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Abstract
Recent experimental and computational progress has revealed a large potential for RNA

structure in the genome. This has been driven by computational strategies that exploit multi-

ple genomes of related organisms to identify common sequences and secondary struc-

tures. However, these computational approaches have two main challenges: they are

computationally expensive and they have a relatively high false discovery rate (FDR).

Simultaneously, RNA 3D structure analysis has revealed modules composed of non-canon-

ical base pairs which occur in non-homologous positions, apparently by independent evolu-

tion. These modules can, for example, occur inside structural elements which in RNA 2D

predictions appear as internal loops. Hence one question is if the use of such RNA 3D infor-

mation can improve the prediction accuracy of RNA secondary structure at a genome-wide

level. Here, we use RNAz in combination with 3D module prediction tools and apply them

on a 13-way vertebrate sequence-based alignment. We find that RNA 3Dmodules pre-

dicted by metaRNAmodules and JAR3D are significantly enriched in the screened windows

compared to their shuffled counterparts. The initially estimated FDR of 47.0% is lowered to

below 25% when certain 3D module predictions are present in the window of the 2D predic-

tion. We discuss the implications and prospects for further development of computational

strategies for detection of RNA 2D structure in genomic sequence.

Introduction
Recent studies have shown a large potential for RNA structure in eukaryotes through experi-
mental strategies [1–4] as well as computational strategies [5]. The computational strategies
were developed to search for novel RNA secondary structure by making use of comparative
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sequence information either from sequence based alignments or by RNA structural alignments
directly [6–15]. While further development of these de novomethodologies is still needed,
many methodologies for class specific searches, e.g. [16–19] and homology based approaches
[20, 21] for RNA structure are more specialized and mature. The need for improvements in
RNA structure prediction is also supported by the discoveries of new RNA classes [22, 23], and
the expectation that many more structured RNAs are hidden in the genomes [24–27]. Of par-
ticular interest is the abundance of non-coding (nc)RNAs [28] and regulatory elements embed-
ded in untranslated regions (UTR) of mRNAs, for example riboswitches that control gene
expression [29]. In line with the RNA structure potential, further development of computa-
tional tools to screen for conserved structured RNAs is indeed desired. While there are many
directions which can be pursued, here we consider identifying elements of RNA 3D structure
in regions with apparent secondary structure.

A main motivation is that both secondary and tertiary structural elements are key to under-
stand RNA functions. Such structural elements are found in some classes of ncRNAs and the 5’
and 3’UTRs of mRNA. The first step in searches for such structural elements has traditionally
been by establishing a secondary structure diagram based onWatson-Crick (WC) base pairing
locally (e.g. hairpins) or more distantly (e.g. pseudoknots). Secondary structure prediction is
typically based on energy optimization often involving co-variation analyses as well. However,
both co-variation and experimental analyses, including X-ray crystallography, have revealed
the existence of non-WC base pairs that provide the RNA structure with architectural features
in addition to the regular A-helices [30–33]. Defined sets of non-WC pairs embedded in WC
pairs constitute 3D modules such as kink-turns, C-loops, sarcin-ricin motifs or GNRA hairpin
loops that are key determinants of RNA structure and function.

Note that (1) 3D modules are found in all domains of life (as an example, the kink-turn has
been described in Bacteria [34], Archaea [35], and Eukarya [36]); (2) 3D modules occur in
many different, and unrelated structured RNAs (e.g. riboswitches [37, 38], rRNA [34], and
snoRNA [39, 40]); (3) The 3D modules function in all aspects of RNA structure and function,
including initiation of folding, stabilization of the overall architecture, mediating RNA-protein
interactions, binding of small molecule ligands, and catalysis [34, 41–45]. Thus, 3D modules
are recurrent building blocks inherent to RNA structure and function, and so we expect to find
them in novel RNAs which function by virtue of their secondary and tertiary structure. Incor-
porating 3D modules into 2D structure prediction tools will therefore push the computational
screens for structured RNAs in genomic sequences further towards functional relevancy.

Although more recent development has shown progress with regard to combining 2D and
3D structure prediction, none seem feasible at a genome-wide level. Approaches such as
RNA2D3D [46] and ASSEMBLE [47] are semi-automated where the user is in charge of modi-
fying a given secondary structure by adding 3D modules or editing the backbone torsion
angles. Combining 3D modules with RNA secondary structures is also used to improve and
speed up tertiary structure predictions. Tertiary structure predictors are generally time-con-
suming and limited to small molecules. Laing and Schlick reviewed these where they explore
new ideas towards 3D structure prediction [48]. Reinharz et al. [49] developed an automated
pipeline, RNA-MoIP, for combining 2D and 3D information to refine tertiary predictions. In a
first step, they use a classical secondary structure predictor to get a set of sub-optimal struc-
tures. In a second step, a scan for known 3D modules which exactly match portions of the
input sequence provides potential insertion sites. Aligning potential 3D modules with the sub-
structures by minimizing the number of free nucleotides (nts) results in a set of templates for
the MC-Sym pipeline [50]. MC-Sym performs a fragment insertion simulation to build full-
atom models of the given secondary structure and the putative module. One advantage of
RNA-MoIP is that it uses an integer programming framework which supports the
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incorporation of more complex modules such as k-way junctions. However, with running
times around one minute for each window, it is preferable to first develop fast screens for
potential secondary and 3D structure before turning to a more detailed tool such as
RNA-MoIP.

Hence, including 3D modules in genome-wide screens for RNA 2D structure is a first step
towards obtaining a better discrimination between predictions on real and randomized data.
Here, we address this challenge by implementing a pipeline consisting of the RNAz tool for
genome-wide 2D predictions in sequence based alignments [51] along with the 3D modules
programs metaRNAmodules [52] and JAR3D [53], both of which are able to recognize known
and novel sequence variants of RNA 3D modules. The pipeline is also run on shuffled align-
ments (randomized data) to estimate the discriminative power with and without 3D modules.

Materials and Methods
The sequences used in this paper are based on a 13-way whole genome vertebrate alignment
and a randomized version of the alignment (see below). Both alignments are screened by
RNAz for stable and conserved structured regions. We further screen the original and the shuf-
fled alignment with 63 metaRNAmodules models for internal loops, and 276 internal loop (IL)
and 253 hairpin loop (HL) models from JAR3D. For further details see Figs 1 and 2. The
selected models are shown in Tables C, E, and G in S1 Text.

Multiple alignments and sliding window construction
For our analysis we use a whole genome alignment computed by MULTIz/Threaded Blockset
Aligner [54] containing 13 vertebrate sequences (details in S1 Fig). These sequences are
selected as a trade-off between width of the phylogenetic tree and alignment quality (e.g. low
gap frequency). The human sequence is the reference sequence. Because the alignment still has
low complexity regions, gap-rich regions, or dubious aligned fragments, further pre-processing
steps are necessary to filter them out. This is done by using a bundle of auxiliary tools from
RNAz [11]. rnazWindow is used to perform several filtering steps with default parameters (for
details see [11] and the RNAz manual). The alignment is sliced into windows of size* 40–120
nts that overlap to varying degrees. In case the number of sequences in the resulting windows
is greater than six, they are reduced to six by optimizing the pairwise sequence identity to 80%.
The windows are pre-filtered by pairwise sequence identity greater than or equal to 50% and a
GC content in the range of 0.25 to 0.75. Only the forward strand is taken into account. By con-
vention, the reference sequence is always in the selected set otherwise the window is discarded.
To provide random background for comparison the windows are shuffled with SISSIz [55], a
tool which preserves relevant characteristics of the data, such as gap and local conservation pat-
terns and the dinucleotide content. The original and the shuffled windows are screened with
RNAz for energetically stable and conserved structured regions.

Predicting secondary structures with RNAz
RNAz version 2.1 predicts structural RNAs in multiple sequence alignments [51]. It is based
on two characteristic features of structured RNAs: thermodynamic stability and evolutionarily
conserved secondary structure elements of homologous sequences. The thermodynamic stabil-
ity is measured by a z-score and the structural conservation index (SCI) measures the consis-
tency between the average of the individual structures to the predicted consensus structure.
Both measures result in a probability, called p-score, used for the classification of a prediction
(on an input window of aligned sequences) as “structural RNA” or “other”. A p-score>0.9
indicates high-confidence “structural RNA” candidates although the more relaxed criterion of
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Fig 1. Graphical outline of the approach. The 13-way alignment is sliced into windows of size 40–120 nts. The windows are shuffled by SISSIz and both
the original and shuffled data are scanned by RNAz for thermodynamically stable and evolutionarily conserved candidates (p-score >0.9). For those windows
the false discovery rate is estimated (FDRrnaz). Both the original and shuffled windows are also scanned by metaRNAmodules (mRm) and JAR3D for reliable
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0.5 is sometimes used. In [51], the estimated false discovery rate (FDR) of RNAz 2.1 based on
ENCODE regions and a dinucleotide background model is found to be 54% for p-score>0.9.
In the work reported here, RNAz is applied with default parameters on the pre-processed data.
Of the original windows, 161 481 have RNAz p-score>0.9, and of the shuffled windows, 66
891 have RNAz p-score>0.9.

Eliminating overlapping windows
Counting the number of 3D modules per window is complicated by the fact that the original
windows overlap to varying degrees and some 3D modules are found in the overlapping
regions. We remove overlapping original windows by listing them from highest RNAz p-score
to lowest (all with RNAz p-score>0.9) and report those results in the paper. In the Supplemen-
tary Material we show that two other ordering schemes (lowest to highest RNAz p-scores and
random ordering) give similar results (see S2 Text, S3 Text, and S4 Text). Once an ordering is
chosen, we go through the list and dismiss any original windows that overlap with a window

3Dmodule predictions. The windows with and without 3Dmodule predictions are counted for a Fisher’s exact test (FET). Windows with 3D module
predictions are also used to estimate the FDR.

doi:10.1371/journal.pone.0139900.g001

Fig 2. Details of the genomewide scan. (a) Windows (boxed) with the H. sapiens sequence as reference
are screened with RNAz for (b) structural motifs. The metaRNAmodules models are applied on each
sequence of the window (c) whereas the JAR3Dmodels are applied on loop regions of the RNAz consensus
structure (d). In both cases, predictions of different models can overlap. The same procedure is used to scan
the shuffled data.

doi:10.1371/journal.pone.0139900.g002
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that appears earlier in the list. This reduces the number of original windows to 142 517 but
eliminates double-counting difficulties. No such procedure is needed for shuffled windows
since they are shuffled independently and thus do not overlap one another.

Prediction of 3D modules
The 3D module models for our approach are obtained from the metaRNAmodules pipeline as
well as JAR3D. The metaRNAmodules pipeline version 1.02 [52] is based on the RMDetect
framework [56] and builds probabilistic models for 3D internal loop modules from aligned
sequences. 63 non-redundant models, mRmIL, were selected. New sequences can then be
scored against these probabilistic models. Each of these models was used to screen the
sequences in original and shuffled windows for matches to 3D modules. By inspection of the
RMDetect score distributions we pragmatically find that the top 25% high scoring 3D modules
on the original data make up a tail in the score distribution that separates from low-scoring
(i.e. less reliable predictions) and from the score distribution over the shuffled windows (see S2
Fig). Thus, we have relative RMDetect score cut-offs for each of the 63 mRmILmodels. Further-
more, the predictions were filtered for 3D modules that consistently (in location) match at least
50% of the sequences in the alignment. The resulting 3D module predictions themselves (see
Results for details) are in the following referred to as MmrmIL.

JAR3D [53] is based on Stochastic Context-Free Grammars and a Markov Random Field
approach to build probabilistic models. We used version 1.13, which contains 276 IL and 253
HL models. JAR3D IL and HL include their flanking Watson-Crick basepairs in addition to the
nucleotides interior to the loop. We extract internal loops with�10 nts and hairpin loops from
the consensus structure of the RNAz predictions and submit the corresponding sequences
from the six organisms to JAR3D. An input sequence is matched against each probabilistic
model and evaluated in terms of the minimum interior edit distance (Levenshtein distance of
the interior nts) and alignment score deficit. The alignment score deficit is the difference
between the highest alignment score among 3D instances of a particular module and the align-
ment score of the input sequence. Each module has an acceptance region which favors low
minimum interior edit distance and low alignment score deficit. The percentage of accepted
sequences in a given position of a multiple alignment is referred to as passed cutoff percentage.
We consider JAR3D IL and HL predictions as reliable when their mean interior edit distance is
lower than or equal to 4 and at least 50% of the input sequences in the multiple alignment win-
dow match the module group (passed cutoff�50). We refer to those predictions as MjarIL and
MjarHL.

Of the original windows with RNAz p-score>0.9 that match a 3D module prediction, 62
overlapped Rfam families with a human sequence, and two were found to overlap human ribo-
somal RNA sequences, and so these 62 windows were removed, leaving 142 455 original win-
dows with RNAz p-score>0.9.

Performance evaluation

To evaluate the performance of RNAz we estimate the false discovery rate F̂ at a given RNAz
p-score larger than a threshold θ and a given GC content between α and β inclusive as

F̂ ½a;b�ðyÞ ¼
Nshuf ½a;b� ðyÞ
Nori½a;b� ðyÞ

; ð1Þ

where Nshuf[α,β](θ) is the number of RNAz predictions with p-score>θ and a GC content
between α and β in shuffled windows and Nori[α,β](θ) is the number of RNAz predictions with p-
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score>θ and a GC content between α and β predicted in original windows, after dismissal of
windows to prevent double counting.

When combining RNAz predictions with the 3D module predictions we conduct a one-
sided Fisher Exact Test (FET) on individual models to identify significantly enriched 3D mod-
ules. Each cell of the FET 2 × 2 contingency table contains counts of unique windows to pre-
serve the assumption of independence of the observations. As explained above, we use criteria
which are specific to mRmIL and JAR3D modules; these are listed in Tables A and B in S1 Text.
The schemes show tests for the nonrandom association between windows predicted as high-
confidence structured RNAs with and without 3D module predictions in original against SIS-
SIz shuffled data. Table 1 shows an example of the counts of unique windows of a contingency
table. Note that although the enrichment is modest for each individual module, such enrich-
ment is observed consistently for a number of models (see Results). The FDR for an individual
module is computed similarly, using the numbers in columns 2 and 3 of Tables I–K in S1 Text.

Results
To investigate the relationship between the 2D and 3D predictions we address the following:
(1) whether 3D modules are enriched in the original windows as opposed to the shuffled ones;
(2) whether individual 3D modules can be seen to be enriched; (3) even more importantly, we
investigate if these models have a collective effect in lowering the FDR compared to RNAz
alone.

Enrichment of 3D modules in RNAz screens
To address the question of whether 3D modules occur more frequently in original windows
with RNAz p-score>0.9 than in shuffled windows with RNAz p-score>0.9, we consider if 3D
modules occur in the original and shuffled windows at the same nominal rate. A higher rate in
the original windows is equivalent to the odds ratio being greater than 1 in Table 1. As a back-
ground we assume that there would be a 50% chance of seeing a higher rate in the original win-
dows, and so the number of 3D modules with a higher rate in the original windows would have
a binomial distribution with probability 0.5. The 3D modules that were not even found once in
the original and shuffled windows were discarded. We find 74.1% (43 out of 58) mRmILmodels
that predict MmrmIL which are present at a higher rate in original windows (z-score = 3.6, p-
value = 1.0 × 10−4). With JAR3D IL models, omitting 3D modules whose 3D sequences have
average length< 9 nts, we find 116 out of 173 (67.1%) models that predict MjarIL at a higher
rate in original windows (z-score = 4.5, p-value = 2.0 × 10−6). Thus, the IL modules occur more
often in the original windows than in shuffled windows, and so 3D IL modules are enriched in
original sequences having apparent secondary structure as opposed to synthetic sequences

Table 1. Contingency table for mRmILmodel RF00177_235_2HHH_1380_1383_1471_1475 showing the number of original (second column) and
shuffled windows (third column) with the (“3Dmodule+”) and without the module (“3Dmodule–”). Furthermore, the respective fold change (the ratio
of 3D module- and 3D module+ windows and the ratio between original and shuffled windows with and without 3D modules) and the sum (“Total”) of each row
and column is shown. The adjusted p-value of the FET equals 9.8 × 10−4 with an odds ratio of (227/111 833)/(62/53 326) = 1.746.

FET original shuffled Fold change Total

3D module+ 227 62 3.7 289

3D module– 111833 53326 2.1 165159

Fold change 492.7 860.1

Total 112060 53388 16548

doi:10.1371/journal.pone.0139900.t001
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meeting the same standard for secondary structure. However, the performance of MjarHL, pre-
dicted at a higher rate by 119 out of 246 JAR3D HL models (48.4%), is marginally lower than
50% (z-score = -0.5, p-value = 4.5 × 10−2). The number of models decreases when we increase
the threshold for the odds ratio (see S4 Fig).

Enrichment of individual modules
To address the second question, whether there are individual modules which are significantly
enriched in original compared to shuffled windows, we conduct a one-sided Fisher’s exact
enrichment test and correct for multiple testing. We refer to this test as FETfixpscore, where we
count windows with the 3D module and windows without, cf. Table 1. For MmrmIL we increase
the list of top 25% highest scoring candidates (see Methods) to top 40% as we otherwise get low
counts of many modules. We subject the FET results to a multiple testing correction using the
Benjamini-Hochberg procedure [57] at a 5% false discovery rate and we only consider modules
with adjusted p-value smaller than or equal to 0.05 to be significantly enriched.

Generally, the results of the enrichment analysis show that a fraction of MmrmIL, MjarIL, and
MjarHL are significantly enriched. The FETfixpscore identifies 8 out of 63 (12.7%) distinct mRmIL,
13 out of 276 (4.7%) JAR3D IL, and 28 out of 253 (11.1%) JAR3D HL models that predict 3D
modules that are significantly enriched (adjusted p-value� 0.05, see Tables C–H in S1 Text).
Requiring an odds ratio of at least 1.25 results in 6 mRmIL, 8 JAR3D IL, and 4 JAR3D HL mod-
els (see S3 and S4 Figs).

The impact of 3D modules on the False Discovery Rate
We evaluate the potential of 3D module predictions to lower the FDR in RNAz predictions.
Our RNAz screen (p-score>0.9 and a GC content in the range of 0.25 to 0.75) identifies 142
455 candidates in the original windows and 66 891 candidates in the shuffled windows. This

corresponds to F̂ rnaz of 47.0%. For the estimation of combined 2D/3D FDRs we only consider
module predictions made by models that are enriched and that have an odds ratio�1.25,
because we want to include only the best modules. We refer to the FDRs of the different classes

of 3D module prediction methods as F̂mrmIL, F̂ jarIL, and F̂ jarHL and combinations of the methods

are abbreviated as F̂ jarHL&mrmIL, F̂ jarIL&mrmIL, and F̂ jarHL&jarIL.

Table 2 shows the results of estimating the FDRs under the different scenarios comparing
only windows with the presence of the respective types of 3D modules. MjarIL lower the FDR
from 47.0% to 36.0%, MmrmIL present a reduction to 34.1% whilst MjarHL are able to lower the
FDR to 37.0%. Windows that contain MjarIL and MmrmIL lower the FDR to 27.8%. A combina-
tion of MjarIL and MjarHL decrease the FDR to 26.4%. The combination of MmrmIL and MjarHL

shows the best improvement, with a reduction from 47.0% to 24.8%.
Some individual modules have strong individual effects on the FDR. Pragmatically, we con-

sider only modules that occur in at least six original windows (see Tables I–K in S1 Text) and
models with an adjusted p-value� 0.05 and odds ratio�1.25. With this we obtain 6 mRmIL, 8
JAR3D IL, and 4 JAR3D HL models that lower the FDR to 42.3% or lower and of these 3
mRmIL, 7 JAR3D IL, and 4 JAR3D HL lower the FDR to 37.6% or lower.

Discussion
The reduction in the FDR shown here comes at the cost of a large reduction in the number of
positive hits. This is due to the large number of 3D modules, each of which occurs with a low
probability in a given structured RNA.

RNA 3DModules in Genome-Wide Predictions of RNA 2D Structure
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Large well-structured module groups such as the sarcin-ricin and kink-turn do not occur
often enough to achieve a low p-score for the Fisher exact test used for Table E in S1 Text. Nev-
ertheless, they tend to have odds ratios above 1 and so occur more often in original alignments
than shuffled alignments.

The way that we restrict attention to internal loops with at least 10 columns in the alignment
leads to a few odd-looking results in Table E in S1 Text in which JAR3D module groups with
few nucleotides have a low p-value in the Fisher exact test. These occur because one of the six
sequences has a long insertion relative to the others, making the internal loop appear to have
10 or more nucleotides, but then the other five sequences match a really small JAR3D module
well. It is surprising that such situations appear to occur more often in original windows than
in shuffled windows, because SISSIz is designed to preserve the gap distribution.

When the secondary structure is predicted reliably and we can extract the correct loop
regions, the use of JAR3D for the 3D module prediction is preferable. In contrast to JAR3D,
module prediction with metaRNAmodules is purely based on the sequence and might be more
powerful when the secondary structure is less reliably identified. For example, the opening of a
few nucleotides of a stem increases the free energy, but the inclusion of a module might result
in a more stable conformation.

Conclusion
There exist different strategies to search for secondary structure in genomic sequences. Their
application area is a trade-off between speed and alignment strategy, where some work within
the regime of sequence based alignments, whereas others conduct structural RNA alignments
at the expense of longer run times. However, these methods do typically not take 3D structure
information into account. In contrast the 3D information is often essential and associated with
function. Motivated by this we addressed the question of whether RNA 3D module informa-
tion in combination with 2D genome-wide screens for 2D structure could make an impact.

Table 2. False discovery rates for RNAz candidates (p-score >0.9, 0.25�GC content� 0.75) and 3D
module predictions.Only 3Dmodules that are enriched and with an odds ratio�1.25 are taken into account.
Furthermore, JAR3D IL modules have average 3D sequence length�9. Subscripts denote which method for
module prediction is used. “winshu/winori” shows the number of shuffled and original windows that match a 3D
module.

FDR

F̂ rnaz
47.0%

F̂ mrmIL
34.1%

winshu/winori 815/2390

F̂ jarIL
36.0%

winshu/winori 1224/3401

F̂ jarHL
37.0%

winshu/winori 2020/5465

F̂ mRmIL&jarIL
27.8%

winshu/winori 25/90

F̂ mRmIL&jarHL
24.8%

winshu/winori 25/101

F̂ jarIL&jarHL
26.4%

winshu/winori 37/140

doi:10.1371/journal.pone.0139900.t002
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We employed RNAz for the genome-wide (windows based) screen for structured RNAs
which take sequence based alignments as input. It uses RNAalifold [58] for the prediction of
the consensus structure of the alignment and minimizes the free energy of a structure without
taking either tertiary interactions or any energy contribution of non-canonical base pairs into
account.

We showed that the combination of 2D secondary structure predictions and 3D module
predictions is useful to improve the structured RNAz predictions by lowering the false discov-
ery rates of RNAz.

We showed that some of the 3D modules are found at higher rates in original (unshuffled
windows of) alignments than in shuffled ones. This gave rise to lowering the FDR substantially.
Overall, the joint presence of 3D module predictions from mRm and JAR3D lowers the FDR
below 28%, using 3D modules which occur at a much higher rate in original windows com-
pared to shuffled ones (odds ratio�1.25).

Thus, we have shown proof of concept that information of RNA 3D modules can enhance
the prediction of RNA 2D structure over the use of RNAz alone. An enrichment test with con-
servative thresholds for secondary structures and 3D modules reveals individual models that
have the potential to distinguish between original and shuffled data. Enriched modules with an
odds ratio above a certain threshold are able to lower the FDR from 47.0% to around 25%.

Supporting Information
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