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Abstract

Objectives

Mesenchymal stem cells derived from human amniotic fluid (hRAFSCs) are a promising
source for cellular therapy, especially for renal disorders, as a subpopulation is derived from
the fetal urinary tract. The purpose of this study was to evaluate if hAFSCs with a renal pro-
genitor phenotype demonstrate a nephroprotective effect in acute ischemia reperfusion (I/
R) model and prevent late stage fibrosis.

Methods

A total of 45 male 12-wk-old Wistar rats were divided into three equal groups;: rats sub-
jected to I/R injury and treated with Chang Medium, rats subjected to I/R injury and treated
with hAFSCs and sham-operated animals. In the first part of this study, hAFSCs that highly
expressed CD24, CD117, SIX2 and PAX2 were isolated and characterized. In the second
part, renal I/R injury was induced in male rats and cellular treatment was performed 6 hours
later via arterial injection. Functional and histological analyses were performed 24 hours,
48 hours and 2 months after treatment using serum creatinine, urine protein to creatinine
ratio, inflammatory and regeneration markers and histomorphometric analysis of the kidney.
Statistical analysis was performed by analysis of variance followed by the Tukey’s test for
multiple comparisons or by nonparametric Kruskal-Wallis followed by Dunn. Statistical sig-
nificance level was defined as p <0.05.
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Results

hAFSCs treatment resulted in significantly reduced serum creatinine level at 24 hours, less
tubular necrosis, less hyaline cast formation, higher proliferation index, less inflammatory
cell infiltration and less myofibroblasts at 48h. The treated group had less fibrosis and pro-
teinuria at 2 months after injury.

Conclusion

hAFSCs contain a renal progenitor cell subpopulation that has a nephroprotective effect
when delivered intra-arterially in rats with renal I/R injury, and reduces interstitial fibrosis on
long term follow-up.

Introduction

Acute kidney injury (AKI) is defined as a rapid and progressive decrease in glomerular filtra-
tion rate following an insult, which leads to a loss of renal function [1, 2]. It is a pathology that
affects neonatal to geriatric patients, present in 2% of all hospitalized patients [3] and up to two
thirds of patients in an ICU setting [4]. Ischemia-reperfusion (I/R) injury remains one of the
leading causes of AKI [5, 6]. Despite current clinical treatment for AKI, some patients remain
dialysis-dependent or develop progressive chronic kidney disease (CKD) necessitating trans-
plantation [7, 8]. Moreover, I/R injury is an inevitable consequence of kidney transplantation
and can induce delayed graft function [9].

The pathophysiology of I/R injury is complex and mainly characterized by proximal tubular
cell damage, loss and inflammation, leading to tissue injury and dysfunction. Prolonged ische-
mia is one of the major contributors to the development of primary kidney graft failure,
delayed graft function and enhanced immunogenicity in kidney transplantation, and has a
major impact on long-term outcome [10-12]. I/R may enhance the expression of MHC mole-
cules in renal epithelium and could thereby trigger allogeneic acute/chronic rejection [13].
Given the shortage of donor organs and usage of marginal donor kidneys for transplantation,
novel treatment options to minimize renal I/R injury are needed [14].

Stem cell-based therapy is a promising approach for kidney regeneration. Mesenchymal
stem cells (MSCs) possess the ability to home to areas of tissue injury due to the local produc-
tion of growth factors and cytokines. An extensive review of the working mechanisms of stem
cells lies beyond the scope of this introduction. Briefly, these cells have been shown to influence
angiogenesis [15], to have immunomodulatory properties [16], to activate the endogenous pro-
genitors and to promote cellular reprogramming [17]. Additionally, stem cells have also anti-
fibrotic, anti-oxidant, anti-inflammatory [18, 19] and anti-apoptotic properties [20, 21].

Several groups have successfully used stem cell therapies in the treatment of AKI in animal
models [15, 20, 22-25]. Administration of MSC has resulted in functional recovery following
cytotoxic [22, 26] and ischemic AKI [16, 24]. MSCs are also known to attenuate acute graft
rejection in the transplanted kidney potentially by modulating reperfusion injury [27-29]. Dif-
ferent tissue sources of SC for the treatment or prevention of renal failure have been investi-
gated including bone marrow [24], adipose tissue [19], cord blood [30] and Wharton’s jelly
[31, 32]. Recently, amniotic fluid stem cells (AFSCs) have been investigated for their regenera-
tive potential [33-40]. AFSCs are fetally derived cells with a broader differentiation capacity
than adult stem cells and higher proliferation rates [33] and they are less likely to have acquired
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genetic mutations [41]. Previous studies have shown that amniotic fluid contains a subpopula-
tion of cells that primarily express renal progenitor markers and are able to differentiate into
podocytes in vitro [42, 43].

The aim of this study was to evaluate whether amniotic fluid derived stem cells with a renal
progenitor phenotype have a nephroprotective effect in I/R injury and can prevent renal fibro-
sis as a late consequence.

Materials and Methods

Isolation, expansion and characterization of stem cells from amniotic
fluid

The Ethics Committee of the UZ Leuven approved the research program on the regenerative
potential of amniotic fluid derived cells isolated from discarded amniotic fluid obtained after
clinically indicated amniocentesis procedures. Consenting women in this study were between
15-22 weeks of pregnancy. Cell lines were excluded retrospectively when infection or genetic
abnormalities were detected at a later stage. Briefly, amniotic fluid was filtered with a 40 ym
strainer (BD bioscience, Erembodegem, Belgium) and centrifuged. The cell pellet was re-sus-
pended in expansion medium consisting of o- MEM (Invitrogen, Ghent, Belgium), 15% fetal
bovine serum (Invitrogen, Ghent, Belgium), 1% L-glutamine (Invitrogen, Ghent, Belgium), 1%
penicillin/streptomycin (Invitrogen, Ghent, Belgium) and 18% Chang B and 2% Chang C
(Irvine Scientific, Brussels, Belgium), plated in a petri dish and incubated at 37°C in 5% CO..
As soon as single cells attached to the dish, medium was replaced to remove debris and
unwanted epithelial cells. All individual cells were monitored daily using a light microscope.
After a few days, single colonies were mechanically transferred into a 96 well plate and
expanded as monoclonal populations [44].

For flow cytometry, 100,000 hAFSCs at passage 4 were stained for mesenchymal markers
CD117, CD44, CD73, HLA-ABC, CD24 (BD bioscience, Erembodegem, Belgium), CD29
(Acris, Herford, Germany), and the hematopoietic markers CD34 and CD45 (BD bioscience,
Erembodegem, Belgium) (see Table 1). Cells were washed three times with PBS and 1% BSA

Table 1. List of Antibodies used for flow cytometry and immunofluorescence analysis.

Protein Catalog number Brand
Mouse IgG1-FITC 345815 BD bioscience
Mouse IgG1-PE 345816 BD bioscience
Mouse Anti human CD105-PE FAB1097P R&D system
Mouse Anti human CD45-PE FAB1430P R&D system
Mouse Anti human HLA-DR-PE 555561 BD bioscience
Mouse Anti human CD117-PE 130-091-734 MACS
Mouse Anti human CD24-FITC 555427 BD bioscience
Mouse Anti human CD73-PE 550257 BD bioscience
Mouse Anti human CD44-PE 550989 BD bioscience
Mouse Anti human HLA-ABC-FITC 560169 BD bioscience
Mouse Anti human SIX2 (monoclonal antibody clone 3D7) H00010736-MO01 Abnova
Rabbit Anti human PAX2 (monoclonal antibody clone 3C7) ab38738 Abcam
AlexaFluor 488 goat anti-mouse A-11001 Life Technologies
AlexaFluor 594 goat anti-rabbit A-11012 Life Technologies
Alexa Fluor 568 donkey anti-goat A-11057 Life Technologies
Goat anti Mouse IgG-PE 405307 Biolegend
Donkey anti Rabbit IgG-FITC 406403 Biolegend
doi:10.1371/journal.pone.0136145.t001
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and then incubated with primary antibodies for 20 minutes at 4°C in the dark. Cells were then
washed 3 times with PBS and then re-suspended in 200 ul of PBS. Cells were incubated with
respective isotype controls and unstained cells were used to define reading settings. Analysis
was performed with the FACS Canto (BD bioscience, Erembodegem, Belgium).

Differentiation protocols (were performed as previously described [44]):

Osteogenic differentiation. Osteogenic differentiation was induced by culturing hAFSCs
at 70% confluence for 4 weeks in ‘osteogenic differentiation medium’ (Invitrogen). Differentia-
tion was assessed by Alizarin staining (Sigma Aldrich, Diegem, Belgium) of the calcified extra-
cellular matrix deposition.

Adipogenic differentiation. To induce adipogenic differentiation, cells were cultured at
100% confluence and subsequently differentiated with adipogenic differentiation medium for
14 days. This medium was composed of 10% FBS, 10° M dexamethasone, 0.5 M 3-isobutyl-
methylxanthine, 10 mg/mL insulin, and 200 mM indomethacin in Dulbecco’s Modified Eagle
Medium high glucose (Invitrogen). Differentiation into the adipogenic lineage was determined
by Oil Red O staining (Sigma-Aldrich, MO, USA).

Chondrogenic differentiation. To induce chondrogenic differentiation, cells were cul-
tured in high-density pellet mass cultures for 14 days. 20 mL droplets of cells suspension
(400,000 cells resuspended in PBS) were seeded into individual wells of a 24-well plate. Cells
were allowed to attach without medium for 3 h at 37°C in a 5% CO2 incubator and then cul-
tured for 24h in growth medium. 24h later, the medium was replaced with chondrogenic differ-
entiation medium (Invitrogen). Chondrogenic differentiation was determined by Alcian Blue
staining (Sigma-Aldrich).

qPCR was performed for detection of differentiation markers on cells before and after dif-
ferentiation. Briefly, RNA was extracted using TRIPURE (Roche, Vilvoorde, Belgium) accord-
ing to the manufacturer’s instructions and cDNA was synthesized from 1ug total RNA using
TagMan Reverse Transcriptase kit (Applied Biosystem, Gent, Belgium). qPCR assay consisted
of initial UDG incubation and denaturation (50°C for 2min, 95°C for 2 min) followed by 40
cycles of a 2-step PCR (95°C for 15 sec, 60°C for 45 sec) using primers for the gene of interest,
Platinum SyBR Green qPCR supermix-UDG (Invitrogen, Gent, Belgium) and 2pl cDNA.
Primers used for amplification are provided in Table 2. GAPDH was used as a housekeeping
gene to normalize mRNA levels and results were computed using the Delta Ct (Ct gene of inter-
est—Ct gappn) formula and subsequently normalized to the level before differentiation.

Identification of stem cells with a renal phenotype

To show the nephrogenic potential of a subtype of hAFSCs, multiple monoclonal populations—
isolated from different gestational ages (from 15 until 22 and the 26th)—were analyzed by flow

Table 2. Human primer sequences of target genes.

Genes

GAPDH
OSTEOCALCIN
RUNX2
ALP (TNAP)
SOX9
COLLAGEN type2 (a1)
PAX2
SIX2
KSP

doi:10.1371/journal.pone.0136145.t002

Forward Reverse
TGGTATCGTGGAAGGACTCATGAC ATGCCAGTGAGCTTCCCGTTCAGC
GTGCAGCCTTTGTGTCCAA GCTCACACACCTCCCTCCT
CGCATTCCTCATCCCAGTAT GCCTGGGGTCTGTAATCTGA
GGACATGCAGTACGAGCTGA GTCAATTCTGCCTCCTTCCA

TGGAGACTTCTGAACGAGAGC CGTTCTTCACCGACTTCCTC
GGCTTCCATTTCAGCTATGG AGCTGCTTCGTCCAGATAGG
CCCAGCGTCTCTTCCATCA GGCGTTGGGTGGAAAGG

CTCAAGGCACACTACATCGAG GTTGTGGCTGTTAGAATTGGA

CTCAGGTTCTCCCTAGTCAAT AGTCTCGGCTCATCTGTATC
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cytometry for CD24 [42] and by qPCR for the renal marker Kidney Specific Protein (KSP) [45-
47], as well as for SIX2 and PAX2 (Table 2). cDNA from human embryonic kidney (hEK) from
the 19™ gestational week was used as a control (\EK RNA was donated by Prof. Paul Winyard,
University College London, UK).

Among the 120 hAFSCs populations analyzed, one population was chosen for further
experiment in vitro and in vivo. This population of hAFSC was negative for the hematopoietic
marker CD34, had a high proliferative capacity (> 30 passages in culture) and was positive
(>50%) for the markers CD24, KSP, SIX2 and PAX2.

For immunofluorescence staining, hAFSCs were seeded on 8-well Lab-Tek Chamber Slide
System (Thermo Scientific, Aalst, Belgium) at a density of 30,000 cells/chamber. Cells were
fixed with 4% paraformaldehyde for 15 minutes. Subsequently they were permeabilized with
0.1% Triton X-100 (Sigma-Aldrich, Diegem, Belgium) for 5 minutes and blocked in blocking
buffer containing 2% BSA, 2% FBS and 0.2% gelatin in PBS for 1 hour. Cells were incubated
with primary antibodies: mouse anti-SIX2 (H00010736-M01, monoclonal antibody 3D7,
Abnova, Taipei City, Taiwan) and rabbit anti-PAX2 (ab38738, polyclonal antibody, Abcam,
Cambridge, UK) in dilutions of 1:100 overnight at 4°C. AlexaFluor 488 goat anti-mouse (A-
11001, Life Technologies, Merelbeke, Belgium) and AlexaFluor 594 goat anti-rabbit (A-11012,
Life Technologies, Merelbeke, Belgium) secondary antibodies were used (1:500) for 1 hour in
the dark at room temperature. DAPI was diluted to 1:1000 in mounting medium. Cells were
washed 5 times with PBS between steps. Slides were visualized with a confocal microscope
(Zeiss LSM 780, Zaventem, Belgium) using a 20x water immersion objective.

For flow cytometry analysis 100,000 cells were used for each condition. Cells were fixed in
2% PFA for 15 minutes and then permeabilized with 0.1% Triton X-100 (Sigma-Aldrich, Die-
gem, Belgium) for 15 minutes. Cells were blocked in buffer containing 1% BSA in PBS for 15
minutes on ice and then incubated with primary antibodies for SIX2 and PAX2 (1:100) in per-
meabilizing solution for 30 minutes on ice. Specific isotypes were used and are listed in Table 1.
Secondary Ab were added at a concentration of 1:50 in 0.5% Tween 20 in PBS for 30 minutes.
Cells were then washed twice with 1% BSA in PBS and resuspended in 200 ul of PBS and read
with the FACS Canto.

Labelling and transplantation of isolated hAFSCs

To track the cells in vivo, a lentiviral vector platform was used to introduce the reporter gene -
Galactosidase (LacZ) into the selected monoclonal population of hAFSCs, as described previ-
ously [44]. Briefly, lentiviral vector particles were added to the cell culture with a multiplicity of
infection of 10. X-gal staining was performed to investigate the transduction efficiency of lenti-
viral vector in hAFSCs. Cells were fixed in 25% glutaraldehyde and 37% of methanol for 2 min-
utes and incubated with X-gal solution (Sigma-Aldrich, Diegem, Belgium) overnight at 37°C.
Stained cells were counted using light microscopy and expressed as a ‘positive percentage’ in
relation to the total cell population (% positive cells). To study the localization of injected cells
in vivo, 1x10° LacZ transduced hAFSCs were injected into abdominal aorta 6 hours after ische-
mia and reperfusion (I/R) injury [48]. Rats were harvested 6 and 24 hours after injection. Kid-
neys, lungs, heart, spleen and liver were frozen in OCT medium. Cryosections of 5 pm
thickness were incubated overnight at 37°C with X-gal solution pH 8.5 (vWR International,
Heverlee, Belgium), counterstained with paracarmine and mounted in Mowiol.

Genetic stability testing of hAFSCs

Chromosomal microarray analysis (CMA) was performed on the cell population selected for
the in vivo experiment to exclude unbalanced chromosomal aberrations. Cells were trypsinized,
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centrifuged and cell pellets washed twice in PBS. Genomic DNA was extracted using the DNA
mini kit (QIAGEN, Venlo, Netherlands) following the manufacturer’s recommendations, with
a final elution volume of 60 pl. 500 ng sample of DNA and sex-mismatched reference DNA
were labelled and co-hybridized to an 8x60K chromosomal microarray (Oxford Gene Technol-
ogy, OGT, Oxford, UK) as previously described [49]. Genomic DNA was labeled in Cy3 or Cy5
for 4 hours using the CytoSure Labelling Kit (Oxford Gene Technology), with no enzyme
digestion. Hybridization was performed for 40 hours in a rotator oven (SciGene, CA, USA) at
65°C. Washing of arrays was performed using the Little Dipper (SciGene) with Agilent wash
buffer solutions and subsequently dried using acetonitrile. Arrays were scanned using an Agi-
lent microarray scanner at 2-um resolution, followed by calculation of signal intensities using
Feature Extraction software (Agilent Technologies, Dieghem, Belgium). Visualization of results
and data analysis were performed using the CytoSure Interpret Software (Oxford Gene Tech-
nology), which uses the circular binary segmentation (CBS) algorithm. Genomic coordinates
were based on build hg19. Quality control metrics were also monitored with the CytoSure
Interpret software (Oxford Gene Technology).

Selected hAFSCs cell lines were analysed at an early passage in culture (passage 14) and at a
late one (passage 33) to exclude acquired genetic aberrations. To exclude lentiviral induced
genotoxicity the labeled LacZ-hAFSC cell line was also tested.

Induction of ischemia reperfusion injury and stem cell injections in the rat
model

All procedures involving animals were approved by the Local Ethics Committee for animal
experimentation of the Catholic University of Leuven (KU Leuven) (project number: 088/
2013). Animals were housed at constant temperature and humidity, with 12:12-h light-dark
cycles, and unrestricted access to standard diet and water. All experiments were performed in
cohorts of adult male Wistar rats, 3 months old, weighing 200-300g. Rats (n = 10/group) were
randomly assigned as follows: rats subjected to I/R injury and treated with fresh expansion
media (= group I/R+ vehicle); rats subjected to I/R injury and treated with hAFSCs (= group I/
R + hAFSC) and sham-operated animals (= group no injury). The experimental time line is
shown in S1 Fig.

I/R was induced in isoflurane-anesthetized rats as described previously [48]. After a midline
laparotomy, the renal pedicles were located and isolated by blunt dissection. Renal pedicles
were clamped with atraumatic vascular clamps for 50 min. Kidney reperfusion was confirmed
visually after the clamps were removed. The timing of ischemia was optimized to obtain a
reversible model of ischemic AKI with a minimum of vascular thrombosis without animal
mortality. At six hours after I/R injury, 800 l of cell suspension (1x10° cells) in fresh expansion
media was administered intra-arterially in two steps. Briefly, the abdominal aorta was caudally
dissected around the level of the renal arteries. In order to direct the flow of the injected cells
towards the kidney, the aorta was occluded with a vascular clamp 1 cm caudal of the renal
arteries and veins. Subsequently, the right vascular pedicle was isolated and both the right renal
artery and vein were temporarily clamped for 10-20 seconds before injection of half the vol-
ume of cells. After injection of the initial 400 pL, the clamp was released and placed on the left
renal pedicle, followed by injection of the remaining 400 uL. Fresh expansion media was
injected in vehicle group rats using the same method. The operators were blinded to the actual
administered products. A sham or ‘no injury group’ was operated in identical fashion, except
that the renal pedicles were not clamped and no treatment was injected as previously described
[50-53]. Peri-operative pain-relief of 0.05 mg/kg IP q12h of buprenorphine was administered
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for 2 days. The rats received 5 ml saline after the surgery and kept on a heating pad at 37°C
until recovery of locomotion.

Assessment of renal function after I/R injury

Serum creatinine was measured by colorimetric assay (modified Jaffé technique) at 3 different
time points: 24 hours, 48 hours and 2 months after I/R injury. Urine samples were collected at
24 hours (n = 5/group), 48 hours (n = 5/group) and 2 months (n = 5/group) and analyzed for
creatinine concentration and urine protein-to-creatinine ratio determination. Total protein
concentration was determined by silver staining according to the modified method of Heuke-
shoven and Dernick [54]. Each urine sample was diluted in water to normalize creatinine
levels and treated with loading buffer containing 2% B-mercaptoethanol and Laemmli (Sigma-
Aldrich, Diegem, Belgium) and boiled for 5 minutes at 100°C. Protein fractions were separated
in a 10% SDS polyacrylamide gel by electrophoresis followed by silver staining. Gels were
soaked in 50% methanol, 12% acetic acid, 0.1% formaldehyde and 0.1% glutaraldehyde solu-
tion for 45 minutes and then washed 3 times in 50% of methanol for 5, 10 and 15 minutes. Sub-
sequently they were soaked for 45 seconds in 0.2g/L Na,S,03 and washed 3 times in distilled
water. Finally, gels were stained in 2g/L silver nitrate for 20 minutes and washed in distilled
water. Developing solution was composed of 60g/L Na,COj3 and 0.1% formaldehyde. All prod-
ucts were obtained from Sigma-Aldrich, Belgium.

Histology and immunohistochemistry of renal tissue

Forty-eight hours and 2 months after I/R injury, rats were euthanized and the kidneys were
perfused with saline to remove blood from the vascular beds. The kidney specimens were fixed
in 4% neutral formalin and embedded into paraffin and then sectioned to 4 pum slides and pro-
cessed for periodic acid-Schiff (PAS), Masson’s Trichrome, Picrosirius red and immunostain-
ing. All slides were evaluated by experienced renal pathologists (D.L.G) who were blinded to
the sample identification. Images were analyzed qualitatively (scores) by independent observers
and quantitatively using the Image]J software. The tubular necrosis, cast and fibrosis scoring
system ranged from 0 to 5+ (0, no changes; 1+, very occasional tubular profiles (usually <3/
section and <2/HPF) affected by lesion; 2+, more evident lesions affecting 25% of the HPF; 3+,
lesions affecting between 25% and 50% of the HPF; 4+, lesions affecting between 50% and 75%
of the HPF and 5+, lesion in more than 75% of the HPF).

All morphometric analyses were performed using Image] software. Twenty non-overlap-
ping fields on the coronal sections from both kidneys were selected for quantification of acute
kidney injury (AKI) at 24 hours, 48 hours and fibrosis at 2 months I/R. PAS stained slides were
used for AKI quantification. The number of luminal hyaline casts and cell loss (denudation of
the tubular basement membrane) were quantified per field using a 40X objective (high-power
field [HPF]). Fibrotic surface area was quantified in the Masson’s trichrome stained slides at 2
months after I/R injury. The digital color images were segmented (color deconvolution plugin)
and further binarized in order to measure the percentage of the area stained in blue.

Immunostaining was performed on paraffin sections. After deparaffinization, endogenous
peroxidase activity was blocked with 0.5% H,0O, in PBS for 20 min at room temperature. Sec-
tions were then heated at 98°C for 1 hour in citrate buffer (10mmol/L, pH 6) to enhance anti-
gen retrieval. Non-specific binding was minimized by incubating sections in 1% BSA and 2%
milk in PBS-0.1% tween 80 for 30 min. Sections were then incubated overnight at 4°C with the
primary polyclonal antibodies against o-smooth muscle actin at 1:100 dilution (a-SMA- clone
1A4, DAKO, Heverlee, Belgium), Ki67 at 1:50 dilution (ki-67 clone MIB-5, DAKO, Heverlee,
Belgium) and CD68 at 1:200 (ED-1, ab31630, Abcam, Cambridge, UK). Negative controls
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included buffer alone. Specific labeling was detected with EnVision/HRP Detection Kit
(DAKO, Heverlee, Belgium). The color reaction was developed with 3,3'-diaminobenzidine
(Sigma-Aldrich, Diegem, Belgium) and sections were counterstained with Mayer hematoxylin.
Sections were then dehydrated through graded ethanol, cleared in xylene, and mounted in
dePex (BDH, vWR international, Belgium). Immunostained slides were quantified using Ima-
geJ software. Twenty non-overlapping fields on the coronal section from both kidneys were
selected for quantification. For CD68 and o-SMA images were assessed at 200X magnification.
While for Ki67 expression, positive tubular cells were quantitatively assessed at 400X magnifi-
cation. The digital color images were processed and analyzed as described above.

Molecular analysis of inflammation and injury/toxicity

Kidney samples harvested at 48 hours were snap frozen in liquid nitrogen and total RNA and
cDNA synthesis were performed as described above. The list of primers used to detect mRNA
expression are listed in Table 3. Three different reference genes were tested to find the most stable
between biological groups (gapdh, pdhb and sdha). Gen Norm software was used to ascertain the
most stable gene between groups. The geometric mean of pdhb and sdha were used to normalize
mRNA level. Tgf-1,Tnf-a, CD204 and CD206 were investigated to assess inflammation, eNOS and
iNOS to assess oxidative stress, caspase-3 to quantify apoptosis and KimI to quantify injury and
toxicity level in the samples. Results were computed using the Delta Ct (Ct gene of interest—Ct GappH)
formula and subsequently normalized to the level of the “No injury” group.

Statistics

Results were expressed as mean + SE. Analysis of variance followed by Tukey’s test for multiple
comparisons was used to analyze renal function, proliferation, and morphometric parameters.
Renal histology was analyzed by nonparametric Kruskal-Wallis followed by Dunn testing. gPCR
data were analyzed by nonparametric t-test. Statistical significance level was defined as p <0.05.

Results
Selection of hAFSCs with a renal phenotype

Stemness characteristics of hAFSCs were proven by differentiation into adipogenic, osteogenic
and chondrogenic lineages as depicted in Fig 1E. Differentiation was quantified by dye extrac-
tion (Fig 1D, right panel) and by qPCR analysis. Upon chondrogenic differentiation, there was
an induction of Sox9 (3-fold), an important gene in the early phase of chondrogenesis and of

Table 3. Rat primer sequences of target genes.

GENE Forward Reverse
Gapdh TCAACAGCAACTCCCATTC CCTGTTGCTGTAGCCATATT
Pdhb GTCTGATGGTCCGCAGATTTAT CCAGTGGTGATGCTAGAGAATG
Sdha CTTTCCTACCCGCTCACATAC AGTCCTGCTAAACGGCATAC
Kim1 GATGGGCTCTCTGAGCTTTG AATCTCCCAGGAGCTGGAAT
Caspase 3 CCGACTTCCTGTATGCTTACTC CCAGGGAGAAGGACTCAAATTC
Tgf-B TGAACCAAGGAGACGGAATACAGG GAGGAGCAGGAAGGGTCGGT
Tnf-a AAGGAGGAGAAGTTCCCAAAT G AGAGAACCTGGGAGTAGATAAGG
CD204 GCAACAGGAGGACATCAGTAAG GAGGCCCTTGAATTAAGGTGATA
CD206 GACGGACGAGGAGTTCATTATAC GTTGGAGAGATAGGCACAGAAG
eNOS GACCCTCACCGATACAACATAC CATACAGGATAGTCGCCTTCAC
iNOS CTCAGGCTTGGGTCTTGTTAG TGTTGTTGGGCTGGGAATAG
doi:10.1371/journal.pone.0136145.t003
8/21
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Fig 1. Isolation and characterization of amniotic derived mesenchymal stem cells with renal marker expression (A) Light microscopic image of
mesenchymal stem cells isolated from amniotic fluid. A subpopulation of these cells (with renal markers) displays a trumpet shaped phenotype (scale
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bar =200 ym). (B) hAFSCs were characterized by flow cytometry (positive for CD24, CD117, CD73, HLA-ABC, CD29, and CD105 but not for CD45, or
CD34). (C) Confocal imaging of hAFSCs for renal markers SIX2 and PAX2. (D) Expression of Six2 and Pax2 (left panel) in hAFSCs compared to human
embryonic kidney (hEK). Agarose gel analysis of PCR fragments (SIX2: 336 bp; PAX2: 65 bp; KSP: 152bp; GAPDH: 189 bp) (E). hAFSCs were differentiated
along adipogenic, osteogenic and chondrogenic lineages (left to right). In the adipogenic differentiation the cells formed lipid vesicles stained with oil red O
(left) (magnification 100X). Calcium deposits stained with Alizarin confirmed osteogenesis (center). Micromasses stained with alcian blue confirmed
chondrogenesis (right) (scale bar =200 um). Quantification of chondrogenic and osteogenic differentiation using dye extraction and quantification with
spectrophotometry before and after differentiation (left panel). gPCR analysis of chondrogenic markers (Sox9, Col Il) and osteogenic markers (ALP, Runx2
and OST) before and after differentiation (right panel).

doi:10.1371/journal.pone.0136145.g001

Collagen II (9-fold), a major protein component of cartilage [55]. Upon osteogenic differentia-
tion there was minor increase in Runx2 and Osteocalcin while ALP expression was signifi-
cantly increased (17-fold), which suggests that hAFSCs started the deposition of matrix
proteins [56] (Fig 1C, middle panel).

61% of the isolated hAFSCs populations expressed the markers KSP, SIX2 and PAX2 (S2
Fig). hAFSCs were morphologically uniform and showed a characteristic trumpet shape (Fig
1A, insert). The selected population expressed MSCs markers and was negative for the hemato-
poietic ones (Fig 1B). The monoclonal hAFSCs population used for the in vitro and in vivo
experiments, expressed SIX2 and PAX2 by immunofluorescence staining (Fig 1C, left panel)
and by gPCR (Fig 1D). 94% of the cells were double positive for SIX2 and PAX2 as shown by
flow cytometry data (S3 Fig). Cells negative for SIX2 and PAX2 showed a slightly larger cyto-
plasm compared to positive cells as noted in the IF staining (53 Fig).

Labelling of hAFSCs for in vivo tracking

hAFSCs were efficiently transduced by the lentiviral vector platform (Fig 2A) as shown by
the X-gal staining, which detected the nuclear activity of B-galactosidase in >95% of the cells
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Fig 2. Labelling, in vivo tracking and genomic stability testing of amniotic fluid derived renal stem
cells. (A) Schematic representation of the lentiviral transfer construct. The nuclear localized LacZ reporter
gene (n-LacZ) is driven by the chicken beta-actin promoter (CBA) and is followed by the woodchuck hepatitis
post-transcriptional regulatory element (WPRE). The promoter is preceded by the central polypurine tract
(cPPT) and the LV cassette is flanked by the 5’ long terminal repeat (LTR) and 3’ self-inactivating (SIN) LTR.
(B) In vitro B-galactosidase staining after stable transduction. (C) In vivo engraftment of n-LacZ-cells with a
representative figure of the kidney after 6h and the lung after 24h. This image does not suggest engraftment
of the cells in the target organ, merely their presence. (D) CGH dataset displays the 60K genome-wide array
results for a hAFSCs cell line with renal phenotype at passage 14 (left), at passage 30 (middle) and after
lentiviral manipulation (right).

doi:10.1371/journal.pone.0136145.g002
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Fig 3. Protective effect of stem cell therapy on acute kidney ischemia reperfusion injury. PAS staining of representative kidney sections from different
experimental groups. (A) The epithelial injury was characterized by tubular necrosis (shown by arrows), intratubular hyaline casts (shown by asterisk *),
denudation of basal membrane and vacuolization of tubular epithelial cells with a loss of their brush border. (B) The renal tissue showed less severe injury,
with less hyaline casts and tubular necrosis in the group treated with stem cells (arrow indicates presence of brush borders). (C) Histology of a kidney without
injury (D). Quantitative analysis of the presence of tubular hyaline casts, (E) tubular necrosis (F-G) and serum creatinine levels (mg/dl) at 24h and at 48h of
the three cohorts (vehicle treated (black), hAFSC treated (striped) and no injury (white)). * p<0.05, ** p<0.01 *** p<0.001. (scale bar = 50 ym)

doi:10.1371/journal.pone.0136145.9003

(Fig 2B). These labeled hAFSCs maintained their mesenchymal profile when analyzed by flow
cytometry (data not shown) and were still positive for nuclear X-gal staining after 20 passages
in culture. Lac-Z labeled hAFSCs were tracked in both kidneys and lungs at 6 hours after injec-
tion (Fig 2C) and only in the lungs and spleen at 24 hours after injection (data not shown).
Tracking of cells at later time points (48h and 2m) did not reveal the presence of injected
hAFSCs in the renal tissue (data not shown).

The selected cell population was analyzed for the occurrence of spontaneous chromosomal
abnormalities or lentiviral mediated genotoxicity (Fig 2D). The imbalances observed for the X
and Y chromosomes are due to sex-mismatch of the reference DNA sample which acts as an
internal experimental control. No abnormal molecular karyotypes were detected in early pas-
sage in culture (passage 14) nor after expansion (passage 33). Lentiviral manipulation (Fig 2D)
did not affect karyotyping stability.

Protective effect of stem cells in experimental renal I/R injury

To evaluate the effect of hAFSCs on AKI, we used a surgical model to induce ischemia/reperfu-
sion damage in male Wistar rats [48]. Histological analysis of the kidneys of animals at 48h
after injury showed proximal tubular injury characterized by tubular necrosis, denudation of
the basal membranes and vacuolization of tubular epithelial cells (Fig 3A). In addition, proxi-
mal tubular cells showed a loss of brush borders and the presence of intratubular hyaline casts
(Fig 3). The morphometric evaluation of AKI in the cohort treated with hAFSCs revealed a sig-
nificantly lower number of hyaline cast-containing tubules (5.99 vs 11.87 cast/HPF, p<0.0001)
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Fig 4. Enhancement of cell proliferation and decrease of myofibroblast differentiation, inflammation and fibrosis after stem cell therapy on acute
kidney ischemia and reperfusion injury. Immunohistochemical staining of representative kidney sections from different experimental groups for
proliferation (Ki67, Panel A-C), myofibroblast differentiation (a-SMA, Panel D-F) and macrophage infiltration (CD68, Panel G-I) at 48 hours after injury (scale
bar = 20 um). Quantitative analysis of the presence of the representative markers are depicted on the right for the three cohorts (vehicle treated (black),
hAFSC treated (striped) and no injury (white)). * p<0.05, ** p<0.01, *** p<0.001 (scale bar = 50 pm).

doi:10.1371/journal.pone.0136145.9004

and a lower number of necrotic tubules (1.53 vs 5.65 tubular necrosis/HPF, p<0.05) as com-
pared with I/R + vehicle group. These results were similar to the ATN scores reported by the
pathologist (S4B Fig). Similar morphometric results were observed at 24h after injury (S2C
Fig). The renal function, as measured by serum creatinine level, was impaired in the short term
after I/R. The serum creatinine level in rats treated with hAFSC were significantly reduced at
24h, compared to animals treated with vehicle alone (1.7 versus 2.8 mg/dl, p = 0.0002). In addi-
tion, treatment with stem cells resulted in the normalization of the creatinine levels at 48h,
whereas controls still had an increased creatinine level compared to uninjured animals (1.0 ver-
sus 1.2 mg/dl, p = 0.0412) (Fig 3F and 3G).

Effect of hAFSCs on tubular proliferation, inflammation and
myofibroblast formation

To assess the regenerative response of kidney tissue in stem cells injected animals, we quanti-
fied Ki-67, CD68 and a-SMA expression at 48 hours after injury (Fig 4). hAFSCs enhanced the
proliferation rate of tubular cells after I/R injury as detected by Ki67 expression compared to
vehicle treated controls (14.2 vs 10.8, not significant) (Fig 4A-4C). Animals with no injury had
negligible Ki67 expression in renal tissue. Moreover, in comparison with non-injured animals,
I/R injury induced a massive infiltration of macrophages and an increased presence of myofi-
broblasts in the kidneys (Fig 4D-4I). A significant decrease of macrophage infiltration and
myofibroblast formation was observed in rats treated with stem cells (0.76 vs 0.27, p< 0.0001)
and (1771.63 vs 105.548, p<0.0001) respectively. The injury level quantified by qPCR showed
an increased expression of Kim1 and Caspase-3 compared to the no-injury group. No statistical
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difference between treated groups was observed (Kiml: p = 0.9307; Caspase 3: p = 0.6623). To
quantify the M1-type macrophage infiltration, iNOS and Tnf-o were assessed, whereas CD 206
and 204 were used to measure the presence of M2-type macrophages. Animals treated with
hAFSC showed a significant down-regulation of iNOS, but not Tnf-o expression (iNOS:

p = 0.0286; Tnf-o: p = 0.8413), nor did we observe any difference in the expression of mannose
receptor (CD206) and scavenger receptor (CD204) (CD206: p = 0.9048; CD204: p = 0.1905).
There was no difference in expression of Tgf-B1 (Tgf-p1: p = 0.1255) or eNOS (p = 0.1905)

(S5 Fig).

Inhibition of the progression to chronic kidney disease

To assess if the nephroprotective effect observed in the early phase would also result in a
reduced fibrogenesis in the long term, interstitial fibrosis was evaluated by Masson’s Trichrome
and Picrosirius red staining at 2 months after injury (Fig 5). Our analysis demonstrated signifi-
cantly less interstitial fibrosis in the hAFSC-treated group compared to I/R+vehicle group
(17.49 vs 13.24, p<0.05) (Fig 5A and 5B). These results were in line with fibrosis scores given
by the pathologist (S4B Fig). Although there was no significant difference between the creati-
nine levels of the groups at 2 months (0.736 vs 0.755 mg/dl, p = 0,0616), we could observe an
increase in the microproteinuria levels in the group IR+vehicle, while hAFSC-treated rats had
urine protein levels comparable to the no injury group as shown by silver staining (Fig 5, bot-
tom right panel). Hence, we observed an inhibitory effect of the stem cells on the progression
of CKD after renal I/R injury.

Discussion

hAFSC represent a more heterogeneous population of stem cells when compared to many
adult cell types such as bone marrow or adipose derived stem cells. The fetus sheds cells from
the renal, gastrointestinal, dermal, respiratory system and even from the amniotic membranes
[57] at different rates and ratios depending on the specific stages of organ development. Isolat-
ing stem cells of renal origin will thus depend on the structural and functional development of
the renal tract. During nephrogenesis, after the initial contact of the ureteric bud with the meta-
nephric mesenchyme, the condensed mesenchyme generates a population of stem and progeni-
tor cells, which are found at the periphery of the nephrogenic zone in the developing kidney
[58]. Such stem-like cells have been demonstrated to be present in the amniotic fluid and they
were shown to be able to differentiate in vitro into podocytes [43]. Our experiments corrobo-
rate these findings. We have identified cells that behave as mesenchymal stem cells based on
their expression markers and proliferation and differentiation capacity, but that are also posi-
tive for markers that are found in the fetal kidney.

In this study we used cells obtained from standard clinical amniocentesis procedures
between 15-22 weeks of gestation. At this stage of the pregnancy a large part of the amniotic
fluid consists of fetal urine [59, 60]. In our samples most of the isolated colonies of stem cells at
this stage expressed KSP and the renal progenitor markers SIX2 and PAX2. From these specific
lineages we selected the clone with the highest proliferative capacity (passage number >30)
and the highest expression of CD24, KSP, SIX2 and PAX2 (but not late renal differentiation
markers data not shown). It has been shown that AFSCs express mesenchymal markers and
differentiate in the mesenchymal lineages (osteogenic, chondrogenic and adipogenic), while at
the same time they are able to differentiate into other tissue types (such as neurons,. .. [33]). In
the previous studies, a stem-like cell population derived from human amniotic fluid and pos-
sessing characteristics of podocyte precursors were selected based on the expression of CD24
and OB-cadherin [42, 43].
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Fig 5. Long-term preservation of renal function and inhibition of tubulo-interstitial fibrosis induced by stem cell therapy. (A) Histochemical staining
of representative kidney sections from different experimental groups using Masson’s and PicroSirius at 2 months after injury for the three cohorts. (B)
Quantitative analysis of the presence of renal fibrosis depicted on the left for the three cohorts (vehicle treated (black), hAFSC treated (striped) and no injury
(white)). The middle panel shows the serum creatinine values for the three groups (no statistically significant difference). The right panel shows a
representative image of a silver staining procedure of urine at 2 months (n = 3 per group). The group with renal reperfusion injury shows the presence of
micro-proteinuria, which was absent in both other groups. * p<0.05, ** p<0.01 *** p<0.001. (scale bar =20 ym)

doi:10.1371/journal.pone.0136145.g005

In the second part of our experiments, we investigated the therapeutic potential of these
cells in an animal model of AKI. As we intended to locate the injected cells in our animal
model, we introduced a reporter gene into our cell line. We opted for a stable genetic introduc-
tion as some cell populations are known to release live-cell-dyes [61, 62] and that the transient
overexpression of reporter gene decreases after every cell division, which leads to loss of signal.
We ensured that the CD marker expression, the differentiation capacity and the karyotypic sta-
bility of the cell line remained unchanged after this genetic manipulation. We detected the
injected cells in the kidney at 6h after injection but no longer at 24 or 48h. Initial research of
MSC based therapy demonstrated their usage as safe with little to no host response [63]. How-
ever, the full range of MSC-mediated immune-modulation remains incompletely understood,
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as emerging reports also reveal that MSCs can adopt an immunogenic phenotype [64]. In our
experiments we did not study the possible immune responses of the host towards the injected
cells. We did not assume that they would be present for longer periods in a xenograft context
with an immunocompetent host. We have chosen an arterial delivery route, as the IA adminis-
tration of MSCs has been shown to result in a more significant nephroprotection [65-67].

The fact that the cells cannot be detected during later time points in the kidney suggests that
hAFSCs are less likely to have an effect on the pathophysiological processes by direct integra-
tion into the kidney, but may play a paracrine role during the early phases of the ischemic
events.

When we appraised the effect of the cells in the early phase of the ischemic event, we
observed nephroprotective effects at 24h as shown by a significantly lower level of serum creati-
nine in the hAFSCs group compared to the controls. In this sublethal ischemia model the most
pronounced increase in creatinine is noted at 24h, with normalization between 3 to 5 days [68],
which is in line with the creatinine value at 48h in our study. We next determined the degree of
tubular necrosis and tubular cast formation and detected a marked difference between the
cohorts treated with hAFSC and the controls both at 24 and 48h. We also investigated the pos-
sible pathways by which the cells could exert their protective effects. Previous studies have
focused on the proliferation of epithelial cells, inflammation and myofibroblast differentiation
in the affected kidneys [69]. We noted a marked increase in the presence of proliferating cells
in the renal tissue 48h after the ischemic episode. The levels of Ki67 positive cells were higher
in both injured groups, but in the hAFSC cohort this was even higher. This suggests that the
hAFSCs exert a part of their effect through stimulating proliferation and modulation of the
regenerative processes in the damaged tissue. The presence of macrophages were also evaluated
as a marker for the inflammatory response. The injection of stem cells led to a decreased infil-
tration of M1 macrophages into the ischemic organs as seen by lower expression of CD68 and
iNOS. Mesenchymal stem cells are known to induce the switch from M1 to M2 macrophages
[70] but no upregulation was seen in our hAFSCs treated cohort. Other research has shown
that M2 macrophages are present in the late phases of the repair [71, 72]. Finally we assessed
the myofibroblast differentiation in the injured cohorts and noticed that the stem cells exert a
negative effect on this process. The lower expression of o-SMA is indicative of inhibition of
fibrosis, as myofibroblasts increase the deposition of extracellular matrix (especially type I col-
lagen) leading to glomerular and tubular atrophy [73].

In the final part of this study we investigated the long-term effect of the hAFSCs injection
on post-ischemic injury. We quantified the presence of subcapsular and interstitial fibrosis by
morphometry. Based on our observations we concluded that hAFSCs significantly decrease
fibrotic process in the renal I/R injury model in rats. These data are in line with research by
Baulier E. et al., who show an inhibition of fibrosis in a porcine model of kidney transplanta-
tion treated with AFSCs at 6 days after transplantation [40]. At the functional level we noticed,
in the untreated animals, a higher level of proteinuria, which was not present in the hAFSCs
treated cohort. This suggests an inhibition of the progression to CKD after renal I/R injury
since microproteinuria can indicate early glomerular injury [74].

The renoprotective mechanism of stem cell therapy has not been fully elucidated. Some
studies suggest that MSCs are capable to fuse with resident tubular cells [75, 76], others suggest
that stem cells are able to differentiate into resident kidney cells [43, 77]. Today the most
prominent mechanism of action seems to constitute a paracrine effect [78-80]. Kidney consti-
tutively express eNOS that plays an important role in the vascular homeostasis by promoting
vasodilatation [81]. After renal I/R a downregulation of eNOS is observed which can exacerbate
the injury by vasoconstriction and endothelial dysfunction. The increase of eNOS expression
in the stem cell treated group seems to be one of the possible pathways involved in the
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nephroprotective effect of hAFSC in the I/R model. Further research will need to elucidate the
exact pathways that are responsible for this effect and investigate if AFSC are indeed a promis-
ing experimental therapy for the treatment of AKI in men.

Conclusion

hAFSCs contain a subpopulation of clonal lineage with a renal progenitor phenotype that have
a nephroprotective effect when delivered intra-arterially in rats with renal I/R injury, leading to
an inhibition of interstitial fibrosis on long term follow up.

Supporting Information

S1 Fig. Schema of experimental setting.
(TIF)

S2 Fig. Expression of the renal markers KSP, SIX2 and PAX2 in 4 clonal populations of
AFSC of different gestational weeks. Expression level is calculated to the expression of these

markers in PTEC cell line.
(TIF)

S3 Fig. (A) Morphology of hAFSC positive for SIX2 and PAX2 are underlined using a
bright field microscope (magnification 20X). (B) SIX2-PAX2 and CD24-CD117 expression
by Flow cytometry analysis.

(TIF)

$4 Fig. (A) Weight of right kidneys harvested at 48 hours and 2 months. (B) Tubular necro-
sis and fibrosis scores performed in a blinded fashion by a pathologist (* p<0.05, ** p<0.01
¥ p<0.001). (C) Quantitative analysis of the presence of tubular hyaline casts and tubular
necrosis at 24h of the three cohorts (vehicle treated (black), stem cell treated (striped) and
no injury (white)). * p<0.05, ** p<0.01, *** p<0.001.

(TIF)

S5 Fig. qPCR data in kidney harvested at 48 hours after I/R injury. Expression level of the
markers CD204, CD206, iNOS, eNOS, Kim1, Caspase3, TGFB1 and TNFo. in the three groups.
* p<0.05.

(TIF)
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