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Abstract
Advances in GPS tracking technologies have allowed for rapid assessment of important

oceanographic regions for seabirds. This allows us to understand seabird distributions, and

the characteristics which determine the success of populations. In many cases, quality

GPS tracking data may not be available; however, long term population monitoring data

may exist. In this study, a method to infer important oceanographic regions for seabirds will

be presented using breeding sooty shearwaters as a case study. This method combines a

popular machine learning algorithm (generalized boosted regression modeling), geographic

information systems, long-term ecological data and open access oceanographic datasets.

Time series of chick size and harvest index data derived from a long term dataset of Maori

‘muttonbirder’ diaries were obtained and used as response variables in a gridded spatial

model. It was found that areas of the sub-Antarctic water region best capture the variation in

the chick size data. Oceanographic features including wind speed and charnock (a derived

variable representing ocean surface roughness) came out as top predictor variables in

these models. Previously collected GPS data demonstrates that these regions are used as

“flyways” by sooty shearwaters during the breeding season. It is therefore likely that wind

speeds in these flyways affect the ability of sooty shearwaters to provision for their chicks

due to changes in flight dynamics. This approach was designed to utilize machine learning

methodology but can also be implemented with other statistical algorithms. Furthermore,

these methods can be applied to any long term time series of population data to identify

important regions for a species of interest.

Introduction
In the last two decades, technological advances have led to increased efficiency and lower costs
of GPS units which allow scientists to track species for varying lengths of time in order to iden-
tify regions of importance [1–3]. These data are often used for predicting distributions which
are used in conservation management. The deployment of GPS units comes with several down-
sides including significant financial cost, and detrimental effects on the animals being studied
[4–6]. In many other cases, GPS data are sparse, covering only a limited temporal and spatial
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scale, with few tagged individuals [4]. In species where years of monitoring data may be avail-
able, it may be possible to overcome some of these downsides [7]. The sooty shearwater (Puffi-
nus griseus) is a species of seabird that has a long term population dataset, with sparse GPS
tracking data. In the Pacific, sooty shearwaters breed in New Zealand from October—April
[8,9]. Sooty shearwaters are regarded as the most abundant bird in the Southern Ocean with a
breeding population in the millions [10]. For many generations, chicks have been harvested by
local Maori who have maintained personal diaries of their catch [11]. These diaries represent a
long-term dataset of the numbers of chicks harvested per night for every year, and overall
chick quality [12–14]. The harvest is split into two seasons, the nanao (April, when harvesters
will pull chicks from burrows), and the rama (May, when harvesters collect nearly fledged
chicks from the surface of the colony). Indices of both periods of the hunt and chick size were
derived from these diaries [15].

The quantity of chicks available to be harvested could be determined by a number of inter-
acting factors including the number and condition of adults returning to breed (and thus
oceanographic conditions in non-breeding areas; [16]), and oceanographic conditions in the
foraging regions during the breeding season [17]. The quality of chicks is most likely influenced
by factors during the breeding season including the quantity and quality of prey items fed to
chicks [18], and the duration of foraging trips by adults [19,20]; both of these measures can be
impacted by physical ocean conditions [20,21]. It is therefore possible to determine the oceano-
graphic regions that are important for these indices by examining specific oceanographic fac-
tors in a systematic fashion across a region.

Top marine predators like the Procellariiform seabirds are affected by physical ocean
parameters because they rely on wind for dynamic soaring [20,22], and ocean processes to
aggregate prey or increase prey availability [23]. Shaffer et al. [24] tracked 20 sooty shearwaters
using geolocation archival (GLS) tags over two seasons and found that adults forage on long,
offshore trips that lasted on average ~14 days in areas that are defined by strong upwelling and
overlap with general patterns of myctophid distribution [22]. Short trips averages 2–4 days and
were limited to coastal New Zealand waters. Because adult sooty shearwaters use relatively
unchanging regions where they forage (core foraging areas), it is possible to quantify and test
any oceanographic parameters which may affect harvest indices over time.

To this regard, it is possible to combine spatial techniques with the long-term datasets derived
by Humphries [25] to infer potential regions of importance, which can be then ground-truthed
using tracking data. Other studies have used a-spatial data to examine the potential distribution
of seabirds [26–28], however all three methods involve examining distance to colony as either a
ground-truthing device, or the primary factor for deriving distributional information. Either of
these methods would be limiting for a pelagic seabird such as the sooty shearwater, which can
travel thousands of kilometers from colonies while foraging during the breeding season.

This study aimed to test if a gridded spatial approach could be applied to a-spatial (popula-
tion) data in order to identify regions of importance for a pelagic seabird during the breeding
season. We also queried the models to examine potential mechanisms of behavior and distribu-
tion control. The methods presented in this study may be applied to any species for which long
term ecological data exist, and blends long term ecological research with ecological niche
modeling techniques.

Materials and Methods

Data
Archival geolocation (GLS) tag points were collected from 20 sooty shearwaters on Whenua
Hou (Codfish Island), New Zealand, and Mana Island in 2004–2006 [24,29]. Each bird was
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captured from its burrow at night and fitted with a 6g GLS tag, representing<1.5% of the
bird’s weight. Only one adult bird per burrow was fitted with a tag to limit the impacts on
chicks[24]. However, for the purposes of this study, data were limited to birds tagged and
recaptured on Codfish Island (n = 15), and filtered those points to represent only the breeding
season (i.e., GLS points beginning on Nov 1st), and the approximate time which each individ-
ual bird left the colony to begin a Northward migration (approximately varies fromMarch 31
to April 30). Of those birds, 7 were tracked through the 2004–2005 season and 8 through the
2005–2006 season. Offshore trips for birds were relatively consistent between years with most
birds visiting the Southwest or Southeast foraging regions. One anomalous bird was removed
from the analysis, because this bird left the colony early in the 2004–2005 breeding season and
was likely a failed breeder. We therefore limited the spatial extent of our analysis to the extent
of the GLS tracking data for the breeding season (Fig 1).

Kernel utilization polygons derived from the densities of GLS tracking points were calcu-
lated from GLS data for March 2005 and 2006 using the Kernel Density tool in ArcGIS 10.0
[30]. Kernel density analysis is used commonly to delineate important regions for birds with
GLS tracking data [31–34]. Generally, regions where GLS tracking points are dense are
assumed to be important for those individuals being tracked as it is where they spend the
majority of their time, while regions with fewer GLS tracking points are considered ‘transit
zones’[35]. That is, areas where birds could be located, but may not be foraging. The 95% den-
sity estimate was chosen in order to remove the effect of any outlying occurrences (i.e., points
that occur away from the main aggregation that may occur and do not represent the majority
of the population) and defined as the transit zone. The 50% kernel density polygon was also
calculated and defined as the core foraging region [35].

Harvest index data were obtained from Humphries [25] for 1979 to 2010 to match the tempo-
ral resolution of the environmental data obtained. Harvest indices represented chick size, and
mean tallies of birds harvested during the nanao (early) and rama (late) periods of the harvest.
The harvest data were accessible due to a long-term partnership with the Rakiura Maori of New
Zealand. The integration of science and traditional sources of knowledge are important as it
builds trust between scientists and local committees, and allows for the creation of archived data
which can be mined by future generations [36].

Fig 1. Map showing GLS data from Shaffer et al. (2006) for GLS birds tracked fromWhenua Hou/
Codfish Island (starred on the map) from January 2005 to March 2006. The 95% kernel density polygon
for all data is represented by the largest polygon with a white background, while monthly 50% kernel densities
for the offshore regions (offshore core foraging areas), and the 50% kernel density polygon for the nearshore
region are represented by blue hues. The sub-Tropical front (STF), sub-Antarctic front (SAF), and Polar front
(PF) are also represented on the map. The grid in the background represents the resolution of the
environmental data used for modeling.

doi:10.1371/journal.pone.0137241.g001
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Open access environmental data were downloaded from the European Centre for Medium-
Range Weather Forecasts (ECMWF) Interim analysis project (https://apps.ecmwf.int) at a spa-
tial resolution of 0.75 x 0.75 degrees for the years 1979 to the present (all available years from
the ERA interim analysis project). These data represent the output from numerical models of
global climate used for weather forecasting. In general they are calculated via a series of formu-
lae that relate variables to satellite derived global temperature patterns. It is possible that
ECMWF variables are correlated because in some cases one product is a result of the relation-
ship between another product and some constant value (e.g., wind speed derived from surface
pressure). A list of the environmental data layers used in this analysis can be found in Table 1.
Monthly climatologies of the variables were downloaded from 1979 to 2010 for use in oceano-
graphic comparisons over a long time scale. Daily resolution climatologies were also down-
loaded from the ECMWF output to temporally match GLS data with the environmental
variables. Data were processed in ArcGIS 10.0 (www.esri.com)[30], program R version 3.0.2
[37], and NCL version 5.1.2 [38]. Scale (i.e. temporal and spatial) of the data used can have vast
effects on model inference and is not commonly addressed in spatial modeling studies [39]. I
opted to use monthly resolution environmental data in this case because the harvest data used
also represent monthly values. For example, rama indices are typically representative of April/
May, while nanao indices are representative of March/April. I have dealt with spatial scale in
this study by ensuring the resolution of all environmental data was identical. Sensitivity of
these results to changing scale is not possible as long-term reanalysis projects such as ECMWF
do not exist for the time period studied here.

Ethics statement
All protocols used by Shaffer et al. were approved by the Southland andWellington Conser-
vancies of the Department of Conservation, kai tiaki roopu, and the Institutional Animal Care
and use Committees at UC Santa Cruz. Land access for Shaffer et al was granted by the Depart-
ment of Conservation.

Predictive analysis
Predictive analyses of data were performed using generalized boosted regression models
(boosted regression trees/’gbm.step’; [40]) in R [37]. I opted for a machine learning algorithm

Table 1. European Center for MediumRangeWeather Forecasting (ECMWF; https://apps.ecmwf.int/datasets) data downloaded for use in model-
ling exercises.

Variable Code Units Explanation

Charnock parameter CHNK - Constant of atmospheric stress at ocean surface (Charnock 1955)

High cloud cover HCC % Cloud cover at top level of ECMWF models

Low cloud cover LCC % Cloud cover at lowest level of ECMWF models

Medium cloud cover MCC % Cloud cover at mid-level of ECMWF models

Surface pressure SP Pa Atmospheric pressure at surface of the ocean

Temperature at 2 meters depth T2M C Ocean temperature at two meters depth

Total column water vapor TCWV kg*m-2 Vertically integrated total mass of water vapor

Sea surface temperature SST C Temperature at top microlayer of ocean

Significant wave height SWH m Combined wind wave and swell height

Sea surface temperature gradient SSTG % Percent change of sea surface temperature

Wind speed WSPD m/s Wind speed from 0 to 10 m above surface of the ocean

Wind direction WDIR - Classified compass bearing of wind direction (16 classes)

Wind differential WDIF Deg Difference between direction of travel and wind bearing

doi:10.1371/journal.pone.0137241.t001
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because they are able to predict outcomes better than linear methods as they use the data to
build predictions as opposed to forcing a model fit [41]. Also, they allow for the integration of
many predictor variables in order to overcome biases when taking parsimonious (e.g., AIC)
approaches. However, this method could be implemented using other statistical techniques
such as generalized linear models or generalized additive models. Other implementations of
generalized boosted regression modeling exist in Python, through the “scikit-learn” package
[42], and Salford Systems predictive modeling suite [43], however R was chosen as it more eas-
ily integrates spatial data than Python, and is an open access platform (Salford systems predic-
tive modeling suite is not, although a limited 30-day free trial can be downloaded). Moreover,
scripts written in R can be easily shared and downloaded through web services such as
“GitHub”making them more accessible to the general public, and also allow for smoother
workflow.). Generalized boosted regression modelling is a machine learning algorithm that
builds a series of regression trees, then minimizes error through cross validation tests. Due to
the nature of cross validation and regression trees, models avoid over-fitting and thus allow for
more flexibility in the selection of environmental variables to include in the model [40,44].
Model assessment in all cases was performed by way of cross-validation. Although machine
learning techniques offer powerful predictive output [41], relationships between the response
variable and explanatory variables are often difficult to interpret. In order to alleviate this, the
response variables were plotted against significant explanatory variables and examined in linear
space for basic interpretation as mechanistic relationships were not the primary goal of this
study.

Spatial model of harvest indices
The conceptual framework behind this method is derived from commonly used presence/
absence spatial modeling techniques. In these models, the relationships between species occur-
rences and environmental variables are extrapolated to a regular grid in order to determine the
probability of an organism occurring within a grid cell. That is, the ecological niche of the
organism is quantified and then projected on a map. In the case of this study, occurrence data
is being replaced with population index data, extrapolating the relationship to grid cells within
the study region (as defined in Fig 1), and then examining where the “best”models (i.e., pixels
with highest assessment values) occur. In other words, we are capturing the ecological niche of
the population data and then projecting it in space.

Monthly mean values of the environmental variables for March from 1979 to 2010 were
used in order to represent the feeding period which would most influence chick size during the
harvest (this is because adults have been reported to leave in early April; [8]). Personal observa-
tions from the 2013 breeding season also suggest that March is important in chick growth and
may represent a threshold month by which birds are forced to either abandon or continue feed-
ing chicks.

Generalized boosted regression models were run with the same settings for every 0.75° x
0.75° grid cell, and for each cell, root mean squared error of the model (calculated by leave-
one-out cross validation) was mapped. Although only few data (n = 31 years) and 12 predic-
tors, leave-one-out cross-validation was also used to measure error loss across the boosting
process to ensure over-fitting was not occurring. These results were then mapped in relation to
frontal regions, which were found to be important foraging zones for sooty shearwaters [24].

Comparing indices to oceanographic variables
GLS data fromMarch 2005 and 2006 were used to compute both the nearshore and offshore
core foraging areas for March (50% kernel density polygons), corresponding to the time when
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chicks are at their peak weight. Nearshore and offshore areas were calculated because of a
hypothesized dual foraging strategy that may be implemented by sooty shearwaters during the
breeding season [45]. Spearman correlation tests were performed to measure the correlation
and significance between each of the mean oceanographic parameters for the core foraging
areas, as well as for any other regions highlighted as important by spatial models. Spearman
correlations were used to calculate correlation coefficients for non-linear relationships in the
data with a bonferroni corrected p-value for repeated hypothesis testing. The bonferroni cor-
rected p-value is a conservative measure used to limit the number of significant statistical rela-
tionships that might be noted simply due to chance when testing relationships between one
response and multiple explanatory variables. In machine learning methods, p-values are typi-
cally not used for mechanistic inference [41], but we use them here to highlight particularly
strong relationships between the response and predictor variables.

Results

Spatial modeling of harvest indices
Maps of the root mean squared error of the chick size, nanao and rama indices (Fig 2A, 2B and
2C respectively) show the areas where oceanographic conditions in March best explain varia-
tion in the datasets. In all three cases, maps are moderately patchy, with areas of low root mean
squared error occurring to the North east of New Zealand and even off the South coast of Aus-
tralia. The map of chick size model assessments has the most pronounced patterns, showing
two regions to the Southwest and Southeast of New Zealand with root mean squared errors of
0.0215–0.0234. The region to the Southeast falls in the sub-Antarctic water area between the
sub-Tropical and sub-Antarctic fronts, while the Southwestern region falls directly on the
Polar front. The latter shows some overlap with the 50% kernel densities in the Southwestern
areas (Fig 1). There is also a region around the North Island of New Zealand, and two regions
to the far-east and to the northeast (above the sub-Tropical front) with root mean squared
errors between 0.0234 and 0.0252. The nanao patterns are best explained in the eastern area of
the sub-Antarctic front and Polar front regions and directly off the South coast of Australia
with root mean squared errors for 0.1369–0.1613. Patchy areas of low root mean squared error
are found in the Northern parts of the study area with values from 0.1491–0.1735. Of interest
for the nanao is a small area directly around Stewart Island, New Zealand with root mean
squared error of 0.1491–0.1613, where all of the colonies used to calculate the indices are
found. Patterns in the rama are best explained in two regions; South of the Australia coast and
east of New Zealand along the sub-Tropical front with root mean squared errors between
0.1557 and 0.1783.

Because the most pronounced patterns are found in Fig 2A (for chick size), most of the anal-
ysis focuses on this feature. Also, due to the fact that most of the birds from the GLS data trav-
elled to the Southeast region [24] and because these areas are regions that are easily reached by
sooty shearwaters during breeding seasons foraging trips, further focus was placed on the
region of the sub-Antarctic water where the chick size indices are best explained.

Oceanographic relationships with harvest indices
Spearman correlations for the chick size index in the sub-Antarctic water region show signifi-
cant positive relationships with charnock parameter, significant wave height and wind speed
(correlation coefficients of 0.57, 0.56 and 0.55 respectively). When values of atmospheric stress
(charnock) in the sub-Antarctic region are high (between 0.0175 and 0.018; due to higher wind
speeds, strong currents and high waves), mean chick size index values are between 0.475 and
0.525. These high chick size index values are also associated with mean wave height> 4.0m
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and wind speeds> 11 m/s. Lower chick size indices between 0.425 and 0.45 are associated with
charnock values between 0.0155 and 0.016, wind speeds< 9m/s and waves<3.5m in height in
the sub-Antarctic region. These relationships are presented in sample partial dependence plots
in S1 Fig to demonstrate some of the output possible when using generalized boosted regres-
sion models. By contrast, chick size shows a significant negative relationship with low cloud
cover, with lower chick size indices (<0.45) being associated with>73% low cloud cover
(Table 2; Fig 3; correlation coefficient of -0.57). A significant negative correlation also existed
between chick size index in the southeast core foraging region and total column water vapor
(correlation coefficient of -0.51). In the sub-Antarctic water region, the nanao index had a neg-
ative significant correlation to sea surface temperature (-0.53), while in the core foraging region
it had a negative significant correlation to significant wave height (-0.51; Table 2). However, it

Fig 2. Mapped root mean squared error for generalized boosted regression models in the study area. Areas with the lowest root mean squared error
represent regions where oceanographic factors for the month of March from 1979–2010 best capture the variability in the chicksize (a), nanao (b), and rama
(c) indices from Humphries [25]. Frontal regions are depicted to demonstrate the boundaries of Southern Ocean zones.

doi:10.1371/journal.pone.0137241.g002
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is important to note here that evidence to support the nanao harvest index was low due to lack
of strong correlations between diaries therefore it is possible these relationships are spurious.
No significant relationships were found between the rama and any of the oceanographic fea-
tures in the three areas of interest, nor were there any significant relationships in the New Zea-
land coastal waters.

Discussion
Typically, GPS tracking data are used to examine where top predators forage during the breed-
ing season. This is a straight-forward and direct method of obtaining important information
about distribution. However, in many cases, GPS data may not be readily accessible, and there
are many implications on the impacts of using tagging devices on animals [4–6]. This study
tested the use of a-spatial data as a way of inferring important oceanographic regions or condi-
tions for seabirds which could help limit the use of invasive GPS tags while promoting long-
term ecological research. With long-term datasets, these methods can be applied in order to
supplement information on seabird distribution when tracking data are not available, and
build baseline population data for long-term monitoring of ocean health.

Spatial models of harvest indices
The spatial models of the harvest indices show patches across the entire study area where the
suite of environmental factors used best capture variation in the harvest indices. For many of
these regions, it is likely that the relationship with the indices is due to correlation, and oceano-
graphic conditions do not directly influence the indices from a mechanistic perspective. For
example, according to GLS tracking data, patches off the southern coast of Australia with low
RMSE values do not correspond to areas where sooty shearwaters visit on foraging trips during
the breeding season. Another large patch of low RMSE values to the far east of the sub-Antarc-
tic water region has little overlap with GLS data, save for a few locations to the southwest of the
patch along the sub-Antarctic front. The patch that lies along the sub-Tropical front in the East
of the study region shows some overlap with GLS locations, however these are locations from

Table 2. Spearman correlations for Marchmean values of oceanographic variables from 1979–2010 versus three harvest indices within each of
the identified oceanographic regions that are important for sooty shearwaters. Negative directionality in a relationship is shown by a minus sign in front
of the correlation coefficient.

sub-Antarctic water Core Foraging Area New Zealand coastal

Variable chicksize rama nanao chicksize Rama nanao chicksize rama nanao

Charnock parameter 0.57* 0.32 0.41 0.37 0.17 0.27 0.4 -0.04 -0.03

High cloud cover 0.27 -0.04 0.13 0.14 0.09 -0.08 0.09 -0.1 0.19

Low cloud cover -0.57* -0.32 -0.18 -0.36 -0.24 -0.05 -0.24 0.22 0.13

Medium cloud cover 0.25 0.1 0.12 0.28 0.3 0.15 0.07 0.1 -0.11

Surface pressure -0.23 -0.13 -0.17 -0.4 -0.32 -0.28 -0.08 -0.11 0.01

Sea surface temperature -0.47 -0.24 -0.53* -0.31 -0.28 -0.48 -0.1 0.22 -0.05

Sea surface temperature gradient -0.26 0.03 0.15 -0.42 -0.3 -0.37 0.39 0.11 0.34

Significant wave height 0.56* 0.22 0.37 -0.31 -0.27 -0.51* 0.34 -0.03 -0.04

Temperature at 2m depth -0.42 -0.2 -0.46 0.35 0.19 0.27 -0.01 0.17 0.01

Total column water vapour -0.19 -0.17 -0.24 -0.51* -0.15 -0.45 0.11 0.23 -0.01

Wind speed 0.55* 0.29 0.37 0.26 0.2 0.2 0.34 -0.03 -0.04

* Spearman correlation is significant with bonferroni corrected p < 0.0045

doi:10.1371/journal.pone.0137241.t002
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birds that were departing the breeding islands on the migration northwards, so this is not likely
an area that would affect chick quality. A small patch around the North Island of New Zealand
could be plausibly visited by birds fromWhenua Hou (Codfish Island), however the majority

Fig 3. Linear relationships with oceanographic variables significantly correlated with the chick size index in the sub-Antarctic water region as per
Table 2.

doi:10.1371/journal.pone.0137241.g003
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of the GLS data suggest these birds tend to stay more around the South Island. The only region
that overlaps well with the GLS data is the patch to the Southwest, which lies along the Polar
front, similar to where adults foraged during the 2004/2005 and 2005/2006 breeding seasons.
The large patch of low RMSE values to the Southeast of New Zealand is also of interest to us
because this is a region that birds must pass through in order to arrive at the Southeast foraging
area according to the Shaffer et al. (2006) data. If conditions in this region do not facilitate the
travel of birds from the colony to the foraging site, then birds will invariably take longer on full
trips, which would have detrimental effects on quality of chicks.

The regions which best describe the variation in the nanao harvest index (Fig 2B), but do
not coincide with the distribution of sooty shearwater adults (based on the GLS data) are along
the Southern Australian coast, and patches to the North of the study area in Sub-Tropical
waters. One area of note is the patch of water immediately surrounding Stewart Island, which
has low RMSE values for the nanao however, GLS data seem to suggest birds forage more fre-
quently off of the South Island, and in the Southeast core foraging regions, at least for the 2004/
2005 and 2005/2006 breeding seasons [24]. The patch of low RMSE values to the Southeast
region however overlaps with the Southeast core foraging area based on the GLS data. The
suite of oceanographic factors in this case could represent potential factors that influence the
types of prey birds are bringing back to their young. For example, sea surface temperature shifts
in this region may indicate a change in the strength or position of the Polar or sub-Antarctic
fronts, which would have effects on how certain prey items would be distributed within a
region [46]. Lower quality food in the adult foraging regions could lead to longer periods of
time at sea [45], or reduced quality of food returned to the young, which would lead to
increased chick mortality.

There were few regions which best explained the variation in the rama index data. Some
patches of low RMSE were noted in the Northern parts of the study region, and another area off
the South coast of Australia, which overlapped with the same region for the nanao index. The
most obvious patch for the rama was the patch east of New Zealand along the sub-Tropical front,
which overlaps heavily with good model results from the chick size index. This area overlaps
with GLS data from birds that were heading North at the end of the 2004/2005 breeding season.

Oceanographic drivers of the harvest indices
Based on results from the spatial models, the sub-Antarctic water region south east of New
Zealand was included in the investigation into the oceanographic controllers of the harvest
indices. For the chick size index, there was a significant negative relationship with low cloud
cover that may be due to random correlation as it could be possible that increased low cloud
cover might be indicative of lower wind speeds and does not have any direct consequences on
chick quality. Significant positive correlations were found with variables that may be associated
with how a bird forages at sea (i.e., wind speed, charnock, and wave height). Increased wind
speed or atmospheric stress (i.e., high values of the charnock parameter) may allow birds to fly
faster and more efficiently through the sub-Antarctic water region, which would allow adults
to reach foraging areas faster and return to the colony to feed chicks, thus improving chick
quality over the course of a season. Humphries [25] found that factors which represented tur-
bulence (wind speed, wave height, etc. . .) in the sub-Antarctic water region influence total trip
duration of sooty shearwaters. In more turbulent conditions, birds were able to take shorter
trips, which would directly influence chick quality. It has also been shown in other studies that
procellariiform seabirds are highly dependent on winds for flight [20,22,47].

Within the core foraging area, a negative relationships existed with total column water
vapour. A negative relationship with total column water vapour may be related to the
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relationship with the sea surface temperature in the sub-Antarctic water due to increased tem-
peratures causing more evaporation. Increased atmospheric water vapour causes cloud forma-
tion [48], which would prevent light from reaching the surface of the ocean and could slow
productivity [49]. However, a lagged effect would be expected and therefore the relationship
may simply be a non-causative correlation.

Relationships for both the nanao and rama indices were generally less pronounced in all
regions, with the rama indices showing no significant linear correlations with any oceano-
graphic variable. There could be two reasons for this: 1) the oceanographic variables that
would affect the rama index are not found within the study area. For example, the numbers of
birds available to be harvested may be more affected by conditions in the wintering grounds. 2)
Only conditions for March were examined and because it is likely that certain indices may be
affected by conditions from November–February, patterns were undetectable.

The nanao index shows a negative correlation with sea surface temperature in the sub-Ant-
arctic water region, and with significant wave height in the core foraging area. The negative
relationship with significant wave height is of note because it may be opposite to conventional
thinking, and opposite to the relationship in the sub-Antarctic water region. Humphries [25]
did not find any behavioral relationship between significant wave height in the core foraging
area and total time at sea, and it could therefore be possible that this is a non-causative relation-
ship as an increase in significant wave height would be expected to increase a bird’s ability to
forage because it indicates more turbulent and windy conditions, which would facilitate flight
[47,50] and olfactory search [51–53]. However, Humphries et al. [15] reported that the nanao
index may not be a suitable scale to use due to the lack of correlation between diaries, and
many of these correlations described here may be due to statistical noise.

It is important to note that many of these correlations are low to moderate, with a maximum
r value of 0.57. There could be several things occurring here: 1) The role of only 11 physical ocean-
ographic parameters were examined, and there is the possibility that there are other, unknown
physical factors that have not been included in these models. 2) Biological components of the eco-
system (e.g., primary productivity or zooplankton distribution) have not been included here, but
have been linked to the distribution of sooty shearwaters [29]. 3) Only physical parameters for
March were examined. It is very likely that parameters like the nanao and rama indices are highly
influenced by variables fromNovember to March because they would represent the cumulative
effects of oceanographic systems over the course of the breeding season. It would be reasonable to
assume that the chick size (which is measured in April andMay during the harvest) would be
most affected by conditions during peak chick size inMarch, which may explain the generally
stronger results obtained for this index. 4) We have selected a spatial extent which is limited to the
GLS data used, while sooty shearwaters migrate to Japan, Alaska and California during the non-
breeding season[24]. Because conditions in these regions may affect adult survival (and thus have
impacts on the nanao and rama harvest indieces), we may be omitting important details for the
population indices themselves. However, many of these points do not detract from the method
presented in this study, which has identified a region of importance (sub Antarctic water) in deter-
mining size of chicks, based on a-spatial data.

Data quality and quantity issues
There are several caveats to the data used that must be discussed prior to making conclusions
on potential oceanographic drivers. Firstly, GLS data obtained from Shaffer et al. [24] only rep-
resent a very small subset of birds (n = 14) for part of the 2004/2005 and 2005/2006 breeding
seasons. Although this represented 14 different birds tracked over two seasons, Small sample
sizes like this could limit the statistical integrity of any conclusions [2,4], particularly for a
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species like the sooty shearwater due to its large population size. No more data were available
for these birds so the results must be considered in this regard. Secondly, GLS data were from
one breeding colony (Whenua Hou/Codfish Island). This island was not represented in the
harvest indices used for this analysis however, studies comparing Whenua Hou (Codfish
Island) to the harvesting islands via burrow counts show that population trends are comparable
[12]. Thirdly, oceanographic data used were obtained from model output as opposed to pri-
mary sources (i.e., satellite or direct measurements). Thus, there is a risk of correlation between
variables. However, due to the nature of generalized boosted regression models, it is reasonable
to use correlated variables and still obtain meaningful predictions. This is because decision tree
splits are determined based on the variables which lower the overall variance in the response
data. When two variables are highly correlated, either one of those variables may be selected at
random to explain the variation in the data. As the generalized boosted regression algorithm
iteratively builds more trees, either of the correlated variables may be selected at each step,
which separates the effect of the correlation. Testing of model performance occurs iteratively
using cross-validation to ensure no over-learning is occurring at each step. Adding correlated
variables into a generalized boosted regression model is therefore justifiable when the end
result is predictions. The issue becomes conflated when attempting to disentangle mechanistic
relationships, which is a goal of many ecologists. A traditional way to alleviate problems that
may arise is to predict to independent datasets and trim explanatory variables from the models
until the best combination of factors is determined. Another complicated but potentially more
powerful approach would be to focus on predictive accuracy, which may involve the inclusion
of large numbers of predictor variables. In this case, interpretation of mechanisms take into
account many variables and may be more representative of reality [41]. In this case I was lim-
ited by the amount of data available, therefore an exploration into important relationships is
made in a more targeted fashion using simple linear regression.

Conclusions
The method presented in this study can be applied to any study system where long-term moni-
toring data exist in combination with maps of environmental data representative of the same
time span. This type of systematic approach could aid in delineating regions of importance for
species that are either difficult to track (e.g., small shorebirds), or lacking in tracking data. Simi-
larly, this approach could re-inforce any conclusions that are made using only tracking data,
and help to understand driving mechanisms in species distributions. The amount of tracking
and long term monitoring data has been increasing steadily, and this method can increase our
ability to predict important regions for a wide range of species, while limiting over-use of
potentially detrimental tracking technologies.

Supporting Information
S1 Fig. Partial dependence plots of wind speed and significant wave height depicting rela-
tionships between both variables and the partial dependence values of chick size.When par-
tial dependence values are higher, there is a more positive relationship towards higher
predicted values.
(TIF)
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