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Abstract
In this paper, we study the discrimination power of graph measures that are based on

graph-theoretical matrices. The paper generalizes the work of [M. Dehmer, M. Moosbrug-

ger. Y. Shi, Encoding structural information uniquely with polynomial-based descriptors by

employing the Randićmatrix, Applied Mathematics and Computation, 268(2015), 164–

168]. We demonstrate that by using the new functional matrix approach, exhaustively gen-

erated graphs can be discriminated more uniquely than shown in the mentioned previous

work.

Introduction
Polynomial representations have been investigated extensively in several application areas such
as mathematical chemistry, discrete mathematics etc., see [1–5]. Some of these polynomials
have been used as counting polynomials [2]. Another idea has been to define structural net-
work measures based on the eigenvalues of graph polynomials, see [4, 6, 7]. A well-known
example thereof is theHosoya index [8] that has been defined by the coefficient of the so-called
matching polynomial [3]. Another example relates to define spectral-based graph measures [9,
10]. Dehmer et al. [11] also made a contribution in this area by studying graph measures based
on the zeros of the so-called information polynomial. It has been also Dehmer et al. [11] who
explored the discrimination power of these polynomial-based measures. This relates to study
the ability of these descriptors to distinguish non-isomorphic graphs structurally.

The paper is a successor of [6]. In [6], Dehmer et al. explored the discrimination of quantita-
tive graph measures which are based on the eigenvalues of the Randićmatrix. In this paper, we
define a functional matrix that is more general than the Randićmatrix. Therefore we expect an
impact on the results when evaluating the discrimination power of the indices already used in
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[6] on exhaustively generated graphs. In fact, we find that by choosing a different structural set-
ting than the one encoded by the Randićmatrix, the proposed measures are even more unique
than in [6].

Methods and Results

Novel Graph Measures Based on Complex Zeros
We use the idea of defining a matrix where its elements encode structural information as much
as possible. For this, we use the information functional approach due to Dehmer [12]. An
information functional is a function that maps the vertices to the reals; note that several infor-
mation functionals have been already defined and they have been proven useful for discrimi-
nating graphs uniquely or classifying graphs efficiently, see [12, 13]. Let G = (V, E) a graph. As
in [6, 14], we define the graph descriptors based on the zeros of

PG

M
g;f
ij

ðzÞ≔ det ðMg;f
ij � zEÞ; ð1Þ

whereMg;f
ij is the functional matrix defined by

Mg;f
ij ≔

gðf ðvjÞ; f ðvjÞÞ : ðvi; vjÞ 2 E

0 : otherwise

(
ð2Þ

As we can see, ðMg;f
ij Þij is based on using an information functional f and a function g compos-

ing f(vi) and f(vj), vi, vj 2 V. The composition function g should be symmetrical, so the eigenval-
ues of Eq 1 are then real-valued. It is clear that PG

M
g;f
ij

ðzÞ is given by

PG

Mg;f
ij

ðzÞ ¼ anz
n þ an�1z

n�1 þ � � � þ a1z þ a0; ai 2 R: ð3Þ

We define the symmetric functions

g1ðf ðviÞ; f ðvjÞÞ≔
1ffiffiffiffiffiffiffiffiffi

f ðviÞ
p �

ffiffiffiffiffiffiffiffiffi
f ðvjÞ

q ; ð4Þ

g2ðf ðviÞ; f ðvjÞÞ≔
ffiffiffiffiffiffiffiffiffi
f ðviÞ

p
þ

ffiffiffiffiffiffiffiffiffi
f ðvjÞ

q
; ð5Þ

g3ðf ðviÞ; f ðvjÞÞ≔
1ffiffiffiffiffiffiffiffiffi

f ðviÞ
p þ

ffiffiffiffiffiffiffiffiffi
f ðvjÞ

q : ð6Þ

and the information functionals [13].

f 1ðviÞ≔ sðviÞ; ð7Þ

f 2ðviÞ≔ dðviÞ; ð8Þ

and

f 3ðviÞ≔ c1jS1ðvi;GÞj þ c2jS2ðvi;GÞj þ � � � þ crðGÞjSrðGÞðvi;GÞj;
ck > 0; 1 � k � rðGÞ; a > 0;

ð9Þ

σ(vi) is the eccentricity of a vertex vi 2 V [15], δ(vi) is the degree of vi 2 V [15], and f 3 is based
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in vertex spheres [12]; we have chosen the coefficients ck linearly decreasing like

c1 ≔ rðGÞ; c2 ≔ rðGÞ � 1; . . . ; crðGÞ ≔ 1: ð10Þ

Note that in case of using the matrixMg1 ;f
2

ij , we obtain the well-known Randićmatrix [16]

Rij ≔
ðdðviÞdðvjÞÞ�

1
2 : ðvi; vjÞ 2 E

0 : otherwise

(
ð11Þ

This matrix has already been used when evaluating the discrimination power of the graph mea-
sures representing Eqs 12–14, see [6]. Based on Eq 2, we see that g(f(vj), f(vj)) is taken into
account and, hence, Eq 2 generalizes the Randićmatrix. Therefore the here defined functional
matrix enables us searching for cases where the functional matrix can encode structural infor-
mation of graphs more uniquely than in case using the Randićmatrix only, see [6].

Solving Eq 3, i.e., computing PG

Mg;f
ij

ðzÞ ¼ 0, we determine the non-zero roots

R ∍ z
M

g;f
ij

1 ; z
M

g;f
ij

2 ; . . . ; z
M

g;f
ij

k .
In order to compare the new results with previous ones, we define as in [4] straightforwardly

the following graph measures based on the zeros of ðMg;f
ij Þi;j:

Mg;f
1 ðGÞ≔ jzM

g;f
ij

1 j þ jzM
g;f
ij

2 j þ � � � þ jzM
g;f
ij

k j; ð12Þ

Mg;f
2 ðGÞ≔

ffiffiffiffiffiffiffiffiffiffiffi
jzM

g;f
ij

1 j
r

þ
ffiffiffiffiffiffiffiffiffiffiffi
jzM

g;f
ij

2 j
r

þ � � � þ
ffiffiffiffiffiffiffiffiffiffiffi
jzM

g;f
ij

k j
r

; ð13Þ

and

Mg;f
3 ðGÞ≔ jzM

g;f
ij

1 j � log ðjzM
g;f
ij

1 jÞ þ jzM
g;f
ij

2 j � log ðjzM
g;f
ij

2 jÞ

þ � � � þ jzM
g;f
ij

k j � log ðjzM
g;f
ij

k jÞ:
ð14Þ

Numerical Results
To interpret the numerical results, we start with giving some technical preliminaries. Here we
describe how we generate exhaustively generated trees and graphs. We use the tree classes Ti,
14� i� 19 containing all non-isomorphic tress with i vertices. Ni, 5� i� 9 are the set of all
non-isomorphic graphs with i vertices. The sizes of these classes are depicted in corresponding
tables. As in [6], we generated the graphs by employing the package Nauty by McKay [17]
and implemented the graph measuresMi, 1� i� 3 in R.

Now we start interpreting and discussing concrete numerical results; to do so, we start with

trees. Tables 1–6 show the results when using g = g1 and f = f 1, f 2, f 3. We see thatMg;f
2 given by

the sum of the square roots of the roots of PG

Mg;f
ij

ðzÞ ¼ 0 is highly unique on exhaustively gener-

ated trees. In most of the cases, this measure is fully unique (ndv = 0 and S = 0). Also, it is evi-

dent that the case f = f 2, g = g1 andM
g1 ;f

2

ij corresponds to the Randićmatrix (see Tables 2 and 5

and [6]). We see that the cases g = g1 and f = f 1, f 3 give better results than in [6]. An explanation
for this could be the better coverage of the local topological neighborhood of a vertex by the
information functional f = f 1, f 3. In case of f 3, this seems very plausible as f 3 captures the full
neighborhood of each vertex by using j-spheres [12]. In summary, all graph measures are
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highly unique on the chosen graph classes by using g = g1 and f = f 1, f 2, f 3. However the results

are even more striking when considering Tables 7–18. We see that the measuresMg;f
1 �Mg;f

3

are more unique when using g = g2 and f = f 1, f 2, f 3. It seems that g = g2 encodes/spreads its val-
ues more efficiently. This corresponds to an earlier finding due to Balaban et al. [18] where the
descriptor T ¼ ffiffiffiffi

I1
p þ ffiffiffiffi

I2
p þ � � � þ ffiffiffiffi

In
p

was found to be highly unique; I1, . . ., In are topological
indices. To study further details, see [18]. In this light, the zeros of the graph polynomial given
by Eq 1 can be interpreted as structural graph descriptors (or topological indices). In particular,

we observe the high uniqueness ofMg;f
1 �Mg;f

3 when considering g = g2, g = g3 and the graph

Table 1. Exhaustively generated sets of non-isomorphic trees. jT14j = 3159, jT15j = 7741, jT16j = 19320, jT17j = 48629. Here we used f = f 1, g = g1 and
Mg1 ;f

1

ij .

T14 T15 T16 T17

Measure ndv S ndv S ndv S ndv S

Mg;f
1

6 0.9981 6 0.9992 12 0.9993 22 0.9995

Mg;f
2

0 1,0000 0 1,0000 0 1,0000 0 1,0000

Mg;f
3

0 1,0000 4 0.9994 8 0.9995 8 0.9998

doi:10.1371/journal.pone.0139265.t001

Table 4. Exhaustively generated sets of non-isomorphic trees. jT18j = 123867, jT19j = 317955. Here we used f = f 1, g = g1 andMg1 ;f
1

ij .

T18 T19

Measure ndv S ndv S

Mg;f
1

42 0.9996 68 0.9997

Mg;f
2

0 1,0000 0 1,0000

Mg;f
3

10 0.9999 24 0.9999

doi:10.1371/journal.pone.0139265.t004

Table 3. Exhaustively generated sets of non-isomorphic trees. jT14j = 3159, jT15j = 7741, jT16j = 19320, jT17j = 48629. Here we used f = f 3, g = g1 and
Mg1 ;f

3

ij .

T14 T15 T16 T17

Measure ndv S ndv S ndv S ndv S

Mg;f
1

0 1.0000 0 1.0000 0 1.0000 0 1.0000

Mg;f
2

0 1.0000 0 1.0000 0 1.0000 0 1.0000

Mg;f
3

0 1.0000 0 1.0000 0 1.0000 0 1.0000

doi:10.1371/journal.pone.0139265.t003

Table 2. Exhaustively generated sets of non-isomorphic trees. jT14j = 3159, jT15j = 7741, jT16j = 19320, jT17j = 48629. Here we used f = f 2, g = g1 and
Mg1 ;f

2

ij .

T14 T15 T16 T17

Measure ndv S ndv S ndv S ndv S

Mg;f
1

30 0,9905 62 0,9919 126 0,9934 228 0,9953

Mg;f
2

0 1,0000 0 1,0000 2 0,9998 0 1,0000

Mg;f
3

2 0,9993 4 0,9994 8 0,9995 8 0,9998

doi:10.1371/journal.pone.0139265.t002
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Table 5. Exhaustively generated sets of non-isomorphic trees. jT18j = 123867, jT19j = 317955. Here we used f = f 2, g = g1 andMg1 ;f
2

ij .

T18 T19

Measure ndv S ndv S

Mg;f
1

528 0,9957 693 0,9978

Mg;f
2

8 0,9999 0 1,0000

Mg;f
3

14 0,9998 40 0,9998742

doi:10.1371/journal.pone.0139265.t005

Table 6. Exhaustively generated sets of non-isomorphic trees. jT18j = 123867, jT19j = 317955. Here we used f = f 3, g = g1 andMg1 ;f
3

ij .

T18 T19

Measure ndv S ndv S

Mg;f
1

0 1.0000 0 1.0000

Mg;f
2

0 1.0000 0 1.0000

Mg;f
3

0 1.0000 0 1.0000

doi:10.1371/journal.pone.0139265.t006

Table 7. Exhaustively generated sets of non-isomorphic trees. jT14j = 3159, jT15j = 7741, jT16j = 19320, jT17j = 48629. Here we used f = f 1, g = g2 and
Mg2 ;f

1

ij .

T14 T15 T16 T17

Measure ndv S ndv S ndv S ndv S

Mg;f
1

0 1.0000 0 1.0000 0 1.0000 0 1.0000

Mg;f
2

0 1.0000 0 1.0000 0 1.0000 0 1.0000

Mg;f
3

0 1.0000 0 1.0000 0 1.0000 0 1.0000

doi:10.1371/journal.pone.0139265.t007

Table 8. Exhaustively generated sets of non-isomorphic trees. jT14j = 3159, jT15j = 7741, jT16j = 19320, jT17j = 48629. Here we used f = f 2, g = g2 and
Mg2 ;f

2

ij .

T14 T15 T16 T17

Measure ndv S ndv S ndv S ndv S

Mg;f
1

0 1.0000 0 1.0000 0 1.0000 0 1.0000

Mg;f
2

0 1.0000 0 1.0000 0 1.0000 0 1.0000

Mg;f
3

0 1.0000 0 1.0000 0 1.0000 0 1.0000

doi:10.1371/journal.pone.0139265.t008

Table 9. Exhaustively generated sets of non-isomorphic trees. jT14j = 3159, jT15j = 7741, jT16j = 19320, jT17j = 48629. Here we used f = f 3, g = g3 and
Mg3 ;f

3

ij .

T14 T15 T16 T17

Measure ndv S ndv S ndv S ndv S

Mg;f
1

0 1.0000 0 1.0000 0 1.0000 0 1.0000

Mg;f
2

0 1.0000 0 1.0000 0 1.0000 0 1.0000

Mg;f
3

0 1.0000 0 1.0000 0 1.0000 0 1.0000

doi:10.1371/journal.pone.0139265.t009
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Table 10. Exhaustively generated sets of non-isomorphic trees. jT18j = 123867, jT19j = 317955. Here we used f = f 1, g = g2 andMg2 ;f
1

ij .

T18 T19

Measure ndv S ndv S

Mg;f
1

4 0.9987 2 0.9993

Mg;f
2

0 1.0000 0 1.0000

Mg;f
3

0 1.0000 0 1.0000

doi:10.1371/journal.pone.0139265.t010

Table 11. Exhaustively generated sets of non-isomorphic trees. jT18j = 123867, jT19j = 317955. Here we used f = f 2, g = g2 andMg2 ;f
2

ij .

T18 T19

Measure ndv S ndv S

Mg;f
1

0 1.0000 0 1.0000

Mg;f
2

0 1.0000 0 1.0000

Mg;f
3

0 1.0000000 0 1.0000

doi:10.1371/journal.pone.0139265.t011

Table 12. Exhaustively generated sets of non-isomorphic trees. jT18j = 123867, jT19j = 317955. Here we used f = f 3, g = g2 andMg2 ;f
3

ij .

T18 T19

Measure ndv S ndv S

Mg;f
1

0 1.0000 0 1.0000

Mg;f
2

0 1.0000 0 1.0000

Mg;f
3

0 1.0000 0 1.0000

doi:10.1371/journal.pone.0139265.t012

Table 13. Exhaustively generated sets of non-isomorphic trees. jT14j = 3159, jT15j = 7741, jT16j = 19320, jT17j = 48629. Here we used f = f 1, g = g3 and
Mg3 ;f

1

ij .

T14 T15 T16 T17

Measure ndv S ndv S ndv S ndv S

Mg;f
1

0 1.0000 0 1.0000 0 1.0000 0 1.0000

Mg;f
2

0 1.0000 0 1.0000 0 1.0000 0 1.0000

Mg;f
3

0 1.0000 0 1.0000 0 1.0000 0 1.0000

doi:10.1371/journal.pone.0139265.t013

Table 14. Exhaustively generated sets of non-isomorphic trees. jT14j = 3159, jT15j = 7741, jT16j = 19320, jT17j = 48629. Here we used f = f 2, g = g3 and
Mg3 ;f

2

ij .

T14 T15 T16 T17

Measure ndv S ndv S ndv S ndv S

Mg;f
1

0 1.0000 0 1.0000 0 1.0000 2 0.9993

Mg;f
2

0 1.0000 0 1.0000 0 1.0000 0 1.0000

Mg;f
3

0 1.0000 0 1.0000 0 1.0000 0 1.0000

doi:10.1371/journal.pone.0139265.t014
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classes T18 and T19. Also note that T19 contains more than 300.000 connected graphs with 19
vertices each. Clearly, these results outperform the ones obtained in [6].

As to the graphs, we look at Tables 19–21. We see that the results are shown for g = g1 and f
= f 1, f 2, f 3. The results for g = g2 and g = g3 are very similar and therefore they are not shown.
We emphasize that most of the obtained results are much better than the ones in [6]. In this

paper, the lowest ndv-value for N9 achieved by usingM
g;f
2 equals 8 (see Table 20); that means

99.9996% out of 261080 graphs could be discriminated uniquely. This is a striking result and
outperforms all earlier results done by Dehmer et al. and co-workers, see, [4, 6, 19–22].

Table 17. Exhaustively generated sets of non-isomorphic trees. jT18j = 123867, jT19j = 317955. Here we used f = f 2, g = g3 andMg3 ;f
2

ij .

T18 T19

Measure ndv S ndv S

Mg;f
1

10 0.9968 24 0.9924

Mg;f
2

0 1.0000 0 1.0000

Mg;f
3

2 0.9993 2 0.9993

doi:10.1371/journal.pone.0139265.t017

Table 16. Exhaustively generated sets of non-isomorphic trees. jT18j = 123867, jT19j = 317955. Here we used f = f 1, g = g3 andMg3 ;f
1

ij .

T18 T19

Measure ndv S ndv S

Mg;f
1

0 1.0000 0 1.0000

Mg;f
2

0 1.0000 0 1.0000

Mg;f
3

0 1.0000 0 1.0000

doi:10.1371/journal.pone.0139265.t016

Table 15. Exhaustively generated sets of non-isomorphic trees. jT14j = 3159, jT15j = 7741, jT16j = 19320, jT17j = 48629. Here we used f = f 3, g = g3 and
Mg3 ;f

3

ij .

T14 T15 T16 T17

Measure ndv S ndv S ndv S ndv S

Mg;f
1

0 1.000000 0 1.000 0 1.0000 0 1.0000

Mg;f
2

0 1.0000 0 1.0000 0 1.0000 0 1.0000

Mg;f
3

0 1.0000 0 1.0000 0 1.0000 0 1.0000

doi:10.1371/journal.pone.0139265.t015

Table 18. Exhaustively generated sets of non-isomorphic trees. jT18j = 123867, jT19j = 317955. Here we used f = f 3, g = g3 andMg3 ;f
3

ij .

T18 T19

Measure ndv S ndv S

Mg;f
1

0 1.0000 0 1.0000

Mg;f
2

0 1.0000 0 1.0000

Mg;f
3

0 1.0000 0 1.0000

doi:10.1371/journal.pone.0139265.t018
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In comparison, the lowest ndv-value for N9 equals 126 which has been achieved in [6] by

using the entropy-like measureMg;f
3 . Finally, we see that the results we have obtained in this

paper are in parts slightly better and outperform the previous approach by using the Randić
matrix.

Conclusion
In this paper, we generalized the work done by Dehmer et al. [6]. In [6], the eigenvalues of the
Randićmatrix have been used to define new quantitative network measures. A result of this
work [6] was the high discrimination power of the measures on exhaustively generated net-
works. Note that the definition of Randićmatrix comes from the famous Randić index [23, 24],
from which some new invariants have been introduced, such as the Randić spectral [25] and
the Randić energy [26].

Based on the construction of the functional matrix (see Eq 2), we have expected that the
here proposed approach may be useful to discriminate graphs more efficiently than by using
earlier methods, see, e.g., [4, 6]. From a mathematical point of view, this seems plausible as the
involved information functionals f 1, . . ., f 3 encode structural information differently. In partic-
ular, f 3 captures the full topological neighborhood of a vertex and, hence, it encodes structural

Table 20. Exhaustively generated sets of non-isomorphic graphs. jN6j = 112, jN7j = 853, jN8j = 11117, jN9j = 261080. Here we used f = f 2, g = g1 and
Mg1 ;f

2

ij .

N5 N6 N7 N8 N9

Measure ndv S ndv S ndv S ndv S ndv S

Mg;f
1

6 0.7142 13 0.8839 33 0.9613 71 0.9936 272 0.9989

Mg;f
2

0 1.0000 0 1.0000 4 0.9953 13 0.9988 103 0.9996

Mg;f
3

2 0.9047 0 1.0000 8 0.9906 23 0.9979 183 0.9992

doi:10.1371/journal.pone.0139265.t020

Table 19. Exhaustively generated sets of non-isomorphic graphs. jN6j = 112, jN7j = 853, jN8j = 11117, jN9j = 261080. Here we used f = f 1, g = g1 and
Mg1 ;f

1

ij .

N5 N6 N7 N8 N9

Measure ndv S ndv S ndv S ndv S ndv S

Mg;f
1

0 1.0000 5 0.9553 18 0.9788 408 0.9633 13305 0.9490

Mg;f
2

0 1.0000 0 1.0000 2 0.9976 181 0.9837 6668 0.9744

Mg;f
3

0 1.0000 0 1.0000 4 0.9953 112 0.9899 6392 0.9755

doi:10.1371/journal.pone.0139265.t019

Table 21. Exhaustively generated sets of non-isomorphic graphs. jN6j = 112, jN7j = 853, jN8j = 11117, jN9j = 261080. Here we used f = f 3, g = g1 and
Mg1 ;f

3

ij .

N5 N6 N7 N8 N9

Measure ndv S ndv S ndv S ndv S ndv S

Mg;f
1

0 1.0000 2 0.9821 0 1.0000 4 0.9996 20 0.9999

Mg;f
2

0 1.0000 0 1.0000 0 1.0000 2 0.9998 8 0.9999

Mg;f
3

0 1.0000 0 1.0000 0 1.0000 4 0.9996 18 0.9999

doi:10.1371/journal.pone.0139265.t021
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information more efficiently than f 1. This effect can be seen by the Tables 1–21. On top of that,
the composite functions g1, . . ., g3 may optimize the spread of values of the involved informa-
tion functionals. We therefore conclude that the ability how the final graph measure can dis-
criminate graphs structurally also depends on the composite function g. In this case, evidence
of this statement follows as we defined settings different from the Randićmatrix, i.e., f = f 2, g =

g1 and finallyM
g1 ;f

2

ij .
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