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Abstract
This study reports on a novel method to detect and reduce the contribution of movement

artifact (MA) in electrocardiogram (ECG) recordings gathered from horses in free movement

conditions. We propose a model that integrates cardiovascular and movement information

to estimate the MA contribution. Specifically, ECG and physical activity are continuously

acquired from seven horses through a wearable system. Such a system employs

completely integrated textile electrodes to monitor ECG and is also equipped with a triaxial

accelerometer for movement monitoring. In the literature, the most used technique to

remove movement artifacts, when noise bandwidth overlaps the primary source bandwidth,

is the adaptive filter. In this study we propose a new algorithm, hereinafter called Stationary

Wavelet Movement Artifact Reduction (SWMAR), where the Stationary Wavelet Transform

(SWT) decomposition algorithm is employed to identify and remove movement artifacts

from ECG signals in horses. A comparative analysis with the Normalized Least Mean

Square Adaptive Filter technique (NLMSAF) is performed as well. Results achieved on

seven hours of recordings showed a reduction greater than 40% of MA percentage

(between before- and after- the application of the proposed algorithm). Moreover, the com-

parative analysis with the NLMSAF, applied to the same ECG recordings, showed a greater

reduction of MA percentage in favour of SWMAR with a statistical significant difference (p–
value < 0.0.5).

Introduction
Detection and reduction of noises and artifacts in the cardiovascular monitoring are two of the
greatest challenges for enhancing signal quality [1–6]. ECG morphology is strongly affected by
movement artifacts (MAs), which must be therefore effectively removed [7, 8]. In humans, sev-
eral efforts have been made to obtain robust ECG against MAs [9–14], but MAs remain one of
the major problems in both short- and long- term cardiovascular monitoring [15–18]. More
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specifically, MAs are mostly generated by skin stretching [19] that is recognized to be the most
common source of MAs [20]. Skin stretching causes modifications in the distribution of char-
ges at the interface between the skin and electrode. Since skin can be considered a current gen-
erator that actively produces a potential difference between the in- and out-side of the skin,
stretching causes disturbance in the distribution of charges at the electrode-electrolyte inter-
face. It induces a temporary change in the half-cell potential, providing a variation of the
involved potentials and reducing its magnitude [21–23]. There are two possible approaches to
compensating MAs. The first, is the modification of supports and materials involved in the
skin-electrode interface, while the second implements models and algorithms for reducing MA
contribution. The first approach is based on reducing skin-electrode discontinuity. It is
achieved by cleaning or grazing the part of the skin in contact with the electrode and modifying
material or form of the electrode itself [24–26]. An example of the latter approach is the use of
textile electrodes, which are made of conductive yarns integrated into textile substrates. They
exhibit the advantage of having a bigger surface in contact with the skin than the standard elec-
trodes decreasing the skin-electrode impedance. Moreover, textile electrodes offer a greater
dynamical adaptation to anatomical profiles [24]. The second approach includes procedures
and algorithms which aim at detecting and removing artifacts from the acquired signals. Sev-
eral techniques have been used in biomedical applications compensate for MAs. Among these,
one of the most used and effective is the adaptive filtering cancellation technique [27–29]. It
uses a “primary” input containing the corrupted signal (signal with artifacts) and a “reference”
input containing artifacts correlated in some unknown way with the primary noise [30]. This
adaptive filtering adjusts its parameters automatically, requiring a little a priori knowledge of
noise characteristics. More specifically, the reference input is derived from a noise field where
the signal is weak or undetectable, and is subtracted from a primary input containing both sig-
nal and noise. In this way, the primary noise is attenuated or eliminated by cancellation. Suc-
cessive implementations were then improved with the introduction of recursivity [31]. In this
latter case, an adaptive recurrent filter structure was introduced where the primary input was
the ECG signal affected by MAs, while the reference input was an impulse train, whose
impulses were coincident with the onsets of QRS complexes. This approach has two major lim-
itations. The first is the introduction of errors due to the inaccurate coincidence of the impulses
of the reference signal with the QRS complex onsets. The second issue is related to unusual
beat-by-beat variation that may prevent complete adaptation from taking place [31]. Further
studies evidenced the importance of acquiring noise, movement, as well as skin-electrode
impedance. In fact, some studies on the correlation between MAs and electrode impedance
have been already done in the literature [32]. Other studies have introduced stretch sensors to
measure MAs effect [33, 34]. In such cases, both electrode-skin impedance and sensor were
mounted on the electrode for adaptively modeling motion artifact. In some cases, the need to
measure the abovementioned parameters led to the development of novel hardware prototypes
[1]. Other researchers proposed to measure the voltage difference from two adjacent electrodes
to estimate a noise reference signal [35]. Furthermore, skin stretch was also estimated by using
non-invasive optical sensors incorporated into ECG electrodes [36]. The reported research
findings have underlined the importance of measuring movements for investigating their rela-
tionship with the MAs in ECG. In fact, the information obtained from accelerometer and mag-
neto-resistive sensors were recently used [37, 38]. Moreover, other techniques such as principal
component (PCA) and independent component (ICA) analysis [39–42] as well as Empirical
Mode Decomposition (EMD) [43, 44] have been explored, but nevertheless the MA issue
needs to be still addressed. In this work we propose a novel algorithm based on the stationary
wavelet transform (SWT) [45] method for robustly estimating MAs for reliable removal.
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Moreover, it overcomes many limitations due to empirical thresholds proposed by previous
research [46].

The issues of equine ECG traces
The assessment of ECG morphology plays a paramount role in the investigation of cardiac
activity in horses [47]. It is important for the evaluation of heart activity during exercise and
recovery phase, as well as in the diagnosis of poor performance and exercise intolerance [48–
51]. It has been suggested that both sopraventricular and ventricular premature depolarisation
during physical activity can be considered a clue of poor performance in the horses [52]. Given
the above considerations, high-quality ECG recordings become critical in the field of equine
internal and sport medicine and exercise physiology. Therefore, the presence of MAs in the
ECG signal should be avoided, since they would make ECG traces useless or misleading. In
human cardiology, such issues are solved, or reduced, by limiting the amount of physical activ-
ity. Unlike humans, horses never stay still, and MAs are normally present during ECG record-
ing, corrupting a large part of the significant signal [53]. Typically, restraining horse is
discouraged because it is unnatural and stressful, and increases the sympathetic contribution to
heart control [54], thus giving a misleading ECG interpretation [48]. The problems related to
MAs in the equine ECG become more relevant during exercise [55]. To reduce MAs, one of the
most adopted strategies is the repositioning of electrodes by modifying the base-apex configu-
ration [47, 56–60]. Despite technical strategies (e.g., glue, adhesive bendage, etc) and the porta-
bility achieved by miniaturized holter ECG acquisition platforms, the ECG-related artifacts are
even more important in equine sports [47, 53]. Therefore, horse body movements still remain
the biggest source of artifacts in ECG, and manual inspection remains the most diffuse method
of removing artifacts [57–59], although it is operator-expertise dependent, inaccurate and
time-demanding. When manual inspection occurs, the corrupted ECG segments are usually
completely removed, thus leading to a great loss of signal and related information [58]. Hence,
an optimized approach for movement-related artifact reduction is strongly required in both
equine medicine and in the research applied to horses. Unfortunately, there are currently no
accurate and consistent algorithms for identifying equine QRS complexes regrading horses.

In this study, we perform an automatic movement artifact identification and removal of cor-
rupted ECGs through innovative algorithms based on the discrete stationary wavelet transform
(SWT). Thanks to a wearable monitoring system, ECG signal and physical activity were contin-
uously monitored to be then combined and put through a multi-resolution thresholding proce-
dure to obtain a signal that was and estimate of the MAs. Finally, by using a simple subtracting
process, we removed MAs from the original ECGs. Results are compared to those coming from
the application of the Normalized Least Mean Square Adaptive Filter method (NLMSAF) on
the same ECG recordings. The manuscript is organized as follows: Section II describes the
experimental protocol, along with the signal processing chain. The sections relative to the sig-
nal processing chain are split into three sub paragraphs: (i) preprocessing phase, (ii) detection
phase, and (iii) artifact removal phase; Section III results are reported, and in Section IV con-
clusions are drawn and discussed.

Materials and Methods
Seven healthy standardbred mares in anestrus were enrolled in this study (mean age: 8.4 ± 1.3
years, weight: 566.7 ± 54.5 kg. height: 162.9 ± 5.2 cm, body score: 3.9 ± 0.7). Horses were
socially housed in a paddock (75 × 75 m) and were provided ad libitum access to both hay and
water. Horses were used as receivers in the embryo transfer program of the Department of Vet-
erinary Sciences (University of Pisa, Italy) where this study was performed. Mares were in
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healthy conditions and not pregnant at the time of this protocol. Each horse underwent an
accurate cardiological examination, including ECG and echo-cardio in order to exclude any
abnormality in the heart activity. Moreover, they were equipped with a wearable system to
monitor physiological signals and physical activity. The wearable monitoring system used in
this study (Fig 1) was developed by Smartex s.r.l (Italy) and was comprised of an elastic belt fas-
tened around the chest behind the shoulder area of the horses. Two textile electrodes and a
strain gauge sensor were integrated into the belt to acquire the ECG (with a sampling frequency
of 250 Hz) in the modified base-apex configuration [56] and respiration activity. The two sen-
sors were finally connected to portable electronics. A triaxial accelerometer was embedded into
the electronics, which was positioned on the back of the horse and used to monitor physical
activity (with a sampling frequency of 25 Hz). Moreover, through a wireless connection, the
system was connected to a mobile device where a dedicated application allowed for checking
both the electrode status and the quality of the acquired signal and controlling remotely the
storing process in a secure digital (SD) card. Data acquisition was performed in a stall (4 × 4
m), where each horse was alone and left free to move for 60 minutes continuously. The horses
were unfed for at least one hour before data acquisition. All horses came from a breeding farm
where were used as stud mares after participating in sport. Therefore all horses were perfectly
accustomed human handling. At the end of acquisition, and before the application of the pro-
cessing algorithms, all the acquired ECGs were visually examined by two experts, and all the
ECG segments, corrupted by MA, were marked and then used for further validation. The
experts were two cardiologists of the Veterinary Teaching Hospital equine clinical section espe-
cially trained to individuate MAs. The output of the labeling process was the MA percentage
estimated as the percentage of the time in which the ECG exhibits MAs over the whole length
of the ECG. Moreover, the experts analyzed the same ECG traces, separately, and in the case of
different labelling, an additional veterinary cardiologist was involved to solve the discordant
evaluation and to come to a shared and accepted decision in assigning the definitive labels. All
raw data can be downloaded as supporting information in S1 Supporting Information.

Fig 1. Scheme of the electronic set up: placement of the proposed system.

doi:10.1371/journal.pone.0140783.g001
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Ethics Statement
This study was carried out in accordance with the recommendations in the Italian Animal
Care Act (Decree Law 116/92). The experimental protocol was approved by the Ethics Com-
mittee on Animal Experimentation of the University of Pisa (reference no. 4886). Consent to
participation in the test was signed by each horse owner.

Signal Processing
The method here proposed is organised into three different phases. Fig 2 shows a concise
scheme of the method. In the first phase, named Preprocessing Phase (PP), all the acquired sig-
nals, specifically ECG and accelerometers, were limited in bandwidth. The second phase,
named Detection Phase (DP), was comprised of algorithms of QRS complex detection, motion
detection, and stationary wavelet reduction. Finally, the third phase, named Artifact Removal
Phase (ARP), was focused on the reconstruction of a signal which includes only artifacts, suc-
cessively removed from the starting raw ECG. In the next, the whole signal processing chain is
explained in detail. Hereinafter the whole method is named Stationary Wavelet Movement
Artifact Reduction (SWMAR).

Preprocessing Phase. In this phase, ECG signals are digitally filtered first with a zero-
phase Butterworth IIR band pass filter (0.5–40 Hz), while the accelerometer signals are up-
sampled, by means of a linear interpolation method, from 25 Hz to 250 Hz, and combined in
order to obtain the acceleration module vectors according to Eq (1)

ACC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
acc2x þ acc2y þ acc2z

q
ð1Þ

where ACC is the acceleration module vector and accx, accy, accz are the accelerometer
components.

Detection Phase. This phase has three steps: QRS complex detection, detection of the
ACC segments in which the movement was supposed to introduce artifacts into the ECG sig-
nals, and finally the ECG signal decomposition through SWT.

QRS Complex Detection (QRSCD) used in this study is based on the computation of the
energy of the second derivative of the ECG (see diagram reported in Fig 3). Operatively, the

Fig 2. Block diagram of the proposedmethod. After a pre-processing phase, the SWT decomposition, the
QRS complexes and motion detections are performed followed by the reconstruction of the signal affected by
artifacts, that is used to reduce and/or remove MAs.

doi:10.1371/journal.pone.0140783.g002
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second derivative of the ECG signal was segmented by applying a 30 ms long moving window
with a time shift equal to 15 ms, therefore with an overlap of 50%. Then, frame by frame, the
energy signal was obtained as the sum of squares of the data within each frame. Afterwards, in
each of non-overlapped time intervals lasting 1.5 s, Local Maxima (LM) and Local minima
(Lm) of the energy signal were detected. By moving the window, a series of LM and Lm is con-
structed and used to estimate the threshold used to identify the QRS complexes. More specifi-
cally, after computing the medians of both the LM and Lm series, the threshold was estimated
as the median value of the two previously calculated values. Of note, for an accurate computa-
tion of the LM and Lm, it is important that at least one ECG be present into the window, there-
fore we have chosen the value of 1.5 s, as it coincides with the maximum of the mean RR
interval computed over 60 minutes among all of the 7 horses. Afterwards, energy segments of
the derived signal showing a energy value greater than the threshold were considered as
belonging to a QRS complex (see Fig 4). Fig 4 shows an example of QRS detection algorithm
applied to two consecutive QRSs. Specifically, for each QRS, two markers (A and B, A starting
time-instant and B ending time-instant of QRS) are computed. In order to test the performance
of the QRS detection algorithm proposed here, 19 ECG records (Fs = 250Hz) gathered from
the human QT database [61, 62] provided by PhysioNet [63] (PN-DB) were used. ECGs were
chosen in order to collect a broad variety of QRS and ST-T morphologies. A total of 596 QRS
complexes were detected and segmented by our algorithm and compared with the manual
labeling provided by the database [64].

Motion Detection (MD) algorithm detects the time-intervals of ACC where the amplitude
was supposed to generate MAs. Fig 5 shows a concise block diagram of the MD algorithm. The
movements that can contribute to the MAs are computed by means of a threshold, T, that was

Fig 3. Block diagram of the QRS-complexes detection. The method employes a threshold to detect QRS
complexes based on an estimate of the energy of the second derivative of the ECG signals.

doi:10.1371/journal.pone.0140783.g003
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estimated by considering the rectified acceleration according to:

T ¼ medianðACCÞ þ 1:4826 �madðACCÞ; ð2Þ

wheremedian(ACC) is considered as the robust estimate of the average of acceleration module,
and 1.4826 �mad(ACC) is used as robust estimate of the standard deviation of the acceleration
module, where robustness is estimated according to [65]. The acceleration signal segments

Fig 4. Example of two consecutive QRS complexes detected by the proposedmethod. Letter A indicates the stating time-instant while B indicates the
ending time-instant.

doi:10.1371/journal.pone.0140783.g004

Fig 5. Block diagram of the Motion-detection procedure. After the signal is rectified and subtracted by its
mean value, strong movement segments are detected through a threshold as estimated in Eq (2). These
motion signal segments can introduce MAs.

doi:10.1371/journal.pone.0140783.g005
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having a value lower than T Eq (2) are considered unable to generate MA in the corresponding
ECG signal. Fig 6 shows the module of the acceleration vector (upper plot) and the ECG signal
(lower plot) in the same time frame. Of note, this figure shows that information provided by
the accelerometer, when a relevant movement occurs, is different from the ECG both in terms
of shape and frequency contribution.

Stationary Wavelet Reduction (SWR) is based on the application of Stationary Wavelet
Transform (SWT) to decompose ECG into different scales for separating small features (fine
scales) from large features (coarse scales), [66]. Since SWT is able to perform local signal pro-
cessing analysis, i.e., to zoom in on any interval of time or space, it could reveal hidden aspects
of the data that other signal analysis techniques fail to detect. For implementing this decompo-
sition it is essential to perform a redundant representation of the signal through an orthonor-
mal transform to guarantee a time-invariance transform (i.e., the coefficients of a delayed
signal are a time-shifted version of those of the original signal). For a given signal x(t) 2 L2(R),
the SWT can be obtained by integrating the product of the given function with the complex
conjugate of the wavelet function ψj,k(x)

Wk
j ðxÞ ≜

1

2j=2

Z1

�1

xðtÞc�
j;k

t

2j � k

� �
dt

≜
�
xðtÞ; 1

2j=2
cj;k

t

2j � k

� ��
ðj; kÞ 2 Z

ð3Þ

where ψ(.) is referred to as a mother wavelet, � stands for complex conjugation, and h_i repre-
sents the inner product of the two functions, hence, the orthonormal wavelet basis L2(R) was

2�j=2c t
2j
� k

� �
; j; kð Þ 2 Z

	 

. Then by performing the multiresolution analysis (MRA) as

Fig 6. The graph at the top shows the acceleration module with an event of remarkable movement, while at the bottom the ECGwith the
corresponding MA is reported.

doi:10.1371/journal.pone.0140783.g006
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proposed by Mallat et al. [67], the signal was decomposed into various resolution levels. At
each level the signal is decomposed into two sub-signals: the first, called approximation, con-
tains information at lower frequencies, and the second, called detail, contains information at
higher frequencies. Finally, detail coefficients Dj,k and approximation coefficients Aj,k at level j
are given by

Dk
j ðxÞ ≜

�
xðtÞ; 1

2j=2
c

t

2j
� k

� ��
ðj; kÞ 2 Z ð4Þ

Ak
j ðxÞ ≜

�
xðtÞ; 1

2j=2
�

t

2j
� k

� ��
ðj; kÞ 2 Z ð5Þ

where ϕ(_) is the scaling function. The mother wavelet and the scaling function must satisfy the
two-scale equations:

2�1=2�
t
2
� k

� �
¼

Xþ1

n¼�1
hn�2k�ðt � nÞ ð6Þ

2�1=2c
t
2
� k

� �
¼

Xþ1

n¼�1
gn�2k�ðt � nÞ ð7Þ

where {hk}k2Z and {gk}k2Z are the impulse responses of lowpass and highpass paraunitary
quadrature mirror filters (QMF’s), respectively [68]. Let define ϕj,k(x) and ψj,k(x) as follows

�j;kðtÞ ¼ 2�j=2�ð2�jt � kÞ ð8Þ

cj;kðtÞ ¼ 2�j=2cð2�jt � kÞ ð9Þ

thenDk
j xð Þ andAk

j xð Þ can be rewritten as

Dk
j ðxÞ ¼ hxðtÞ; �j;kðtÞi ð10Þ

Ak
j ðxÞ ¼ hxðtÞ;cj;kðtÞi ð11Þ

ThereforeDk
jþ1 xð Þ andAk

jþ1 xð Þ can be obtained from Eqs (6), (7), (8) and (9) as

Dk
jþ1ðxÞ ¼

Xþ1

n¼�1
hðn� 2kÞAk

j ðxÞ ð12Þ

Ak
jþ1ðxÞ ¼

Xþ1

n¼�1
gðn� 2kÞAk

j ðxÞ ð13Þ

By doubling the number of input samples in the MRA, a redundant decomposition can be
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performed on the signal. Then the approximation and detail coefficients of SWT can be given
by

~Ak
jþ1ðxÞ ¼

Xþ1

l¼�1
gðlÞ ~Akþ2j l

j ðxÞ ð14Þ

~Dk
jþ1ðxÞ ¼

Xþ1

l¼�1
hðlÞ ~Akþ2j l

j ðxÞ ð15Þ

where h{l} and g{l} are low- and high-pass defined orthogonal wavelet functions.
The idea behind SWT is the recursive application of a series of high- and low-pass filters to

the data to produce two sequences: approximation and detail. In the theoretical fashion, the
original signal can be decomposed into a set of infinite levels, but from a technical point of
view, this number of coefficients must be limited (i.e.,M = 2−j), where j corresponds to the
order of the SWT. Different mother wavelets can be chosen to perform SWT analysis without
changing the obtained results. Here, the Haar wavelet Eq (16) was chosen because it has the
advantage of being numerically faster, theoretically simpler, physically easier to interpret and
exactly reversible without any edge effects:

cðtÞ ¼

1; 0 � t < 1=2

�1; 1=2 � t < 1

0; otherwise

ð16Þ

8>>><
>>>:

In this work, a decomposition level equal to 5, as suggested by Li and Lin [69], was used to pro-
vide a good trade-off between the amount of available information and computational effort.
The frequency content of obtained coefficient sequences strongly depends on the correspond-
ing level. More specifically, low levels represent the fast changing parts of the signal, i.e. the
QRS complexes, while high levels contain information about slower parts such as P and T
waves.

Artifact Removal Phase. The Artifact Removal Phase (ARP) is mainly focused on the esti-
mation of the wavelet components of the signal where MAs are mainly present. In particular,
the algorithm computes two thresholds (Eqs (19) and (20)) for each decomposition level in
order to recognize the signal affected by artifacts. By using the Motion Detection (MD) algo-
rithm, we identified the time intervals in which strong movement contributions are present.
ECG signal segments that were outside of these time intervals were considered artifact-free.
Hence, we put intervals of the coefficients corresponding to the artifact-free ECG segments to
zero, within the first three SWT decomposition levels, which are supposed to contain most of
the informative contribution of the cardiac information. Afterwards, in all of the decomposi-
tion levels, we estimated maxima and minima of the wavelet coefficients within non overlapped
frames lasting 1 second. Then, for these two distributions (i.e., maximum and minimum series)
we robustly computed mean and standard deviation [65]. According to the statistics, the robust
estimator of mean and standard deviation are:

mi ¼ medianðxÞ; ð17Þ

si ¼ 1:4826 �MADðxÞ; ð18Þ

where x is the investigated distribution, and i can assume only 1 or 2 for maxima and minima,
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respectively. Finally, obtained thresholds are expressed by

Mj ¼ m1 j þ s1j; ð19Þ

mj ¼ m2 j � s2 j; ð20Þ

where j represents the decomposition level. In Fig 7 the distribution of maxima and minima,
and the relative thresholds are displayed for a given decomposition level. Coefficients higher
thanMj or lower thanmj are considered related to the movement artifacts. In performing the
Inverse Stationary Wavelet Transform (ISWT) it is therefore possible to obtain a signal in the
time domain corresponding to and depending on the MAs. Finally the movement artifact
removal is performed by subtracting the obtained signal of the MAs from the original.

Normalized Least Mean Square Adaptive Filter method
An adaptive filter has recursive structure where coefficients are continuously updated in the
feedback loop, see Fig 8. The aim is to minimize the error, e(n), between the current filter out-
put, y(n), and the primary input, x(n).

An adaptive filter, whose schema is reported in Fig 8, shows that there are two inputs, x(n)
and n1(n), which are called the primary input and the reference input, respectively. The signal
x(n) includes the desired signal s(n) plus undesired interference n0(n). Let us hypothesize that
s, n0, n1 and y are statistically stationary and have zero means. Moreover, let us assume that s is

Fig 7. Histograms of the distribution of maxima (right) andminima (left) for a given decomposition level. In red the relative thresholds are displayed.

doi:10.1371/journal.pone.0140783.g007
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uncorrelated with n0 and n1, and suppose that n1 is correlated with n0. The output z is obtained
as follows:

z ¼ sþ n0 � y ð21Þ
By squaring, one obtains z2 = s2 + (n0 − y)2 + 2s(n0 − y) taking the expansion of both sides and
considering that s is uncorrelated with n0 and y, we obtained:

E½z2� ¼ E½s2� þ E½ðn0 � yÞ2� þ 2E½sðn0 � yÞ� ¼ E½s2� þ E½ðn0 � yÞ2� ð22Þ

The signal power E[s2] will be unaffected as the filter is adjusted to minimize E[z2]. Accord-
ingly, the minimum output power is

minE½z2� ¼ E½s2� þminE½ðn0 � yÞ2� ð23Þ

When the filter is adjusted so that E[z2] is minimized, E[(n0 − y)2] is minimized as well. The fil-
ter output y is then a best least squares estimate of the primary noise n0. Moreover, when E[(n0
− y)2] is minimized, E[(z − s)2] is also minimized, therefore (z − s) = (n0 − y). As a consequence
z is the best estimate of s.

Statistical analysis
In this work several statistical tools were implemented to assess the performance of both the
QRS complex detection algorithm and the SWMAR algorithm. More specifically, the first algo-
rithm was applied to several ECG traces extracted from the PN-DB database with the aim of
identifying the starting and ending time of each QRS complex. The outcome of the algorithm
is, therefore, a series of time instants that was compared with that provided by the database
itself. Comparison was performed by means of the Bland-Altman plot [70]. This plot is usually
used to evaluate the agreement among two different measurements. In particular, we estimated
both the mean difference, as estimated bias, and the Standard Deviation (SD) of the differences
between the two series. The limits of agreement were computed as the average difference ±1.96
SD of the difference. If the differences were within mean ± 1.96 SD, the two methods could be
considered interchangeably [71]. In addition, the regression line of the data was reported in the
Bland-Altman plot to show any bias or trend. The evaluation of the performance of SWMAR
algorithm in MA removal was performed through the statistical comparison of the outcomes
of SWMAR, NLMSAF and the MA percentages of the raw signals before the treatment. In par-
ticular, statistics were performed through a nonparametric Friedman’s test applied to the three

Fig 8. Recursive scheme of an Adaptive filter.

doi:10.1371/journal.pone.0140783.g008

Robust Movement Artifact Removal Method in Horse ECG

PLOSONE | DOI:10.1371/journal.pone.0140783 October 20, 2015 12 / 21



series of percentage to investigate any possible statistical difference among them. Moreover, a
Wilcoxon signed rank test for paired samples was used to investigate any statistical difference
among all of the couples of series. All the processing tools and statistical analysis were per-
formed by means of The MathWorks −Matlab.

Results
This section discusses the results obtained by applying the proposed methodology to seven
hours of EGC acquired from horses. First, we evaluated the performance of the QRS detection
algorithm by applying it to the online PN-DB. Afterwards, we investigated the performance of
the SWT decomposition algorithm and, finally we evaluated SWMAR and NLMSFA applied to
collected the ECGs comparing the results in terms of MA removal with respect to the starting
MA amount present in the raw signals, where the MA were detected through visual inspection.
More specifically, due to the novelty of the QRS detection algorithm, we preliminarily tested
and validated it on the PN-DB. We applied the algorithm to ECG traces extracted from PN-DB
and compared results. Figs 9 and 10 show the results of the Bland-Altman plots of the compari-
son results. More specifically, the mean of the differences between starting (ending) time-
instant series calculated with the proposed algorithm and those provided by the PN-DB was
−0.0204s (0.0105s) with SD 0.004. Moreover, Figs 9 and 10 show that most of the series points

Fig 9. Bland-Altman plot comparing QRS complex starting time instant series between the SWMAR
algorithm with those provided by PhysioNet Database. The black line indicates the bias (mean
difference), the red lines are limits of agreement (mean ± 2 SD), whilst the blue line indicates the trend of the
data. Mean = −0.0204 (95% CI: −0.0195 to −0.0213); limits of agreement between 0.0036 and −0.0372.

doi:10.1371/journal.pone.0140783.g009
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are within the limits of agreement for both comparisons. This means that the performance of
our algorithm is comparable with those provided by the PN-DB [71, 72]. Concerning the per-
formance of the SWT, Figs 11 and 12 show two examples of the decomposition of the ECG sig-
nals gathered from horses, with 5 decomposition levels. In Fig 11, a decomposition of ECG
without MAs is presented whilst in Fig 12 a decomposition of an ECG affected by artifacts is
reported. Comparing the two Figs, it is worthwhile noting that MA is much more prevalent at
lower level of the decomposition, i.e. at higher frequency components. Fig 13 shows an example
of the result of SWMAR applied to an ECG signal affected by artifacts. In the upper plot the
motion signal (top) and the ECG with artifacts (bottom) are reported, while in the lower plot
the ECG cleaned by the removal algorithm is shown. Moreover, the results of evaluation of the
proposed method are shown in the Table 1. Specifically, it reports the percentages of detected
MAs for the raw and the treated signals with SWMAR and NLMSFA. In addition, it also
reports the difference in terms of MA percentage between raw signals and those treated with
NLMSAF (δN), and raw signals and those treated with SWMAR (δO) in the seven hours of
ECGs. More specifically, in the table the horses are labelled with the acronym H followed by a
subscription, and the MAs are manually checked by two experts before and after the applica-
tion of both methods. Results show that recognized MAs in all of the 7 horse-recordings after
the application of the SWMAR and NLMSAF were reduced with respect to percentages of

Fig 10. Bland-Altman plot comparing QRS complex ending time instant series between the SWMAR
algorithm with those provided by PhysioNet Database. The black line indicates the bias (mean
difference), the red lines are limits of agreement (mean ± 2 SD), whilst the blue line indicates the trend of the
data. Mean = 0.0105 (95% CI: 0.0115 to 0.0094); limits of agreement between −0.0309 and −0.0099.

doi:10.1371/journal.pone.0140783.g010
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Fig 11. Decomposition of a clean ECG segment. At the top the original ECG signal is plotted, following the 5 decomposition detail signals and the
approximation regarding the 5th level. Red and yellow lines represent the threshold levels as calculated according to Eqs (19) and (20).

doi:10.1371/journal.pone.0140783.g011

Fig 12. Decomposition of an ECG segment affected by artifacts. At the top the original ECG signal is plotted, following the 5 decomposition detail signals
and the approximation regarding the 5th level. Red and yellow lines represent the threshold levels as calculated according to Eqs (19) and (20). The figure
shows that MAs details and approximations coefficients that are out of the interval delimited by the two thresholds.

doi:10.1371/journal.pone.0140783.g012
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signal with artifacts obtained from RAW signals. In particular results obtained with the pro-
posed method outperform those obtained by NLMSAF. Moreover, Fig 14 shows the box plot of
detected MAs. A nonparametric Friedman’s test applied to the three series RAW, NLMSAF
and SWMAR show a statistical significant difference with a p–value of 0.0021. Finally, Wil-
coxon signed rank test for paired samples was used for comparing all the couples of classes. It
reported significant differences in comparing raw data and both treated data, returning in both
case a p–value equal to 0.0156. Moreover, a statistical significant difference was also reported
in comparing the two treated data, showing an increased reduction of MAs (%) obtained with
SWMAR (see Fig 14). In this latter case a p–value equal to 0.0313 was returned.

Fig 13. The upper plot reports the accelerometric signal (in red) along with the ECG signal with the corresponding artifact. The lower plot shows the
ECG signal after applying the MA removal algorithm.

doi:10.1371/journal.pone.0140783.g013

Table 1. Percentage (%) of detected MAs into: raw ECG signals (RAW); NLMSAF; the difference
between raw and NLMSAF δN; SWMAR; and the difference between raw and SWMAR.

Horse RAW NLMSAF δN SWMAR δO
(%) (%) (%) (%) (%)

H1 55.37 32.90 -22.47 15.00 -40.37

H2 55.31 34.53 -20.78 13.77 -41.54

H3 65.42 45.11 -20.31 34.91 -30.51

H4 43.69 35.64 -8.05 26.15 -17.54

H5 48.19 38.92 -9.27 22.93 -25.26

H6 64.10 54.36 -9.74 34.96 -29.14

H7 72.18 25.41 -46.77 28.69 -43.49

doi:10.1371/journal.pone.0140783.t001
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Discussion and Conclusion
In several research studies the quality of ECG is considered empirically acceptable when dis-
tinct R-waves can be detected during the recordings. Detection can be facilitated by using auto-
matic software, but more often than not it is done through manual and visual inspection.
However, depending on heart rate and electrode position, the T wave of the equine ECG is
commonly erroneously detected by commercial software as an R peak, thus manual inspection
remains mandatory in this field [56]. Furthermore, manual inspection of the ECG trace could
raise further issues, for example, the number of rhythm events could be dependent on observa-
tion periods, or intra- and inter-observer agreement for recognition and classification of
arrhythmias during and immediately after exercise. Moreover, possible mistakes or disagree-
ment could also be due to miscounting events in a large number of events [57]. In addition,
computerised ECG interpretation programs have a high rate of misclassification, especially in
non-sinus rhythm events [73]. The high number of physiological atrio-ventricular-blocks and
high amplitude and variable morphology of the T wave make the use of such fully automated
algorithms very difficult in horses [57]. The aforementioned considerations point out the
importance and relevance of a specific algorithm for the reduction of MAs on the recording of
equine electrophysiology of the heart. Moreover, since restriction of movement in horses dra-
matically increases their sympathetic activity, it is therefore recommended to be avoided [54].
This work underlines that quantity and quality of body movements is a fundamental variable
that needs to be taken into account for the implementation of algorithms addressing the move-
ment artifact issue [56].

A new algorithm was implemented in the acquisition of equine ECG signals in order to
remove MAs. We integrated the time-invariance of the Stationary Wavelet Transform with the
essential exogenous information of movement provided by a triaxial accelerometer. As a com-
parator, a NLMSAF was also applied to the same dataset. The outcomes of the two algorithms
were manually evaluated by two experts and ranked as a percentage of MAs over the 7 hours of
acquisition from horses (see Table 1). Algorithm performance was also evaluated in terms of
reduction of the MA percentage. Referring to SWMAR, after the detection of the corrupted

Fig 14. Boxplot of the MAs percentage before and after the method of removal MAs.

doi:10.1371/journal.pone.0140783.g014
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QRS complexes through the accelerometric data, the SWT was used in order to estimate the
artifact-contribution to the ECG signals. After applying the proposed method to 7 hours of
ECG recordings, results highlighted how the rates of artifacts detected by the physicians signifi-
cantly decrease. In addition, as indicated by visual inspection, our algorithm achieved a good
percentage of MAs removal with respect to NLMSAF. In fact, the boxplot reported in Fig 14
showed the statistics of the detected percentage of MAs on the raw data and after applying
NLMSAF and SWMAR algorithms, respectively. The figure also shows that the SWMAR algo-
rithm outperforms NLMSAF. As shown, the proposed method is reliable and effective, but it
could fail if the ECG signal is heavily affected by movement artifacts whose amplitude is
remarkable. Indeed in this case, the algorithm could be unable to exactly identify the starting
and ending times of the QRS complexes. Next steps will be to test our algorithm on ECGs
acquired from horses while they walk or trot outdoors. Nevertheless, the achieved results are
promising in view of applying advanced processing techniques also to ECG equine signals oth-
erwise not applicable due to the relevant presence of movement artifacts. It is worthwhile not-
ing that the ECG has been already demonstrated to be nonlinear and non-stationary in
humans, and has been studied in depth using both standard as well as nonlinear approaches.
On the contrary, it has not been yet possible for horses, since long epochs of signal without
movement artifacts cannot be acquired. In this view a system able to remove artifacts in
equine-ECG would make it feasible to apply nonlinear approaches such as the Lyapunov expo-
nent, entropy, or correlation dimension, providing important information for the biology of
the equine cardiovascular system.
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