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Abstract
Sampling the solution space of genome-scale models is generally conducted to determine

the feasible region for metabolic flux distribution. Because the region for actual metabolic

states resides only in a small fraction of the entire space, it is necessary to shrink the solu-

tion space to improve the predictive power of a model. A common strategy is to constrain

models by integrating extra datasets such as high-throughput datasets and C13-labeled flux

datasets. However, studies refining these approaches by performing a meta-analysis of

massive experimental metabolic flux measurements, which are closely linked to cellular

phenotypes, are limited. In the present study, experimentally identified metabolic flux data

from 96 published reports were systematically reviewed. Several strong associations

among metabolic flux phenotypes were observed. These phenotype-phenotype associa-

tions at the flux level were quantified and integrated into a Saccharomyces cerevisiae
genome-scale model as extra physiological constraints. By sampling the shrunken solution

space of the model, the metabolic flux fluctuation level, which is an intrinsic trait of metabolic

reactions determined by the network, was estimated and utilized to explore its relationship

to gene expression noise. Although no correlation was observed in all enzyme-coding

genes, a relationship between metabolic flux fluctuation and expression noise of genes

associated with enzyme-dosage sensitive reactions was detected, suggesting that the met-

abolic network plays a role in shaping gene expression noise. Such correlation was mainly

attributed to the genes corresponding to non-essential reactions, rather than essential

ones. This was at least partially, due to regulations underlying the flux phenotype-pheno-

type associations. Altogether, this study proposes a new approach in shrinking the solution

space of a genome-scale model, of which sampling provides new insights into gene expres-

sion noise.
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Introduction
As a powerful tool for biological interpretation and discovery, over 100 genome-scale metabolic
networks for more than 35 organisms have been reconstructed (see http://gcrg.ucsd.edu/
InSilicoOrganisms/OtherOrganisms). These models have been widely used in molecular evolu-
tion studies [1–3], genome annotation [4, 5], metabolic engineering [6–9], and cellular pheno-
type predictions [10–12]. The broad applications of genome-scale metabolic network
reconstructions largely owe its success to a constraint-based modeling strategy. Instead of
developing a system of partial differential equations such as that observed in kinetic models,
the constraint-based modeling method converts a metabolic network into a stoichiometric
matrix [13]. This matrix ensures balance of metabolites flow throughout the network, thus
resulting in hundreds of mass balance constraints. These, together with the upper and lower
bounds of the metabolic reactions in the network, define a solution space where actual flux dis-
tributions reside [14]. However, in reality, the metabolic behavior of a cell is under complex
physiological regulations, many of which have not been reflected by the constraints mentioned
above. This implies that the region for biologically relevant flux distribution is represented by
small fraction of the entire solution space of a constraint-based model (CBM). Therefore,
shrinking the predicted solution space is necessary to improve the predictive ability of a CBM.

Diverse constraint-based reconstruction and analysis (COBRA) methods have been devel-
oped to probe the solution space [15]. These could be basically classified into two groups,
namely, unbiased and biased methods. Unbiased methods, like the Monte Carlo Markov Chain
sampling method, are mainly used to characterize all possible flux distributions within the
solution space. However, cells do not utilize most of these flux distributions [16]. On the other
hand, Flux Balance Analysis (FBA) is the most extensively employed in biased methods. By
optimizing an objective function, FBA attempts to capture the region where real flux distribu-
tions are most likely to reside [17]. FBA is capable of performing quantitative predictions with
relatively high accuracy. During the past decades, the explosive growth of omics data offered a
good opportunity to reduce the solution space of a CBM by integrating experimental datasets,
including gene expression data [12,18], proteomic data [19], and metabolite concentration
data [20]. In particular, algorithm innovations related to transcriptomic data integration have
undergone substantial progress in the past decades [21]. Recently, Herrgård’s group [22] sys-
tematically evaluated the predictive capabilities of eight classic methods. The results showed
that in many conditions, these methods do not outperform simple FBA by using growth maxi-
mization and parsimony criteria when making phenotype predictions. Other studies have also
described the limitations of the strategy [12, 23]. Therefore, alternative approaches in locating
real flux distributions are warranted.

Extensive experimental evidences suggest that cellular phenotypes could be synergistically
regulated by global biological regulatory factors under certain rules [24–27]. Compared to
mRNA levels, protein abundance, and metabolite concentration in cells, metabolic flux levels
are more capable of reflecting cellular phenotypes [28]. Therefore, phenotype-phenotype cor-
relations are very likely to be observed at the metabolic flux level. Exploring metabolic flux phe-
notype correlations would benefit certain bounds refinements of reactions, further
contributing to CBM solution space shrinkage. Experimentally identified metabolic flux data
on S. cerevisiae has been rapidly accumulating in the past decades. It has laid a solid foundation
on flux phenotype correlation analysis; however, this kind of data has not been extensively uti-
lized. In the present study, a meta-analysis of experimental flux data from publications has
been performed to shrink the solution space of the yeast CBM.

A refined model benefits biological discoveries. In the present study, we applied the refined
solution space of a S. cerevisiaemodel to explore the influence of the metabolic network on
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gene expression noise. Gene expression noise is defined as the stochastic fluctuation of a gene’s
expression at the protein level between isogenic cells under identical environment [29]. It is
very important to understand the regulatory mechanism of gene expression noise because
small variations at the noise level could result in a dramatic change at the phenotype level [30].
Previous studies have indicated that gene expression noise is regulated by several factors,
including the structure of genes [31, 32], gene essentiality [31], gene expression level [30, 33],
transcription/translation rate [34–36], chromatin remodeling [31,37], and regulation network
[38–40]. A recent study indicated that gene expression noise could propagate and cause fluctu-
ations in growth through corresponding metabolic reactions [41]. However, the interaction
between gene expression noise and the metabolic network remains elusive.

In the present study, we first determined the correlations among several metabolic flux phe-
notypes through a systematic review of experimentally measured metabolic flux data. The cor-
relations were quantified and imposed into a S. cerevisiae CBM to refine its solution space.
Using the refined model, we examined whether the metabolic network influences expression
noise of enzyme-coding genes.

Results

Correlated metabolic flux phenotype quantification
All the metabolic flux data we collected were measured under the conditions that the yeast
strains were cultivated aerobically with glucose as the only carbon source (seeMaterials and
Methods; S1 Dataset). Because sugar uptake rate plays a central role in shaping the global met-
abolic system under a carbon-limited condition [26], the relationship of other flux phenotypes
to glucose uptake rates was explored. In an aerobic condition, S. cerevisiae can be mainly in any
of two metabolic states, respiration and fermentation. In the former state, glucose is completely
oxidized into CO2 through the mitochondrial respiration pathway, whereas in the latter, glu-
cose is predominantly fermented into ethanol. Because of the existence of two metabolic pat-
terns, it is necessary to identify the metabolic state that the S. cerevisiae is in prior to exploring
flux-flux phenotype correlations.

Because the respiratory quotient (RQ) is an indicator of metabolic states, RQ values against
glucose uptake rates (For convenience, 1

RQ
was used for the y-axes) were plotted. Fig 1 shows

that when the glucose uptake rate was<4mmol/ (g (DW)�h), the 1
RQ

values fluctuate within the

range of 0.81–1.06. This finding was suggestive of the dominant role of respiration over fer-
mentation. When the glucose uptake rate was>4 mmol/ (g (DW)�h), the 1

RQ
values gradually

decreased as glucose uptake rate increased, which was indicative of a metabolic pattern transi-
tion from respiration to the fermentation state. This result is consistent with the study con-
ducted by Postmaet al. [42]. Therefore, the glucose uptake rate “4 mmol/ (g (DW)�h)” was
defined as a “transition marker” for discriminating metabolic states.

Next, O2 uptake rate, ethanol production rate, and glycerol secretion rate against glucose
uptake rate were plotted, respectively. Results showed that when glucose uptake rate was<4
mmol/ (g (DW)�h), the O2 uptake rates positively correlated with glucose uptake rates (Fig 2
(A)). On the other hand, when the glucose uptake rate was>4 mmol/ (g (DW)�h), the O2

uptake rate negatively correlated with the glucose uptake rate(Fig 2(B)). Unlike the O2uptake
rate, ethanol production rates were always positively correlated with glucose uptake rates, inde-
pendent of the metabolic state of yeast (Fig 2(C)). Glycerol secretion rates were correlated with
glucose uptake rates (Fig 2(D)). Based on these findings, the correlation between the three flux
phenotypes (O2 uptake rate, ethanol production rate, and glycerol secretion rate) and glucose
uptake rate was quantified (Table A in S3 File).
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Prediction of the upper and lower bounds of the growth rate under
aerobic conditions
With the refined bounds for O2 uptake rate, ethanol production rate, and glycerol secretion
rate, FBA was employed to predict the upper and lower bounds of growth rate (seeMaterials
and Methods). Fig 3 shows that almost all the experimentally identified growth rates were
within the predicted space, indicating that our strategy was suitable for the refinement of flux
bounds. In addition, when the glucose uptake rate was<4 mmol/(g(DW)�h), the experimental
data fitted well with the predicted upper bound (R2 = 0.83), indicating the dominant role of the
respiration pathway in supplying energy for growth. When the glucose uptake rate was
>4mmol/ (g(DW)�h), the data points dispersed in the space. This finding suggested that once
the nutrients in the environment are sufficient to support a high glucose uptake rate, S. cerevi-
siae would be relaxed from evolutionary pressures for survival. Under this condition, “biomass
growth” is just one of the several goals that a cell strives to achieve [43], and growth rate
becomes a yeast strain-dependent phenotype.

Metabolic flux moderately correlates with mRNA level and protein
abundance
Several studies have revealed a close relationship between metabolic flux and gene expression
for various pathways in S. cerevisiae [24, 44, 45], but only a few studies directly identify this
relationship [46]. In the present study, the average metabolic flux (AF) level of each metabolic
reaction was estimated and compared to the corresponding gene expression level. Table 1

Fig 1. Distribution of RQ values at different glucose uptake rates ( 1
RQ

was used for the y-axis).

doi:10.1371/journal.pone.0139590.g001
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showed that AF moderately correlated with mRNA level and protein abundance, which was
consistent the findings of a previous study [46]. Contrary to the results of Bilu [46], our analysis
suggested that the correlation between AF and protein abundance level is stronger than that
between AF and mRNA level. This result reflected the fact that compared to mRNA level, pro-
tein abundance is more closely linked to metabolic flux level.

Fig 2. Metabolic flux phenotype-phenotype correlations. Red circles denote experimentally identified data. Blue lines indicate the upper (lower) bound
based on regression analysis result. (A) O2 consumption rate versus glucose uptake rate (<4mmol/ (g (DW)�h)). (B) O2 consumption rate versus glucose
uptake rate (>4mmol/ (g (DW)�h). (C) Ethanol production rate versus glucose uptake rate; (D) Glycerol secretion rate versus glucose uptake rate.

doi:10.1371/journal.pone.0139590.g002
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Metabolic flux fluctuation moderately correlates with gene expression
noise
Gene expression noise describes the cell-to-cell differences in protein level while maintaining
homeostasis. In 2006, Newman et al. conducted a systematical research on gene expression
noise of S. cerevisiae. They proposed DM (which is short for distance to median) value as a
measure of gene-specific noise (seeMaterials and Methods). The noise is able to propagate
and cause fluctuations in growth through corresponding metabolic reactions [41]. To know
whether the metabolic network has influence on gene expression noise, we estimated metabolic
flux fluctuation (FF) level of each reaction. FF could be regarded as reaction's intrinsic trait
given by the metabolic network (seeMaterials and Methods), and was compared with corre-
sponding DM value. Results showed no significant correlation between FF and DM in all

Fig 3. Comparison of predicted lower (upper) bound for growth rate and experimentally identified growth rates. The two blue lines indicate the
predicted upper and lower bound for growth rate. The red points denote experimentally identified growth rates. Inset: When the glucose uptake rate was <4
mmol/(g(DW)�h), experimentally identified growth rates fitted well with the predicted upper bound for growth rate.

doi:10.1371/journal.pone.0139590.g003

Table 1. Spearman rank correlation betweenmetabolic flux level andmRNA level/protein abundance.

Data type Correlation p-value Number of genes Reference

mRNA number 0.26 9.13E-05 219 This study

mRNA number 0.37 1.00E-12 356 Biluet al. 2006

mRNA number 0.35 2.00E-11 343 Biluet al. 2006

Protein abundance 0.32 7.31E-06 186 This study

Protein abundance 0.22 4.00E-04 259 Biluet al. 2006

doi:10.1371/journal.pone.0139590.t001
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enzyme-coding genes (data not shown). A possible reason is that for many reactions, the flux
levels are not controlled by enzyme concentrations, but by ubiquitous allosteric regulatory
mechanisms [23]. Thus, we next examined the genes that were mostly likely to be related to
enzyme-dosage sensitive reactions (DSRs). According to Newman et al., protein abundance
levels are measured in both rich (YEPD) and minimal media (SD) [24]. Between the two condi-
tions, several genes were differentially expressed, whereas others remained stable. It is reason-
able to assume that the reactions that were catalyzed by enzymes whose level were divergently
expressed between the two conditions were more likely to be DSRs. Therefore, the ratio of pro-
tein abundance obtained from SD to those obtained from YEPD was used for DSR gene
retrieval. Only the genes whose expression levels follow the expression,|Log2(SD/YEPD)|> 1,
were considered as DSR genes. Finally, a total of 41 genes were obtained and subjected to corre-
lation analysis. In the DSR genes, FF moderately correlated with DM (rho = 0.27, p = 0.0480;
Fig 4(A)). To ensure the robustness of this result, three different cutoffs (log2(SD/YEPD)>
0.5,0.7,1.0 respectively) were used to retrieve DSR genes for correlation calculations. The corre-
lations between FF and DM were always positive(rho values ranging from 0.26 to 0.58;
p<0.05). The more stringent the cutoff, the stronger the correlation. These findings ascertained
that for DSR genes, the level of gene expression noise was subject to the tolerance of the meta-
bolic network to flux fluctuations.

Reaction essentiality is related to DM and FF coupling
Gene expression noise undergoes selection pressures when it is beneficial or detrimental to the
survival of an organism [30–32]. However, that selection pressure for traits that are not vital to
cell growth may be relaxed. To determine potential influences of reaction essentiality on FF
and DM correlation, the 41 DSR genes were subdivided into “essential reaction” and “non-
essential reaction” groups. Among the 41 genes, 20 were associated with essential reactions,
whereas 21 were associated with non-essential reactions. Correlation analysis indicated that for
the genes corresponding to non-essential reactions, FF strongly correlated with DM
(rho = 0.60, p = 0.0050; Fig 4(B)). However, we did not observe a significant correlation in the
genes that corresponded to essential reactions (Fig 4(C)).

The DM and FF values between the essential and non-essential reaction groups were also
compared. While no obvious differences were observed in the average DM values between the
two groups, the FF values of non-essential reactions were generally higher than those of essen-
tial reactions (Fig 5). A simulation test was also performed to ensure the robustness of this
result (seeMaterials and Methods), which showed that the simulated difference values
between two groups were normally distributed around 0, with a standard deviation σ = 0.26.
The observed difference value was at least four standard deviations away from the simulated
mean difference. Therefore, the observation that FF values of non-essential reactions were
higher than those of essential ones occurred by chance was highly unlikely (Fig 6).

To avoid the possibility that all the results obtained in this section were sampling artifacts of
a specific part or the entire solution space, FF values were re-calculated by sampling another
part of the shrunken space where the glucose uptake rate fluctuates within 20-22mmol/(g
(DW)�h). These FF values were also used in the correlation analysis, and the results were the
same as those obtained earlier (Fig B in S3 File).

Physiological regulations mitigate FF and DM coupling
In the previous section, we revealed the difference between “non-essential reaction”-associated
and “essential reaction”-associated genes in FF and DM coupling. The difference was specu-
lated to be related to the flux phenotype-phenotype correlations that were quantified and
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imposed into the yeast model as additional constraints. To test this hypothesis, the FF values of
DSR genes were re-calculated by sampling the yeast model’s solution space without the con-
straints. Removal of the constraints did not remarkably affect the strong correlation with the
“non-essential reaction”-related genes (rho = 0.59, p = 0.0051; Fig 7(A)). However, for genes

Fig 4. Correlations between flux fluctuation and gene expression noise. (A) Correlation between FF and DM for DSR genes. (B) Correlation between
FF and DM for NER genes. (C) Correlation between FF and DM for ER genes.

doi:10.1371/journal.pone.0139590.g004
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Fig 5. The FF values of the non-essential reaction (NER) group were generally higher than those of the
essential reaction (ER) group.

doi:10.1371/journal.pone.0139590.g005

Fig 6. The observed differences in average FF values between the ER and NER groups are
statistically significant. The x-axis shows the average FF difference between the ER group and the NER
group in 10,000 random simulations. The y-axis indicates the number of simulated FF differences in a bin of
width 0.1.

doi:10.1371/journal.pone.0139590.g006
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related to essential reactions, newly calculated FF values strongly correlated with the DM values
(rho = 0.47, p = 0.037; Fig 7(B)). These findings indicated that the global regulations underly-
ing the phenotype-phenotype correlations mitigated the correlation between FF and DM in
genes corresponding to essential reactions.

Flux constraint strength is not involved in expression noise regulation
In previous section, we have revealed that metabolic network has influence on gene expression
noise. To know whether the influence is related to the extra constraint strength, we used FCS to
estimate the level of flux constraints posed on each reaction (seeMaterials andMethods). Fig 8
showed that the majority of FCS values range within 0–0.1 (746/885), indicating the broad effect of
the regulatory mechanism underlying the constraints. However, we did not observed a significant
correlation between flux constraint strength and gene expression noise (Fig C in S3 File). This
implied that the regulatory strength does not play a key role in shaping gene expression noise.

Discussion
Several studies have identified the limitations of using transcriptomic data in refining CBMs
because complex regulations exist during transcription and translation. Because microbial
metabolism is operated under certain global principles [24–27], we hypothesized that meta-
bolic flux phenotypes are also under synergistical regulations, and thus correlate with each
other. By summarizing the metabolic data that have accumulated in the past decades, we have
identified several metabolic flux phenotype correlations, which were subsequently and success-
fully applied to the refinement of solution space. We expected to identify additional metabolic
phenotype associations, for which the accumulated metabolic data during the past decades has
served as solid foundation.

Fig 7. (A) Correlation between FF and DM in NER genes. (B) Correlation between FF and DM in ER genes. The FF values were calculated by
sampling the entire yeast CBM solution space without the extra constraints.

doi:10.1371/journal.pone.0139590.g007
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FF is an intrinsic trait of a metabolic reaction that is determined by the metabolic network
where a reaction is located. In the present study, FF was found to correlate with DM for the
DSR genes, suggesting that the metabolic network influenced gene expression noise. In particu-
lar, DSR genes corresponding to NERs showed a strong correlation between flux fluctuation
and gene expression noise, which, however, was not observed in those related to essential reac-
tions. This is, at least partially, due to the underlying flux phenotype-phenotype associations,
because after the removal of the extra constraints, FF strongly correlated with DM for the DSR
genes related to essential reactions. We thus concluded that the metabolic network is also an
important determinant that constrains gene expression noise, especially for genes associated
with the reactions that are not essential for organism's survival. However, for reactions that are
vital to cell growth, stochastic fluctuations at the flux level led by gene expression noise might
be detrimental. Under this condition, the cell adopts additional physiological regulatory mech-
anisms to precisely, rather than strongly, control gene expression, and thus reduce expression
noise. By using this physiological response, the connections between the metabolic network
and gene expression noise is mitigated.

In summary, the present study has revealed the associations among several metabolic flux
phenotypes through S. cerevisiae physiological data mining. The integration of these flux pheno-
type-phenotype correlations into a yeast model has resulted in a substantial shrinkage of its solu-
tion space. By analyzing the biologically more relevant solution space, we concluded that the
metabolic network contributes, sometimes predominantly, to shaping gene expression noise.

Materials and Methods

Data sources
Metabolic flux data. A comprehensive search of English-language published reports was

performed using three search engines (PubMed, Google Scholar, and ScienceDirect). Several

Fig 8. The number of genes under different constraint strengths. The smaller the FCS value, the greater the constraint strength.

doi:10.1371/journal.pone.0139590.g008
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publisher archives, including “Applied and Environmental Microbiology”, “Yeast”, “Enzyme
and Microbial Technology”, “Applied Microbiology Biotechnology”, and “Microbial Cell Fac-
tories”, were also thoroughly surveyed. The search terms included "Saccharomyces cerevisiae"
or "S. cerevisiae" or "Yeast," plus “physiology” or "physiological," plus “metabolic” or “metabo-
lism”. After removing duplicates, a total of 160 full-text articles were obtained. The content of
these articles were reviewed and 96 of these were accepted (S2 File). The retrieved metabolic
data met following criteria:

1. The unit of measurement for growth rate is “h−1”; The units of measurement for other meta-
bolic flux data is (or could be converted to)“mmol/ (g (DW)�h)”;

2. The yeast strains used in experiments did not undergo any artificial genetic manipulation at
the molecular level such as gene deletion or overexpression;

3. All the wild-type yeast strains were cultivated aerobically in a steady state; and

4. Glucose was the only carbon source for yeast, and carbon was the only nutrient limitation of
the culture.

After selection according to these criteria, we aggregated and normalized the data to gener-
ate a metabolic flux dataset (S1 Dataset), which includes glucose uptake rates, O2 uptake rates,
CO2 production rates, respiratory quotient (RQ) values, ethanol production rates, and glycerol
secretion rates.

Protein abundance. We considered three quantitative genome-wide measurements of
protein abundance: genome-scale data from the study conducted by Ghaemmaghami et al.
[47], and two genome-scale measurements in two conditions as performed by Newman et al.
[29].

mRNA level. We considered three genome-wide measurements of mRNA levels according
to Holstege et al. [48], Ingolia et al. [49], and Wang et al. [50].

Gene expression noise. We considered two yeast genome-wide datasets of gene expres-
sion noise level based on the report of Newman et al. [29]. In their work, DM was used as a
measure of gene expression noise. DM was defined as the difference of the gene specific noise
and the median noise for proteins with the same abundance. In this way, DM represents gene-
specific noise independent of the corresponding gene expression level.

For protein abundance, mRNA levels, and gene expression noise, we averaged across data
sets (after normalizing each data set by its mean) to minimize experimental noise.

Quantification of metabolic flux phenotype-phenotype correlations and
identification of flux boundaries
We examined the relationship between the glucose uptake phenotype and three metabolic flux
phenotypes, namely,O2 uptake rate, ethanol production rate, and glycerol secretion rate,
respectively.

Because O2 uptake rate and ethanol production rate linearly well correlate with glucose
uptake rate (Fig 2), we learned linear models for them. To ensure robustness and avoid publi-
cation bias in the linear model, a procedure analogous to leave-one-out cross-validation was
performed [51]: The data from each paper were regarded as elementary dataset. All these data-
sets were aggregated to construct a “reference dataset”. Next, leave-one-elementary dataset-out
(LOE) datasets (LDs) were constructed by iteratively omitting each elementary dataset from
the reference dataset (Ifm elementary datasets are available for analysis, thenm LOE datasets
will be obtained). Linear regression analysis was conducted using the data from each LOE data-
set, andm slope values and corresponding R2 values were obtained. The results showed that
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them slope values were almost equal to each other, with R2>0.8, indicating the robustness of
our modeling strategy.

By performing linear regression analysis, the slope value α (αoxy for oxygen uptake versus
glucose uptake curve; and αeth for ethanol production versus glucose uptake curve) was
defined. While fixing the α value, two β values, namely, βl and βu, were set through visual
inspection to define a space covering> 90% of the following experimental identified points:

lboxy ¼ aoxyvglu þ bl oxy

uboxy ¼ aoxyvglu þ bu oxy

lbeth ¼ aethvglu þ bl eth

ubeth ¼ aethvglu þ bu eth

where vglu represents glucose uptake rate; and lb (ub) represents lower (upper) bound for etha-
nol (or O2) exchange rate.

Glycerol secretion rate did not correlate well with glucose uptake rate. Therefore, its bounds
were defined, somewhat arbitrarily, by modifying the α value as follows:

lbgly ¼ aglyvglu

ubgly ¼ aglyvglu

where lbgly (ubgly)represents the lower (upper) bound of the glycerol secretion rate.
All aforementioned α and β values are listed in Table A in S3 File. The newly refined glu-

cose uptake-dependent bounds for O2 consumption rate, ethanol production, rate, and glycerol
secretion rate are as follows:

lboxy � voxy � uboxy; ð1Þ

lbeth � veth � ubeth; and ð2Þ

lbgly � vgly � ubgly: ð3Þ

Prediction of the upper and lower bound for growth rate
S. cerevisiae genome-scale metabolic network model iMM904 was used because of its high pre-
dictive power among available yeast models [52, 53]. To simulate yeast cultivated in glucose-
limited media, fructose and ethanol uptake rates were fixed at 0 because these are potential car-
bon sources [52]. At each glucose uptake rate, voxy, veth and vgly values were uniformly sampled
within the bounds defined by (1), (2), and (3), respectively, and the maximum growth vgro rate
that the yeast could achieve was calculated through FBA as follows:

maximize vgro ð4Þ

subject to:S•v = 0

lbi � vi � ubi vi 2 v

Metabolic Network Shapes Gene Expression Noise
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where vgro indicates the flux of “biomass growth”;S is anM ×N stoichiometric matrix (M is the
number of metabolites, and N is the number of reactions);v is a vector containing metabolic flux
vi of N reactions; and lbi (ubi) represents the lower (upper) bound for vi. When lboxy<0.016
mmol/ (g (DW)�h) at a certain glucose uptake rate, we set lboxy to 0.016 mmol/ (g (DW)�h) [5].

After repeating this process 10,000 times, the biggest (smallest) value in the 10,000 simu-
lated growth rate values was regarded as the maximum (minimum) growth rate vmax (vmin) the
yeast was able to achieve under a glucose uptake rate. The vmax (vmin) under glucose uptake
rates ranging from 0 to 24 (step size = 0.1) were all computed.

Because the upper (lower) bound for growth rate was likely to be a combination of several
linear functions (Fig 3), the predicted vmax (vmin) was divided into several segments according
to glucose uptake rates, for each of which linear regressions of the data were performed sepa-
rately (Fig A in S3 File).The resulting equations were used as upper (lower) bound for the
growth rate (All the equations are listed in Table B in S3 File). For simplicity, the bounds were
presented as follows:

lbgro � vgro � ubgro : ð5Þ

Estimation of the average flux, flux fluctuation and flux constraint
strength
The average flux level (AF), flux fluctuation (FF), and flux constraint strength (FCS) of each
metabolic reaction were estimated by sampling S. cerevisiae's solution space. The sampling was
restricted to the part of solution space where glucose uptake rate fluctuates within 18-20mmol/
(g (DW)�h) for two considerations: (1) Fluctuations of catabolically active enzymes could lead
to growth fluctuations [41]; and (2) Data on mRNA levels to which AF would be compared,
and data for gene expression noise to which FF would be compared, were all collected from
rich media, under which glucose uptake rate ranges within 0.36–0.40 [54]. The upper (lower)
bound for voxy, veth and vgly were set according to (1), (2), and (3), respectively. Facilitated with
these additional constraints, The shrunken solution space was fully sampled to generate
500,000 eligible flux distributions.

The sampled flux values of each metabolic reaction were extracted from the 500,000 flux
distributions. Given a reaction, the top and bottom 5% simulated flux values were discarded.
The remaining sampled flux values were used to calculate AF and FF as follows:

AFi ¼
1

2
ðvi;max þ vi;minÞ

�
�
�
�

�
�
�
�

FFi ¼
vi;max � vi;min

1
2
ðvi;max þ vi;minÞ

�
�
�
�

�
�
�
�

where AFi is defined as average flux level of the i-threaction; and FFi is the flux fluctuation of
the i-th reaction. vi,max (vi,min)represents the maximum (minimum) flux value among the sam-
pled flux values of the i-th metabolic reaction.

To estimate the constraint strength posed on each reaction, we also sampled yeast model's
solution space 500,000 times before imposing the extra constraints. After removing the top
(bottom) 5% flux values of each reaction, FCS was defined as follows:

FCSi ¼
vi;max � vi;min

ðvi;max;ori � vi;min;oriÞ
�
�
�
�

�
�
�
�
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where vi,max,ori (vi,min,ori) represents the i-th maximum (minimum) flux value, which was gen-
erated from the original solution space. Reactions and metabolites participating in the intracel-
lular loops were not included in the analysis [45]. To exclude potential biases, reactions
catalyzed by isozymes were also excluded in the correlation analysis, thus ensuring a one gene-
one reaction relationship. Bi-directional reactions were also not involved in AF and FF
calculation.

Identification of essential and non-essential reactions
Setting “biomass growth” as the objective function to be optimized, FBA was conducted to pre-
dict the growth rate vori of yeast model iMM904 without any extra constraints. We iteratively
set reaction flux vi in the yeast model to 0 and employed FBA again to predict the growth rate
vgro,i. When vgro,i = 0, this i-th reaction was defined as an “essential reaction.”When vgro,i = vori,
this i-th reaction was defined as a “non-essential reaction.”

Simulation test for FF value differences
FF values of the 41 DSR genes were shuffled and randomly divided into two groups, one con-
sisting of 20 values and the remaining values were binned into another one. Difference in aver-
age FF values was calculated by subtracting the average FF value in one group by that of
another. This process was repeated 100,000 times.

Statistical analysis
All simulations and statistical analyses were performed inMATLAB, which was interfaced
with the COBRA toolbox and ‘glpk’ solver. All correlations described in this report are Spear-
man’s rank correlations.
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