location of Xi'an City in China and the distribution of 13 observation stations.

doi:10.1371/journal.pone.0142149.g001

Table 1. Categories of air quality and corresponding PM2.5 concentrations.

Level of air quality index Category of air quality PM2.5 concentration (μg/m3) Color

1 Excellent 0–35 Green

2 Good 36–75 Yellow

3 Mildly polluted 76–115 Orange

4 Moderately polluted 116–150 Red

5 Seriously polluted 151–250 Purple

6 Severely polluted >250 Maroon

doi:10.1371/journal.pone.0142149.t001

Estimate PM2.5 Using Generalized Additive Model with Multi-Source Data

PLOS ONE | DOI:10.1371/journal.pone.0142149 November 5, 2015 5 / 22



Xi'an City throughout 2013. The meteorological data are obtained from the China Meteorolog-
ical Administration [59]. Table 2 lists the summary statistics of the daily mean temperature
and wind scale, and Fig 4 shows the summaries of wind directions in each season (raw dataset
is S1 Appendix). Because the actual observed meteorological data are invariant across Xi'an
City for a given day [60] and the scale of the study area is not too large to discuss the variations
in meteorological data, the application of a single weather observation to the whole region is
reasonable.

A circular area with a radius of 14 km covers 11 observation stations (with stations S7 and
S12 excluded). The distances between the circle’s center and the two excluded stations are
about 25 km and 50 km, respectively. The correlation between the 47-year daily temperature
series of Beijing, a city with the same monsoon climate and similar terrain as Xi'an, is
significant (α = 0.01). For all the reference stations located within 340 km the correlation coef-
ficients are larger than 0.94 [61]. Furthermore, the correlation coefficient between the daily

Fig 2. Time series of daily PM2.5 concentrations at 13 monitoring stations of Xi'an in 2013. The gray vertical lines indicate the range of daily PM2.5

concentrations at the 13 monitoring stations (from maximum to minimum), the colored dots are the average concentrations of each day (according to the
defined colors in Table 1), and the black line illustrates the continuous 7-day average concentration.

doi:10.1371/journal.pone.0142149.g002

Table 2. Summary of data (except for wind direction) used to model the PM2.5 concentrations.

Variables Units Observation stations No. of observations (missing percent, %) Min 1st Qu. Median Mean 3rd Qu. Max

PM2.5 μg/m3 13 4236 (10.73) 3 65 102 135.6 172 500

SO2 μg/m3 13 4137 (12.81) 0 18 32 38.83 55 135

NO2 μg/m3 13 3927 (17.24) 0 42 62 66.34 89 199

CO mg/m3 13 4181 (11.89) 0 30 43 51.36 68 135

O3 μg/m3 13 4016 (15.36) 1 18 33 40.48 52 199

Temperature °C Xi'an City 365 (/) -3.50 7.00 17.50 16.61 25.50 32.50

Wind scale level Xi'an City 365 (/) 3 3 3 3.038 3 5

AOT / 13 4745 (/) 0.05 0.34 0.52 0.62 0.78 3.80

doi:10.1371/journal.pone.0142149.t002
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Fig 3. The time series of gas-phase concentrations (SO2, NO2, CO, and O3, μg/m
3) and temperature (°C). The black vertical lines are the daily ranges of

concentrations at 13 observation stations, and red line illustrates the continuous 7-day average concentration.

doi:10.1371/journal.pone.0142149.g003
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temperatures of the two locations with a distance of 15.74 km is larger than 0.96, and the corre-
lation between the stations with a distance of 55.51 km is larger than 0.94 [62]. Daily tempera-
ture variations in these 13 observation stations are small even constant in all seasons [63], so
the use of single daily mean temperature for the whole study area is reasonable.

According to the Chinese National Standards (GB/T 19201–2006), wind speed is divided
into a number of levels: level 3 (a breeze) defined at 3.4 m/s—5.4 m/s, level 4 (a soft breeze)
at 5.5 m/s—7.9 m/s, and level 5 (a fresh breeze) at 8.0 m/s—10.7 m/s. Wind scale is the

Fig 4. Number of days with the samewind directions in each season (a. spring; b. summer; c. autumn;
d. winter) and the whole year (e.).

doi:10.1371/journal.pone.0142149.g004
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substitution variable for wind speed if wind speed is not available. Therefore, the wind-related
variables are wind direction and wind scale. The wind scale for 96.4% of the days in 2013 (352/
365) is at level 3 and the occurrence of levels 4 or 5 is rare. In 2013, easterly wind is the primary
direction (42.7%, 156 days), as shown in Fig 4, and there are only 15 days with almost no wind.
Wind direction and wind speed in Xi'an are primarily affected by the Pacific Ocean and Sibe-
rian air current. North-westerly wind is formed by the Siberian high-pressure system in
autumn and winter, and south-westerly or south-easterly winds are related to the increasing or
decreasing Pacific Ocean pressure in spring and summer [64–66]. Because the study area is
much smaller than the area affected by air pressure, wind is usually constant among the obser-
vation sites in this study area. Ratios of days with easterly wind and north-easterly wind
increase from 11.2% in spring to 18.1% in summer, but decrease from 18.9% in autumn to
10.7% in winter. Ratios of days with south-westerly wind, southerly wind, and westerly wind
decrease from 9.0% in spring to 4.9% in autumn, but increase to 28.5% in winter.

Aerosol optical thickness data
AOT, which is the integral of aerosol extinction coefficients in the vertical direction from the
ground to the top of atmosphere, is an alternative satellite product to effectively predict PM2.5

concentrations. The strong correlation between AOT and PM2.5 concentrations has been docu-
mented by a series of studies in recent years [21, 23, 28]. The daily AOT (550 nm) data is a
MODIS Terra Atmosphere level 3 product, downloaded from the Global Space Flight Center
MODIS Level 1 and Atmosphere Archive and Distribution SystemWeb [67]. The AOT values
for the 13 observation stations are generated using the Ordinary Kriging method and the
MODIS Terra Atmosphere level 3 product with a spatial resolution of 1°. Fig 5 shows the spa-
tial distribution of the annual mean AOT (550 nm) obtained from the MODIS satellite data
product for 2013 in Xi'an and its surrounding cities. This figure also shows that Xi'an City is
one of the areas with relatively high AOT (550 nm) values.

Modeling PM2.5 concentrations
The flowchart of the experiment process is illustrated in Fig 6. The three major steps of the
experiment are the exploratory analysis, variable selection and estimation model. The first step
exploratory analysis aims at charactering PM2.5 concentration data, testing its statistical fea-
tures, and removing the outliers. The target of the second step is to select the variables that
could be statistically related to PM2.5 concentration for statistical models. Finally, the last step
is to find potential non-linear relationships, to estimate model parameters and to quantify the
variances of the potential variables.

Exploratory analysis and variable selection
Exploratory analysis, based on the summary statistics of PM2.5 concentrations and the inde-
pendent variables listed in Table 1, is a key step for processing raw data. Both dependent and
independent variables are tested with Quantile-Quantile (QQ) plots and those that don’t follow
a normal distribution are transformed to a normal distribution with natural logarithm. In this
process, the variables PM2.5 concentration, O3 concentration, and AOT (550 nm) are trans-
formed to the data with a normal distribution. Outliers, which generate anomalous analysis
results, are removed by using the criteria. More specifically, a value with more than three times
of the estimated standard deviation (> 3 σ) from the median is treated as an outlier from an
assumed normal distribution [68]. As a result, a small number of outliers in PM2.5 concentra-
tions data and certain other variables are removed.

Estimate PM2.5 Using Generalized Additive Model with Multi-Source Data
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The normalized variables without outliers are divided into the following groups: (a) the
satellite-based data is AOT (550 nm) values; (b) the gas-phase concentrations are the daily
average concentrations of SO2, NO2, CO and O3; (c) the meteorological variables of daily mean
temperature, wind direction and wind scale; and (d) the spatial location variables of longitude
and latitude. Temporal variables, such as days or seasons, are not considered, because the mete-
orological variables are physical reflections of temporal variables, and they are equivalent to
the physical meanings of temporal variables in this particular case.

Fig 5. Spatial distribution of annual mean AOT in 2013 for Xi'an and its surrounding cities.

doi:10.1371/journal.pone.0142149.g005

Fig 6. Schematic overview of the estimation experiment.

doi:10.1371/journal.pone.0142149.g006
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Correlation analysis is conducted for these groups of variables to remove those without sig-
nificant correlation with PM2.5 concentrations. Scatter plots between PM2.5 concentrations and
the variables in group (a), (b), and temperature are used to depict and determine the linear or
non-linear relationships. Fig 7 shows the relations between PM2.5 concentrations and the vari-
able four gas-phase concentrations, AOT values, and daily mean temperature. The colors and
contours represent the density of the scatters. It is clear from the figure that the relationships
between PM2.5 concentration and concentrations of SO2 and CO are linear, but other relation-
ships are complex and regarded as non-linear relationships. Further, in Fig 8, the seasonality
between AOT (550 nm) and PM2.5 concentration is depicted with scatter plots and linear
regression functions in the four seasons in Xi'an City. The regressions illustrate that the

Fig 7. Scatter plots between PM2.5 concentration (μg/m3) and the variables gas-phase concentrations
(SO2, NO2, CO, and O3, μg/m

3), AOT values, and Temperature (°C).

doi:10.1371/journal.pone.0142149.g007
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relationships between AOT (550 nm) and PM2.5 concentrations are distinct among the four
seasons.

Pearson correlation coefficients between PM2.5 concentrations and the four air quality indi-
ces observed at the 13 stations each day were calculated. At this step, the non-linear relation-
ships between the spatial locations of the observation stations and wind direction with PM2.5

concentrations must be considered. Additionally, the effect of AOT values on PM2.5 concentra-
tions is seasonal and non-linear. Then, multicollinearity analysis is performed using variance
inflation factors (VIFs) for the variables. The variables are divided into two groups, weakly cor-
related variables (VIF<10) and highly correlated variables (VIF�10). One highly correlated
variable is selected for combination with the weakly correlated variables, and VIFs are

Fig 8. Linear regression functions betweenMODIS AOTs and PM2.5 concentrations (μg/m3) in different seasons.

doi:10.1371/journal.pone.0142149.g008
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recalculated. This procedure is repeated, and the optimal combination of experimental vari-
ables is eventually chosen. In this experiment, the maximum values of VIFs are less than 4, so
all VIFs are less than 10.

Estimation model
A generalized additive model is used to construct the unknown statistical relationships, linear
or non-linear, between PM2.5 concentration and the potential variables. In this work, the PM2.5

data form a continuous time series, but thirteen observation stations are not enough to perform
spatial interpolation using geostatistics methods. Additionally, linear regression modeling is
inappropriate when the dependent and independent variables are non-linearly related. The
relationships between dependent variable, the pre-processed PM2.5 concentration, and inde-
pendent variables are constructed via a generalized additive model under the assumption of
normal distributions as follows:

y ¼ b0 þ
X

i¼1

bixi þ
X

j¼1

fjðxjÞ þ
X

k¼1

fkðx1;k; x2;kÞ þ ε ð1Þ

where y is the dependent variable; xi is a continuous linear variable; xj is a continuous non-lin-
ear variable; x1,k, x2,k are continuous non-linear variable-pairs; β0 and βi are unknown coeffi-
cients; fj and fk are nonparametric smoothing functions between y and non-linear variables;
and ε is the normal random error term (ε*N(0,σ2)).

In the model, wind variables are calculated as wc ([wind scale]×cosine([wind direction]))
and ws ([wind scale]×sine([wind direction])). Additionally, the coordinates of the thirteen
observation stations are used as variables. Because a few raw data points of certain variables
were lost, the data used in the subsequent calculation are less than 4,745 lines (365 days × 13
observation stations). Therefore, data in 349 days (3067 lines) is available which is less 365
days of data because of missing data, and it becomes 333 days of data (2880 lines) when outliers
are removed.

From the spatial perspective of geostatistics, generalized additive models are more flexible
and reliable than spatial interpolation methods. To apply this method, a tensor product of lon-
gitude and latitude is constructed to describe the spatial distribution of PM2.5 concentrations,
because the number of stations to monitor PM2.5 concentrations is only 13 and is not sufficient
to estimate the PM2.5 concentrations of unknown coordinates via kriging interpolation. The
reason is that too few observations will cause bias estimation [69]. However, estimates can be
produced by taking longitude and latitude as variables and applying a bivariate smoothing
function in a generalized additive model.

In this research, the mgcv package in the program R is used. The parameters of the smooth-
ing functions are selected automatically by the generalized cross-validation (GCV) criterion
due to its iterative approach, which improves calculation efficiency, which can help determine
whether GCV score decrease when one variable is removed [70]. Three aspects are considered
for model assessment: residual analysis for the model, comparison between the fitted values
and observations, and fitness evaluation with the result comparison of generalized additive
model to stepwise linear regression.

Results and Discussion
In this research, satellite-based data AOT (550 nm), together with four gas-phase concentra-
tions (SO2, NO2, CO, and O3), meteorological data (temperature, wind scale, and wind
direction), and locations of observation stations (longitude and latitude), are treated as inde-
pendent variables for constructing the relationships with dependent variable, namely, PM2.5
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concentration, in Xi’an City. These variables reflect both air quality variations and meteorolog-
ical conditions [71–73]; thus, the necessity of using both kinds of variables is affirmed. With
the pre-process and consideration of each variable, the constructed generalized additive model
is given as follows:

logðPM2:5Þ ¼ 3:97þ 4:17� 10�3 � SO2 þ 1:07� 10�2 � COþ s1ðNO2Þ þ s2ðlogðO3ÞÞ
þ s3 ðlogðAOTÞÞ þ s4 ðTemperatureÞ þ t1 ðwc;wsÞ þ t2 ðLo; LaÞ þ ε

ð2Þ

where si (i = 1, 2, 3, 4) is a univeariate smoothing function, the spline based smooth function;
tj (j = 1, 2) is a bivariate smoothing function, the tensor product smooth function; wc ([wind
scale]×cosine([wind direction])) and ws ([wind scale]×sine([wind direction])) denote the prod-
ucts of wind direction and wind scale, i.e., the substitution variable of wind speed; Lo and La
are longitude and latitude, respectively.

The formula shows the concentrations of SO2 and CO are positively and linearly related
with PM2.5 concentration, while other statistical relationships are non-linear. Different types of
non-linear relationships can be expressed with these smoothing functions in the generalized
additive model. Fig 9 shows the effects of the univariate smoothing functions on log(PM2.5 con-
centrations) in the model. In general, the smoothing function of NO2 concentration is an
increasing non-linear function, but other three functions contain both increasing and reduc-
tion parts. When log(O3) is smaller than 3, the values are sparse and part of function is decreas-
ing. On the contrary, when it is larger than 3, the values of log(O3) are dense and part of

Fig 9. The effects of univariate smoothing functions for log(PM2.5) in the generalized additive model:
(a) s1(NO2, μg/m

3), (b) s2(log(O3), μg/m
3), (c) s3(log(AOT)), and (d) s4(Temperature, °C). The gray shaded

areas are the estimated 95% confidence intervals. The vertical lines adjacent to the x-axis indicate the
presence of data.

doi:10.1371/journal.pone.0142149.g009
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function is increasing. The function of log(AOT) rises with fluctuations though it declines at
the small value part. Based on the smoothing function of daily mean temperature with fluctua-
tion changes, the fitted PM2.5 values are highest when the daily mean temperature is 0°C. This
result demonstrates that 0°C represents the suitable weather conditions for PM2.5 accumula-
tion. Bivariate smoothing functions of fitted components for log(PM2.5 concentrations) in the
generalized additive model are shown in Fig 10. In Fig 10A, vertical axis shows the bivariate
smoothing function, t1(wc,ws), for the wind components and its corresponding fitted values.

Fig 10. Bivariate smoothing functions of fitted components for log(PM2.5) in the generalized additive model. (a) Bivariate smoothing function for the
wind components and the corresponding fitted values. (b) Bivariate smoothing function for longitude and latitude and the corresponding fitted values. The
black dots represent the 13 observation stations that monitor PM2.5 concentrations.

doi:10.1371/journal.pone.0142149.g010

Fig 11. Evaluations of the model: (a) histogram of residuals and (b) fitted PM2.5 concentrations vs.
observations.

doi:10.1371/journal.pone.0142149.g011
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Southwest and east are the major wind directions affecting the variation of PM2.5 concentra-
tions. In Fig 10B, the contour lines show the bivariate smoothing function (t2(Lo,La)) of loca-
tion variable, i.e. longitude and latitude. In this figure, the black dots are the 13 observation
stations monitoring PM2.5 concentrations. The location function suggests that PM2.5 concen-
trations in urban areas of Xi’an are higher than in suburbs.

The R2 value of the generalized additive model is 0.691, and the fitted residuals are normally
distributed and not skewed (Fig 11). The model explains 69.50% of the total deviance in the
PM2.5 concentrations data. To evaluate the model, a comparison between the estimated results
and the results of a stepwise linear regression is considered, and evaluations of the fitted residu-
als and fitted values in this model are calculated. The fitting R2 value is 0.582 for the stepwise
linear regression with the same variables and processed data after the exploratory analysis as
those used in the generalized additive model. Therefore, the model in this paper is better than
the stepwise linear model with the fitness improvement of 18.73%.

Since understanding the contributions of each variable to the total deviance is important,
we calculate the contributions of the eight groups of variables and list the results in Table 3.
Among these groups of variables, the linear variable CO concentration and log-transformed
AOT (550 nm) values explain 20.65% and 19.54% of the deviance in PM2.5 concentrations,
respectively. The total deviance that can be explained by gas-phase concentrations of SO2,
NO2, and O3 is 10.88%. In this case, even half of this value is accounted for NO2 concentration.
The other variables, with the decreasing contributions to the deviance, are the temperature,
explaining 7.82% of deviance, the location, explaining 6.70% of deviance, and finally the wind,
explaining 3.91% of deviance.

These results suggest that the PM2.5 concentrations in Xi'an City are most statistically
related to carbon monoxide and aerosols. Carbon aerosols, a vital chemical component of
PM2.5, and carbon monoxide share the same origin [74]. The common sources of carbon aero-
sols and carbon monoxide are likely due to traffic and other industrial emissions. This relation-
ship supports the finding that CO concentrations and aerosols contribute most to the statistical
relationships of PM2.5 concentrations in Xi'an. The two largest anthropogenic sources of car-
bon aerosols at the global scale are biomass combustion and fossil fuel combustion, while the
major natural sources are plant emissions and natural fires [75]. The population density in
study area is more than 1,800 people per square kilometer. In such a large city, human activi-
ties, such as fuel combustion, emission-generating vehicle operation and biomass burning, play
an important role in forming large quantities of carbon aerosols. In Xi’an City, gasoline engine
exhaust, diesel exhaust and coal burning accounted for the PM2.5 mass of 48.8%±10% in fall
and 45.9%±7.5% in winter, respectively [49].

Table 3. Deviance explained by variables related to PM2.5 concentrations in Xi'an.

Variables Deviance contribution

SO2 concentration 2.23%

NO2 concentration 5.86%

CO concentration 20.65%

O3 concentration 2.79%

Location (longitude, latitude) 6.70%

Wind direction (W-E, N-S) and scale 3.91%

Daily mean temperature 7.82%

Aerosol optical thickness 19.54%

Total deviance explained 69.50%

doi:10.1371/journal.pone.0142149.t003
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Apart from CO, the other three gas-phase concentrations, SO2, NO2, and O3, also contrib-
ute to PM2.5 concentration, though they appear to be less important than the above two vari-
ables, CO and aerosols. Sulfur dioxide and nitrogen dioxide are mainly released by traffic and
industrial emissions in urban areas [76, 77]. Ozone is formed when oxygen molecules are com-
bined with atoms released from nitrogen dioxide molecules in hot days [78–80]. It is formed
primarily in urban areas from the end spring to early autumn, as shown in Fig 3. Therefore, the
relationships between PM2.5 concentration and gas-phase concentrations could indicate that
one of the important sources of PM2.5 is the traffic and industrial emissions.

The impact of daily mean temperature, a concrete expression of time, ranks after aerosols
and gas-phase concentrations. Seasonality, with the lowest temperatures in winter, is the fea-
ture of temperature variation in Xi'an City. The period of highest PM2.5 concentrations occurs
in winter because the weather conditions at 0°C are stable and favorable for PM2.5

accumulation.
In addition, 6.70% of the deviance is explained by the coordinates of the observation sta-

tions. The result of location non-linear function in Fig 10 shows that the PM2.5 concentrations
in the urban areas are higher than those of suburbs in Xi'an spatially. This result confirms that
AOT product is more significant for the global estimation of PM2.5 concentration, especially
in the rural areas, because PM2.5 concentrations are different for urban and rural areas and
because most of the ground-based measurements only provide the monitoring concentrations
in urban areas.

Wind direction and wind scale have limited but still important influences on the concentra-
tion of PM2.5. Southwesterly wind and easterly wind contribute to higher concentrations rela-
tive to the other wind directions. According to this dataset and previous records of the climate
in Xi'an, southwesterly wind and easterly wind primarily occur in the spring and summer
respectively as a result of increasing and decreasing Pacific Ocean air pressure systems. Given
the topographic conditions of Xi'an City and the distribution of its surrounding AOT (550 nm)
values, easterly wind enables PM2.5 in the eastern areas with relatively high AOT (550 nm) val-
ues to spread to Xi'an City because the eastern area is connected with other AOT (550 nm)
concentrated areas through the channel shown in Fig 5. Thus, wind has a weak influence on
the variation in PM2.5 concentrations. The reasons are that southwesterly and easterly winds
play the most important role in increasing concentrations. Nevertheless, the concentrations are
relatively low in the seasons when they frequently occur. However, during winter and autumn,
northwesterly winds have a more limited effect than southwesterly and easterly winds. The
resuspension of dust is enhanced in spring and summer due to higher wind speeds and is
reduced in winter when the soil is damp, which limits the release of soil-derived particles [81–
83]. Thus, the relatively high concentrations are mainly produced locally in winter and autumn
instead of coming from other regions through the channel mentioned above. From the above
discussion, we may conclude that the high concentrations in winter primarily come from local
emissions in Xi’an, such as home heating and the imperfect combustion of fuel. Whereas in
spring and summer, the higher concentrations are possibly related to the concentrations of
neighboring areas.

Still, there are certain limitations in the experiment. To ensure the strictness and accuracy of
the model and its calculating process, a normal distribution is assumed in the model, which
leads to normalizing and outlier removal for large amounts of data. In addition, wind scale is
used in the model as an approximation of wind speed because of the lack of wind speed data.
Using a single meteorological monitoring site for the whole study area is limited, for wind
direction might vary at different local places, though the trend in large spatial range is consis-
tent. Because the focus of this article is on modeling the non-linear regression, a variety of vari-
ables are not introduced into the model as independent variables. Certain natural attributes,
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such as highly spatially resolved elevation, land use and even social attributes (e.g., population
density) [84], could be treated as variables related to the variation in PM2.5 concentrations on
account of previous authoritative studies and strict experiments.

Conclusion
A generalized additive model was constructed and used to estimate PM2.5 concentrations in
Xi'an City. Various variables from multiple monitoring data sources have been used, including
satellite remote sensing product AOT, ground-based gas-phase concentrations, and meteoro-
logical monitoring data. The observed data are significant for constructing the statistical
model. The model can explain 69.50% (R2 = 0.691) of the total deviance in the PM2.5 concen-
trations. The most significant variables, CO and AOT (550 nm), account for 20.65% and
19.54% of the deviance, respectively, indicating that the variation in PM2.5 concentrations is
strongly correlated with CO and AOT. The total deviance that can be explained by three other
gas-phase concentrations, SO2, NO2, and O3 is 10.88%. These results demonstrate biomass and
fossil fuel combustion, likely produced by traffic and other industrial emissions, are the pri-
mary source of PM2.5 in Xi'an City. Additionally, the results have shown that temperature
influences the concentrations, especially in winter when source emissions increase due to
home heating and favorable temperature conditions of around 0°C for PM2.5 accumulation.
PM2.5 is more likely to be accumulated in urban areas than in suburbs, which also affirms that
satellite-based data is essential for predicting PM2.5, since most of the ground observation sta-
tions are located in urban areas. Wind has a weaker influence in winter and autumn than in
spring and summer; thus, PM2.5 is primarily produced locally in the cold seasons from heating
and fuel combustion but is spread from other nearby areas in the warm seasons.

Supporting Information
S1 Appendix. Raw dataset of PM2.5 concentration, gas-phase concentrations (SO2, NO2,
CO, and O3), AOT, temperature, wind direction, wind scale and locations of 13 observa-
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(XLSX)
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