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Abstract
Marine reserves are becoming progressively more important as anthropogenic impacts

continue to increase, but we have little baseline information for most marine environments.

In this study, we focus on the Oceanic Shoals Commonwealth Marine Reserve (CMR) in

northern Australia, particularly the carbonate banks and terraces of the Sahul Shelf and

Van Diemen Rise which have been designated a Key Ecological Feature (KEF). We use a

species-level inventory compiled from three marine surveys to the CMR to address several

questions relevant to marine management: 1) Are carbonate banks and other raised geo-

morphic features associated with biodiversity hotspots? 2) Can environmental (depth, sub-

strate hardness, slope) or biogeographic (east vs west) variables help explain local and

regional differences in community structure? 3) Do sponge communities differ among indi-

vidual raised geomorphic features? Approximately 750 sponge specimens were collected

in the Oceanic Shoals CMR and assigned to 348 species, of which only 18% included taxo-

nomically described species. Between eastern and western areas of the CMR, there was

no difference between sponge species richness or assemblages on raised geomorphic fea-

tures. Among individual raised geomorphic features, sponge assemblages were signifi-

cantly different, but species richness was not. Species richness showed no linear

relationships with measured environmental factors, but sponge assemblages were weakly

associated with several environmental variables including mean depth and mean backscat-

ter (east and west) and mean slope (east only). These patterns of sponge diversity are

applied to support the future management and monitoring of this region, particularly noting

the importance of spatial scale in biodiversity assessments and associated management

strategies.
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Introduction
As anthropogenic impacts on the marine environment continue to increase, marine reserves
are becoming increasingly important for the management of natural resources [1,2]. Unfortu-
nately, we have little baseline information for most marine environments, particularly for
deeper waters [3] or taxa that are difficult to taxonomically identify (e.g. sponges in Fig 1a).
Even for well-studied ecosystems such as coral reefs, the available information is often spatially
limited and may not match information requirements for effective management [4,5]. As of
January 2013, only 28% of Australia to the boundary of the extended continental shelf had
been swath-mapped, with just a small proportion of this located in northern Australia [6]. It
has also been estimated that only 20–30% of Australian species from non-cryptic macrofaunal
groups have been discovered [7], with the number of new, uncertain or undescribed species
much higher in deeper waters (e.g. 56% of megabenthic invertebrate species from western Aus-
tralian margin [8], 95% of crustacean species and 72% of polychaete species [3]). When such
little environmental or biological information is available, it is challenging to identify bound-
aries, appropriate zones, and management strategies for marine reserves [9].

In spite of the challenges related to lack of scientific data, several countries now have large
systems of national marine protected areas (e.g. Norway, Ireland, New Zealand, UK), and
many more are in the planning stages [10]. In 2012 the Australian Government announced the
establishment of a national network of large offshore Commonwealth Marine Reserves
(CMRs). The network comprises 59 CMRs and covers 3.1 million km2, making this the largest
network of marine reserves in the world. A 10-year management plan is being developed for
each reserve that identifies known biophysical characteristics of the reserve, sets out specific
objectives that support the protection and conservation of biodiversity and other natural and
cultural values, and provides for ecologically sustainable use of resources within the reserve
(e.g. South-east CMR Network Management Plan 2013–2023).

For many parts of the reserve network of Australia, information to describe biological com-
munities is lacking. This is particularly the case for the northern marine region where the CMR
network design is based on the inferred significance of key ecological features (KEFs) in rela-
tion to biodiversity [11]. Among the KEFs identified for the northern region, the most exten-
sive are the carbonate banks and terraces that cover approximately 72,000 km2 of the Sahul
Shelf and Van Diemen Rise in the Timor Sea. These seabed features and the benthic communi-
ties they support are primarily incorporated within the Oceanic Shoals CMR in recognition
that they are habitats thought to occur nowhere else in Australia [12]. While these hard ground
habitats are known to support sponge and coral gardens [13], the biodiversity patterns of these
communities remains poorly understood.

Sponges are receiving increasing attention in marine biodiversity research and associated
management strategies due to the growing scientific and public awareness of their ecological
and commercial importance [14]. Sponges are one of the major ecosystem engineers on the
seafloor, providing habitat for a wide variety of species [15,16]. In addition, sponges play key
ecological roles [17] in substrate modification [18], nutrient cycling [19], and microbial associ-
ations [20] and are being increasingly used in biodiversity and impact assessments [21,22].
Commercial applications for sponges include drugs via secondary metabolites to treat a range
of microbial infections and cancers [23], anti-biofilm agents [24], and bath sponges [25].
Indeed, bioactive compounds that occur in several genera collected in the current study have
been isolated for potential commercial applications [26–30].

Several environmental factors regulate sponge distributions, including wave exposure, light,
temperature, sediment load, and substrate that directly affect the presence, abundance and
morphology of sponges [31,32]. Depth, slope, and distance offshore can be proxies for these
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Fig 1. Maps of (a) entire study area, with area mapped by survey area from the current study (red) and
sponge occurrence records (black dots) from the Atlas of Living Australia (www.ala.org.au),
excluding those collected for the current study, b) western study area of survey SOL5650, and c)
eastern study area of surveys SOL4934 and SOL5117. Scale bars represent 10 km. Bathymetry and
sampling locations for the opportunistic study area (survey SS2012707) can be found in S1 Fig.

doi:10.1371/journal.pone.0141813.g001
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factors [31] and can also be related to sponge assemblage structure and abundance [33–35].
However, relationships between environmental factors and sponges are not always obvious or
simple, as they can vary across sites or regions [34,36,37] or instead reflect a suite of variables
that regulate biodiversity (e.g. depth, relief, substrate, and exposure in [36]). Due to the com-
plexity of the potential relationships between this large range of potentially predictive variables,
derived variables that incorporate multiple environmental variables (e.g. geomorphic features)
may be more useful predictors than individual environmental variables. For example, topo-
graphically complex habitats supported significantly higher diversity than subdued geomor-
phic features along a 100 m depth gradient in the central Great Barrier Reef [38]. Similarly, a
study of sponges in the eastern Oceanic Shoals CMR confirmed that raised geomorphic fea-
tures (banks, ridges, terraces) had distinct assemblages, higher species richness, and more bio-
mass of sponges than the surrounding plains and valleys [16].

This study is a follow-up to Przeslawski et al. [16] in which we add sponges from the west-
ern Oceanic Shoals CMR to the existing sponge species inventory from the eastern CMR; this
broader regional approach allows a more management-focussed analysis of these sponge com-
munities. We use a species-level inventory compiled from three marine surveys to investigate
the patterns of sponge biodiversity on carbonate banks and other raised geomorphic features
in a marine reserve in northern Australia. We address several questions relevant to marine
management in the region at regional scales (i.e. entire reserve), meso-scales (i.e. eastern vs
western areas of the reserve), and local scales (i.e. individual banks). These questions include:
1) Are carbonate banks and other raised geomorphic features associated with biodiversity hot-
spots? 2) Can environmental (depth, substrate hardness, slope) or biogeographic (east vs west)
variables help explain local and regional differences in community structure? 3) Do sponge
communities differ among individual raised geomorphic features? These patterns of sponge
diversity are then considered in the context of marine reserve management in order to explore
how such information may help support the future management of this region. For example,
the study area’s proximity to existing gas fields and infrastructure means that marine environ-
mental baselines should prove a valuable resource for industry environmental approval and
compliance processes [39].

Methods

Surveys and Study Area
Biological and environmental data used in this study were collected on three surveys on the R.
V. Solander: SOL4934 in 2009 and SOL5117 in 2010 to the eastern Oceanic Shoals CMR (1938
km2 mapped, sampled at 30–180 m depth) and SOL5650 to the western Oceanic Shoals CMR
(507 km2 mapped, sampled at 36–90 m depth) (Fig 1). In addition, sponge samples from tran-
sit survey on the R.V Southern Surveyor in 2012 (SS2012t07) were opportunistically collected
to provide a preliminary comparison between regions (Fig 1a, S1 Fig). The main study area
was chosen to include part of the Oceanic Shoals Commonwealth Marine Reserve (CMR) and
associated shallow carbonate banks and other raised geomorphic features (e.g. shoals, pinna-
cles in [40]).

Seven grids in the main study area were mapped using high-resolution multibeam (SIM-
RAD EM3002D, 300 kHz) (Fig 1). For the western region (survey SOL5650), sampling stations
were chosen to target banks, as identified onboard from multibeam bathymetry and using a
generalised random tessellation stratification (GRTS) design [41]. For the eastern region (sur-
veys SOL4934, SOL5117), grids were chosen to represent geomorphic features typical of north-
ern Australia such as banks, valleys, and plains; the results from sampling these other features
have been previously published in Przeslawski et al. [16]. In the opportunistic study area, an
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additional two grids were mapped in 2005 (see [42] for details), while sponge samples were col-
lected in 2011.

Biological sampling
Epifauna were collected with an epibenthic sled towed for approximately 50–200 m at 1.5–2
knots (see S1 Table for transect coordinates). Samples were collected under EPBC reference
numbers 2009/4951 (SOL4934) and 2010/5517 (SOL5117), in which proposed activities were
not considered controlled actions, and permit number AU-COM2012-152 (SOL5650)
(Department of Environment). Regression analyses confirmed that sled transect distance did
not affect species richness (R2 < 0.001, p> 0.90) or biomass (R2 < 0.01, p> 0.30). The sled
was 1.5 x 1 m (width x height) and fitted with a 6 m long, 45 mm stretch diamond net. Speci-
mens were sorted to phylum and weighed. Each group was then separated into morphospecies
to provide estimated taxonomic richness, and each morphospecies was photographed and pre-
served in ethanol for taxonomic identification. Subsamples of 100–1000 g from selected mor-
phospecies (mainly sponge and cnidarians) were frozen for biodiscovery research focused on
secondary metabolites. Taxonomic vouchers of sponges were deposited at the Museum and
Art Gallery of the Northern Territory (MAGNT, formerly the Northern Territory Museum),
and frozen samples were accessioned at the Australian Institute of Marine Sciences Biore-
sources Library.

Species identifications
A thick section and spicule slide was prepared from each sponge voucher using standard meth-
ods [43,44], identified to genus following Hooper and Van Soest [45], and assigned to valid
species and higher taxa as listed in the last consulted version of the World Porifera database
[46] using available taxonomic literature. A unique code or operational taxonomic unit (OTU)
was assigned to unknown or undescribed taxa, based on the museum registration number (e.g.
Scleritoderma sp. NT0205). We used presence/absence data due to the colonial nature of many
sponges and potential issues arising from sled sampling such as fragmentation and unstandar-
dised effectiveness of collection [36].

Environmental data
Bathymetric depth and backscatter values were acquired and processed from the multibeam
sonar system as described in [47–49]. Backscatter measures seabed reflectance which can be
used as a proxy for substrate hardness [50]. Slope was calculated using the Spatial Analyst
toolbox in ArcGIS 10.0 on the bathymetric data. Averages and standard deviations of all envi-
ronmental variables over each transect were determined using the ‘Zonal Statistics as Table’
tool in ArcGIS. The mean and standard deviation of slope were strongly correlated with each
other (R2 = 0.75) which can exaggerate relationships; thus, only one of these factors (mean
slope) was included in the current study [51]. See Table 1 for a description of environmental
variables.

Statistical analyses
Diversity was estimated using sponge species richness and species assemblage structure (pres-
ence/absence species matrix). To assess the relationships between sponges on raised geomor-
phic features and environmental factors (see Table 1), regression analyses were used on
richness data, and a distance-based linear model (DistLM) using stepwise selection was applied
to assemblage data. The DistLM procedure fits environmental variables to a Bray-Curtis
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similarity matrix (including presence/absence) to quantitatively estimate their relationship to
sampled biological variation [52]. Environmental variables were square-root transformed to
reduce skewness and heteroscedasticity [52]. To test for differences between the species rich-
ness estimates of the sponge communities on raised geomorphic features between and within
our eastern and western study areas, 1-factor Analyses of Variance (ANOVAs) were used.
Non-metric multidimensional scaling (n-MDS) plots and analyses of similarities (ANOSIMs)
were used to assess differences in assemblage structure, with both full assemblages and assem-
blages excluding singletons (i.e. species collected only once within a given dataset). All multi-
variate analyses were performed using PRIMER (v.6.1.14), and all univariate analyses with the
R statistical platform (v 3.3.1). Unless otherwise stated, all analyses were performed only on
data collected from the main study area.

Results

Summary of collections
In the main study area, sleds were deployed at 106 sites (56 sites on raised geomorphic fea-
tures), with sponges collected from 86 of these (45 sites on raised geomorphic features) (Fig 1)
(S1 Table). Standardised species richness ranged from 0–85 species per 100 m sled tow
(Table 2). Approximately 750 sponge specimens were collected and assigned to 348 species,
representing four classes, 55 families and 133 genera (Table 3, S2 Table). Of the 348 species,
91% were collected on raised geomorphic features. The majority of species (337) collected
belong to the class Demospongiae, four species to Calcarea, six species to Homoscleromorpha,
and one species to Hexactinellida (Table 3). Only 18% of all species were associated with taxo-
nomically described and named species. The remaining species were assigned to unique OTUs
(S2 Table) but remain either undescribed or require additional taxonomic work and compari-
son with type specimens to be further determined. The most common species on banks and
other raised features in the main Oceanic Shoals CMR study area were Xestospongia testudi-
naria (collected at 32 stations), Scleritoderma sp. NT0205 (21 stations), Oceanapia sp. NT0186
(18 stations), and Oceanapia sp. NT0185 (18 stations) (Fig 2).

In the opportunistic study area, sleds were deployed at ten sites, with sponges collected from
all but one of these. A total of 55 species were collected from eight sites (S1 Fig), including 22
species that were not collected from the main Oceanic Shoals CMR study area (S2 Table).
From the entire collection (main and opportunistic study areas), most species (60%) were col-
lected only once (i.e. collected at one station) or twice (12%) (Supplementary Material C).

Based on onboard estimates of taxonomic richness of non-sponge organisms, sponges are
positively and significantly related to other taxa in respect to richness (R2 = 0.37, p< 0.0001)
(Fig 3a) and biomass (R2 = 0.42, p< 0.0001) (Fig 3b), the latter after the exclusion of outliers at
station 55 (SOL5117) and station 16 (SOL5650) due to large numbers of scleractinian corals
and associated non-living material in the catch.

Table 1. Regression results of the relationships between environmental variables and sponge species richness. Environmental variables were
square-root transformed to reduce skewness and heteroscedasticity.

a) Factor Description R2 p

Backscatter (mean) Average substrate hardness of sled transect 0.000009 0.9780

Bathymetry (mean) Average depth of sled transect 0.0499 0.0979

Backscatter (stdev) Variation in substrate hardness of sled transect 0.000003 0.9870

Bathymetry (stdev) Variation in depth of sled transect 0.0007 0.8108

Slope (mean) Average slope of sled transect 0.0016 0.7210

doi:10.1371/journal.pone.0141813.t001
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Biogeographic and environmental relationships
There was no difference between sponge species richness on raised geomorphic features in the
eastern, western, and the opportunistically sampled study areas (ANOVA: df = 2, F = 0.316,
p = 0.730). Similarly, species assemblages on raised geomorphic features were not significantly
different between any of the study regions (ANOSIM: Global R = 0.036, p = 0.203). However,
when singletons were excluded from the analysis, results show marginally significant

Table 2. List of standardised numbers of sponges species collected from each sled transect.

Species richness Species richness

Station Sled distance Absolute Standardiseda Station Sleddistance Absolute Standardiseda

SOL4934(east) SOL5650(west)

001BS021 122 8 6.6 006BS001 133 1 0.8

002BS019 138 10 7.2 014BS002 133 8 6.0

003BS027 394 6 1.5 015BS003 178 14 7.9

005BS002 180 18 10.0 016BS004 122 36 29.5

006BS003 84 0 0.0 024BS005 131 4 3.1

009BS006 70 0 0.0 025BS006 109 6 5.5

014BS011 59 0 0.0 026BS007 133 20 15.0

021BS012 212 19 9.0 029BS008 132 14 10.6

022BS013 110 26 23.6 031BS009 122 2 1.6

023BS014 109 33 30.3 036BS010 146 9 6.2

025BS015 166 33 19.9 037BS011 142 17 12.0

029BS017 135 0 0.0 038BS012 44 0 0.0

031BS018 112 10 8.9 044BS013 31 0 0.0

032BS020 174 23 13.2 046BS014 34 22 64.7

033BS022 128 3 2.3 047BS015 25 0 0.0

034BS023 138 16 11.6 053BS016 54 9 16.7

041BS028 133 25 18.8 055BS017 35 18 51.4

063BS045 232 1 0.4 056BS018 40 33 82.5

SOL5117(east) 061BS019 122 22 18.0

023BS018 204 7 3.4 063BS020 35 12 34.3

024BS019 306 2 0.7 073BS021 47 14 29.8

025BS020 140 6 4.3 074BS022 46 39 84.8

028BS022 155 8 5.2

035BS023 67 14 20.9

044BS026 120 32 26.7

045BS027 55 13 23.6

050BS030 141 4 2.8

051BS031 187 6 3.2

052BS032 159 17 10.7

055BS034 366 23 6.3

064BS035 171 19 11.1

065BS036 135 27 20.0

073BS038 111 2 1.8

081BS040 133 12 9.0

082BS041 122 23 18.9

a per 100 m tow of 1.5 x 1 m sled.

doi:10.1371/journal.pone.0141813.t002
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Table 3. List of taxa recorded from all study and opportunistic areas of this study. Numbers in paren-
thesis indicate the number of OTUs recorded per taxon if it was greater than one. A question mark represents
uncertainty associated with that identification. Class is shown by underlined capital text; order by capital text,
family by bold text, and genus and species by italics. A full list including OTUs codes and specimen numbers
per taxon can be found in S2 Table.

CALCAREA

CLATHRINIDA Clathrinidae: Clathrina. Leucetiidae: Leucetta. Soleneiscidae (2):

DEMOSPONGIAE

Agelasida Agelasidae: Agelas (5)

Astrophorida Ancorinidae: Asteropus, Disyringa dissimilis, Ecionemia (2), Holoxea?,
Jaspis (2), Melophlus sarasinorum, New genus A?, Psammastra,
Rhabdastrella globostellata, Stelletta (4), Stelletta clavosa cf, Stryphnus.
Calthropellidae: Chelotropella, Chelotropella? (2), Pachastrissa. Geodiidae:
Erylus, Geodia (7). Pachastrellidae: Poecillastra?

Chondrosida Chondrillidae: Chondrilla australiensis, Chondrosia? (2)

Dendroceratida Darwinellidae: Chelonaplysilla, Darwinella, Dendrilla mertoni.
Dictyodendrillidae: Dictyodendrilla (2)

Dictyoceratida Dysideidae: Dysidea (6). Irciniidae: Ircinia (2), Ircinia irregularis, I. pinna,
Psammocinia (2), Sarcotragus. Spongiidae: Coscinoderma (2),
Euryspongia?, Hyattella (3), H. intestinalis, Leiosella (4), Rhopaloeides,
Spongia (4). Thorectidae (6): Aplysinopsis (3), Cacospongia,
Dactylospongia?, Fascaplysinopsis, Fasciospongia, Hyrtios (2), Luffariella
variabilis, Petrosaspongia?, Phyllospongia, Semitaspongia, Thorecta,
Thorectandra excavatus, Thorectandra? (2)

Hadromerida Clionaidae: Cliona (3), Spheciospongia congenera, S.vagabunda.
Polymastiidae: Polymastia?. Suberitidae: Aaptos (2). Tethyidae: Tethya (4),
Tethytimea

Halichondrida Axinellidae: Axinella aruensis, Cymbastela vespertina, Phakellia tropicalis,
Phakellia, Phycopsis, Reniochalina, Reniochalina stalagmitis. Bubaridae:
Bubaris?. Dictyonellidae: Acanthella (3), Acanthella cavernosa, Acanthella
pulcherrima, Phakettia euctimena, Scopalina?, Stylissa carteri.
Halichondriidae: Amorphinopsis excavans, A. fenestrata, Amorphinopsis,
Axinyssa (4),Ciocalypta stalagmites, Epipolasis, E. suluensis, Halichondria, H.
carotenoidea, H. phakellioides, H. stalagmites, H. carotenoidea, Halichondria
(2), Spongosorites?, Topsentia (2). Heteroxyidae: Higginsia, Higginsia mixta,
H. strigilata cf., Myrmekioderma, M. Granulatum, Parahigginsia

Haplosclerida Callyspongiidae: Callyspongia (5), C. biru. Chalinidae: Haliclona (3), H.
(Gellius), H. (Haliclona (Halichoclona) (2), H (Haliclona) (2), H. (Reniera).
Niphatidae: Amphimedon (3), Cribrochalina, Gelliodes (4), G. fibulata,
Hemigellius(3), Niphates (5). Petrosiidae: Neopetrosia (2), N. exigua,
Petrosia (8), P. alfiani?, P. durissima?, P. (P.) lignosa, P. (Strongylophora),
Xestospongia (10), X. testudinaria. Phloeodictyidae: Oceanapia (8)

Haplosclerida
+ DictyoceratidaA

Niphatidae + Thorectidae: Gelliodes + Dysidea

Lithistida (2) Azoricidae: Leiodermatium (4). Corallistidae: Neophrissospongia?.
Desmanthidae: Petromica. Scleritodermidae: Aciculites, Microscleroderma
(2), Scleritoderma (2). Siphonidiidae: Gastrophanella. Theonellidae:
Manihinea (2), Racodiscula (2), Theonella (12). Vetulinidae: Vetulina?

Poecilosclerida: Acarnidae: Acarnus, Cornulum, Damira, Chondropsis. Coelosphaeridae:
Coelosphaera (2), Lissodendoryx (2). Crellidae: Crella (3). Desmacellidae:
Biemna, B saucia. Hymedesmiidae?, Iothrochotidae: Iotrochota, I.
baculifera. Isodictyidae: Coelocarteria agglomerans, C. singaporensis.
Microcionidae: Antho (Plocamia). Microcionidae: Clathria (3), C: abietina, C.
cervicornis, C. ramosa, C. (Thalysias) (2), C. (T.) abietina, C. (T.) erecta, C. (T.)
ramosa, C. (T.) vulpina. Microcionidae?. Mycalidae: Mycale (3). Myxillidae:
Myxilla? (2), Psammochela, P.fibrosa, P. tutiae, Raspailiidae: Amphinomia,
A. sulphurea, Axechina raspailioides, Ceratopsion (5), C. axifera, C.
palmatum, Echinodictyum (2), E. asperum, E. cancellatum, E. mesenterinum,
Ectyoplasia (2), E. tabula, E.vannus, Endectyon (2), Eurypon, Raspailia, R.
phakellopsis, R. vestigifera, Thrinacophora cervicornis, Trikentrion
flabeliforme. Tedaniidae: Tedania

(Continued)
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differences in assemblages between the western and opportunistic study areas (ANOSIM:
Global R = 0.091, p = 0.033) (Fig 4a).

On raised geomorphic features in the study area, sponge species richness was not signifi-
cantly linearly related to any environmental factor (Table 1). However, sponge assemblages on

Table 3. (Continued)

Spirophorida Tetillidae: Cinachyrella (4), C. australiensis, Paratetilla, Tetilla (2)

Verongida Aplysinellidae: Aplysinella, Suberea (3). Ianthellidae: Ianthella (2), I. basta, I.
flabelliformis, I. reticulata? Pseudoceratinidae: Pseudoceratina (4)

HEXACTINELLIDA

Lyssacinosida

HOMOSCLEROMORPHA:

Homosclerophorida: Plakinidae: Plakinastrella (2), Plakortis (4)

A These two species were always found together, one growing upon the other, and almost certainly

represent a mutualism or commensalism.

doi:10.1371/journal.pone.0141813.t003

Fig 2. Specimen images of the most common sponge species collected from the Oceanic Shoals
CMR: a) Xestospongia testudinaria collected from SOL4934 at 28 m, b)Oceanapia sp. NT0185
collected from 82 m, c) Scleritoderma sp. NT0205 collected from 82 m, and d)Oceanapia sp. NT0186
with associated epifauna collected from 63 m. All depths specified are means of the sled transect. Scale
bar is 5 cm.

doi:10.1371/journal.pone.0141813.g002
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raised geomorphic features were significantly related to mean backscatter, mean bathymetry,
and slope (Table 4a). These relationships were not strong, as shown by the best modelled repre-
sentation of the data using AIC in which mean backscatter and bathymetry explained only 9%
of assemblage variation in the total dataset (Table 4a). When eastern and western regions were
analysed separately there were no strong relationships evident, with the best predictive model

Fig 3. Relationship between sponges and other taxa based on a) richness and b) biomass, the latter
excluding outliers due to weight of hard corals collected at station 16BS04 from SOL5650 (23.4 kg
hard corals) and station 55BS35 from SOL5117 (100.9 kg hard corals).

doi:10.1371/journal.pone.0141813.g003
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for each region only containing a single factor that explained no more than 10% of assemblage
variation (western region: mean bathymetry, R2 = 0.106; eastern region, mean backscatter, R2 =
0.0780) (Table 4b and 4c). Relationships did not change when singletons were excluded from
the assemblage dataset.

Fig 4. Nonmetric multidimensional scaling (n-MDS) plots using Bray-Curtis similarities for sponge assemblages in which singletons were
excluded, showing collected from a) all raised geomorphic features, excluding an outlier at Station 63 from SOL4934 at which only one non-
singleton species was collected (stress = 0.16) and b) raised geomorphic features at which sponges were collected from three or more sites in the
western CMR (orange, numeric codes) and eastern CMR (green, alphabetic codes) stress = (0.014). Locations of each geomorphic feature are shown
in Fig 1. Each point on an MDS represents an assemblage collected at a site, and increasing distance between points indicates decreasing similarity.

doi:10.1371/journal.pone.0141813.g004

Table 4. Results from themarginal and sequential tests of distance-based linear (DistLM) models on sponge assemblages with a) the full dataset,
b) the western dataset, and c) the eastern dataset. Environmental variables were square-root transformed to reduce skewness and heteroscedasticity,
and a stepwise selection was used for sequential tests.

Marginal tests Sequential tests

Factor Pseudo F p Factor AIC R2

a) Bkstr (mean) 2.5235 0.001 +Bkstr (mean) 408.66

Bathy (mean) 2.4089 0.001 +Bathy (mean) 408.34 0.0949

Bkstr (stdev) 1.5021 0.018

Bathy (stdev) 1.3804 0.051

Slope (mean) 1.9037 0.002

b) Bkstr (mean) 1.6904 0.022 +Bathy (mean) 148.65 0.106

Bathy (mean) 1.8971 0.003

Bkstr (stdev) 1.3186 0.094

Bathy (stdev) 1.4433 0.057

Slope (mean) 1.5103 0.036

c) Bkstr (mean) 2.4517 0.001 +Bkstr (mean) 259.61 0.0780

Bathy (mean) 2.4358 0.001

Bkstr (stdev) 1.2024 0.152

Bathy (stdev) 1.5107 0.025

Slope (mean) 1.0503 0.353

doi:10.1371/journal.pone.0141813.t004
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Biodiversity patterns between individual geomorphic features
At least three sleds successfully collected sponges at each of six raised geomorphic features
(three in the west, three in the east) (Fig 1b and 1c), thus allowing comparisons among these
features of richness and assemblages patterns. Sponge species richness was not significantly dif-
ferent among these raised geomorphic features (ANOVA: df = 5, F = 0.535, p = 0.7474), but
sponge assemblages were (ANOSIM: Global R = 0.328, p< 0.001) (Fig 4b). Pairwise compari-
sons from the ANOSIMs confirmed that there were significant differences between assem-
blages on an eastern bank (Bank C) and the western banks (Banks 1, 2, 3) (R = 0.356 to 0.681,
p = 0.008 to 0.024). Assemblages on the eastern terraces (Terraces A, C) were significantly dif-
ferent from assemblages on the western Banks 1 and 3 (R = 0.323 to 0.639, p = 0.029 to 0.057),
although they were not significantly different to those from Bank 2, indicating that east-west
differences may operate at the scale of individual geomorphic features. There were also signifi-
cant differences in assemblages between Banks 1 and 3 in the west (R = 0.542, p = 0.029). Simi-
lar patterns occurred when singletons were excluded, with the exception of significant
differences between Banks 2 and 3 in the west (R = 0.302, p = 0.029). Within each raised geo-
morphic feature, assemblages ranged from relatively similar (e.g. Bank 3: Bray Curtis similari-
ties 32.258–40.909) to different (e.g. Bank 2 in the west: Bray Curtis similarities 0–29.412), as
indicated by the clustering patterns of points in an n-MDS (Fig 4b).

Discussion

Biodiversity hotspots
Biodiversity hotspots have been linked to production and exportation of species [53] and the
maintenance of global marine biodiversity [54]. Identifying and defining biodiversity hotspots
is challenging [55] and often varies according to target taxa, spatial scale, or metric (e.g. rich-
ness, endemism, diversity index) [56,57]. We adopt the definition of Hooper and Ekins [58] to
define a sponge biodiversity hotspot as>250 species found within a given bioregion. Accord-
ing to this definition, the banks and other raised features of the Oceanic Shoals CMR constitute
a sponge biodiversity hotspot. Sponge biodiversity hotspots have been identified elsewhere in
northern Australia, including the northern Wessel Islands and Darwin/Coburg region [58,59],
but spatial data gaps still hamper broad-scale assessment of many areas (Fig 1a). For example,
a synthesis of Australian marine faunal databases in 2010 identified 17 higher taxonomic
groups from which species numbers may be estimated for each Large Marine Domain (LMD)
[7]. The current study overlaps the Northern LMD which spans the western Oceanic Shoals
CMR to Cape York, and the estimated number of described and undescribed sponge species in
this large area was 125 [7]. The current study yielded 370 sponge species from four surveys
spanning only a very small portion of the Northern LMD (Fig 1a), thus indicating that biodi-
versity of sponges (and possibly other taxa) may be much higher than previously thought.

Sponge biodiversity hotspots can indicate high levels of biodiversity in other taxa at a given
location [16], as also supported by the current study. Many species of sponge collected in the
current study are habitat providers (Fig 2) which explains the correlation between sponge spe-
cies richness and that of other taxa. Previous studies have also confirmed the importance of
sponges in providing structural complexity and habitat [15,16,20,60]. As such, sponges are one
of the key surrogate taxa for biodiversity assessments in northern Australia and may be an
appropriate group to target for monitoring activities.
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Biogeographic and environmental relationships
Sponge biodiversity (as measured by richness and assemblages) was not significantly different
between the eastern and western CMR, although there were potential differences in assem-
blages between the western Oceanic Shoals CMR and the Wessel Island CMR region over 500
km away. This indicates that at the regional scale, the Oceanic Shoals CMR contains similar
sponge communities and richness levels throughout the reserve, thereby supporting the man-
agement of the CMR as a single large reserve. However, such broadscale regional analyses do
not account for changes in species assemblages at finer spatial scales [61] and therefore do not
negate the need for monitoring at both the east and west sides of the CMR, as well as along
known environmental gradients [62] or among individual geomorphic features. This is shown
in the current study by east-west differences among pairs of geomorphic features (e.g. Bank C
in east and Banks 1, 2, and 3 in west) but not others (Terrace C in east and Bank 2 in west).
Additionally, environmental drivers of sponges may differ between the eastern and western
banks of the CMR; our results revealed that bathymetery had the strongest relationship to
sponge assemblages in the west, while backscatter had the strongest relationship to assemblages
in the east.

There is a growing body of research investigating biodiversity patterns within and between
marine reserves [63], but most of these focus on comparatively small reserves (e.g.<2500 hect-
are reserves in [64] compared to 7,174,400 hectares of the Oceanic Shoals CMR). There are few
studies of biodiversity patterns at large reserve scales, and these suggest differences both within
and between reserves, variations of which seem dependent on environmental gradients and
heterogeneity encompassed within a given area. For example, reserves in the tropical eastern
Pacific showed obvious differences in fish biomass and macroinvertebrate abundances between
eastern and western study areas, reflecting environmental differences associated with oceanic
and continental reserves [65]. In contrast, the eastern and western study areas in the Oceanic
Shoals CMR are approximately the same distance along the continental shelf. In some taxa, dis-
persal potential may regulate broad-scale spatial differences (e.g. algae in [63]), although nei-
ther oviparous nor viviparous sponge assemblages showed any relationship to distance
between sites [66].

Sponge species richness and community structure on raised geomorphic features were not
associated with any strong and significant linear environmental gradients. It may simply be
that sponge assemblages from the Van Diemen Rise are regulated by other factors not consid-
ered here (e.g. ocean currents, light availability, sedimentation) [31]. Alternatively, a coarser
biological metric such as community type (e.g. sponge-dominated vs octocoral-dominated as
per [39]) may be more strongly related to environmental factors analysed here. It may also be
that the range of environmental factors analysed here was not large enough to elicit a response;
for example, our depth range was 22–96 m, with previous studies finding stronger relationships
between depth and sponges at different (e.g.< 50 m in [67]) or broader (e.g. 48–195 m in [68])
depth ranges. Although our study revealed no clear abiotic surrogate for sponge biodiversity,
the identification of environmental relationships is still useful to investigate ecosystem pro-
cesses and inform further research and management plans. In the current study, mean depth
and substrate hardness explained more variation in sponge assemblages than other factors
examined (Table 4a), with depth a stronger driver in the west (Table 4b) and substrate hard-
ness a stronger driver in the east (Table 4c). These variables are encompassed in geomorphic
features which were found to affect sponge assemblages in Przeslawski et al [16]. These findings
support current knowledge of sponge ecology, with depth and substrate hardness previously
associated with sponge assemblages and abundance [35,36,69]. Thus, areas of hard ground
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could be identified to manage sponge gardens and associated high biodiversity, and a range of
depths should be included to appropriately represent distinct sponge assemblages.

The utility of abiotic surrogates depends on the spatial scale of interest [31], and changing
sampling scales also changes our ability to detect ecosystem processes [70]. For example, in the
current study comparing assemblages over scales of tens of kilometres, environmental relation-
ships between sponge biodiversity and depth, substrate hardness and slope were non-existent
or weak. However, at a finer spatial scale, surface topography and substrate complexity can
affect biodiversity by regulating the larval settlement of sponges and corals [71]. Indeed, sponge
assemblages in Indonesia were significantly related to remotely sensed variables such as off-
shore distance, coral formation area, and exposure but were unrelated to distance between sites
[66]. If marine management plans were to specify the spatial scale at which a given strategy or
action is operating, appropriate environmental gradients or surrogates for biodiversity could
be identified and sampled.

Biodiversity patterns between individual geomorphic features
Sponge assemblages can vary among individual banks and other raised geomorphic features in
the Oceanic Shoals CMR, but this pattern is not universal among all banks, suggesting that
more research is needed to determine environmental or biological regulators of sponge com-
munity differences among banks. The proximity of raised features to one another may affect
the similarity of sponge assemblages, as possibly shown by the similarities between sponge
assemblages on relatively close Terrace C and Bank C and the differences between relatively
distant eastern and western raised geomorphic features (Fig 4). Our results are inconclusive,
however, due to the low numbers of banks analysed, and further research incorporating more
banks at various distances from each other is needed. Other research has shown that sponge
assemblages are unrelated to distances between reef sites [66], although the distance between
the furthest reef sites was less than that of the current study (~100 km vs 300 km). Nevertheless,
we show that at least some assemblages are significantly different among banks, and marine
managers may thus consider a management plan for the Oceanic Shoals CMR that accounts
for these smaller spatial scales (i.e. 1–2 kilometers) while also balancing the practicality of
enforcement issues at such fine scales. This does not contradict our regional analysis in which
no difference in sponge assemblages between east and west were detected. Rather, our results
highlight the importance of spatial scale in biodiversity assessments and associated manage-
ment strategies. Importantly, assemblage similarity among banks is not only associated with
environmental and ecological characteristics of a particular bank, but also with the dispersal
potential and connectivity of individual species [72]. This is discussed further in the next
section.

Management implications of findings
After the establishment of marine reserves, the focus of management authorities typically shifts
from discovery and description to monitoring. This shift helps to gauge the effectiveness of spe-
cific management actions (e.g. exclusion of bottom trawling) and also to identify potential
impacts from human use. However, the need for some degree of ongoing discovery and
description remains as shown by the number of new species collected on marine surveys to
new areas [3,73]. This underscores the fact that baseline data is still lacking [4,74], particularly
for northern Australia [7,16] and associated sponges (Fig 1a).

Even with species inventories, conservation planning requires spatially-explicit data on both
the environment of the region of interest and the taxa of conservation concern [75]. Such data
are invariably incomplete, particularly in the marine realm [2,76]. Conservation planning
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exercises therefore often rely on environmental or taxonomic surrogates to represent general
patterns in biodiversity [77,78], but such surrogates are often limited in their utility among
regions, ecosystems, metrics, and taxonomic resolutions [79–81]. Species distribution models
are powerful and commonly used tools for identifying priority areas for conservation actions
[82,83]. However, the accuracy of species distribution models, and therefore the success of con-
servation actions, can be undermined by imprecise species occurrence records [84]. Systematic
collection of both biological specimens and a range of environmental data are therefore neces-
sary to provide managers with the necessary tools to make informed decisions regarding the
location of priority areas for conservation. For example, protection of regions with high sponge
richness in the Oceanic Shoals CMR (e.g. raised geomorphic features in [16]) from potential
threats such as bottom trawling would likely yield significant benefits for a range of other taxa,
given the important role of sponges as habitat-forming taxa in the region. In addition, the con-
gruence between areas of high species richness of sponges and other taxa suggests that sponges
may provide excellent taxonomic surrogates for conservation planning in the Oceanic Shoals
CMR [16] but see [79–81]. Sponge communities can also be an indicator of an important eco-
system service because they indicate the presence of hard ground, a limited resource in the
marine environment which supports distinct communities potentially vulnerable to distur-
bance [85]. The ability of both taxonomic and environmental surrogates to reflect general bio-
diversity patterns is variable, depending on factors such as spatial scale, analytical method, or
the ecosystem in question [31,79,86]. The spatial distributions of sponges reported here may
provide valuable information for implementing robust conservation actions in a remote and
poorly studied but diverse marine region.

The results of baseline inventories, such as the study presented here, are also essential inputs
into regional-scale models of biogeographic processes and for refining and testing such models.
For example, a regional-scale model of connectivity has been developed for northern Australia
using ophiuroids as a model species [87]. Ophiuroids are generally considered to be passive
drifters [88], and sponges exhibit similar behavioural characteristics [89], although they spend
considerably less time in the water column on average [minutes to days for sponges, versus
weeks for echinoderms; [90,91]. The significant differences in assemblages among individual
banks and terraces highlight the importance of local geomorphic features in shaping commu-
nity structure, which is consistent with the short pelagic larval durations associated with
sponge larvae as well as asexual reproduction through fragmentation [92]. At a larger spatial
scale, the lack of differences observed between the eastern and western Oceanic Shoals CMR
suggests an extensive mix of frequent, but highly stochastic connections when taken at a larger
regional scale. Population genetic analysis of the sponge specimens collected in the current
study would help to quantify the direction and magnitude of exchange which could be directly
compared with the connectivity model results. There are only a few taxa with sufficient sample
size for this work (e.g. Xestospongia testudinaria), but due to wide distribution these may be
less likely than uncommon species to show patterns, although research is still warranted.
Genetic analysis could also be conducted with other specimens collected during the surveys
(e.g. polychaetes in [39] to identify differences in distribution patterns between taxa (Annelida
vs Porifera), habitats (epifaunal vs infaunal), or developmental mode (lecithotrophic vs plank-
totrophic). Developing an improved understanding of biophysical processes and connectivity
can help inform management actions by identifying natural biogeographic regions [93,94], by
detecting critical pathways of exchange [95], or by assessing the potential for transboundary
exchange of resources or environmental risk [96].

The current study has used species-level identifications of an ecologically important group
to address several questions related to marine management in a large tropical marine reserve.
Importantly, we have further increased the evidence that the carbonate banks and other raised
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geomorphic features of the Van Diemen Rise and Sahul Shelf indeed constitute key ecological
features that similarly operate at locations in the eastern and western part of the Oceanic Shoals
CMR at a broad spatial scale. The associated species inventory will provide a foundation from
which future predictive habitat, biodiversity and connectivity maps may be generated. Results
may also be integrated with socioeconomic considerations [97] and inform future marine man-
agement plans, particularly as they relate to multiple spatial scales.
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