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Abstract

Background

Global warming is attracting attention from policy makers due to its impacts such as floods,

extreme weather, increases in temperature by 0.7°C, heat waves, storms, etc. These disas-

ters result in loss of human life and billions of dollars in property. Global warming is believed

to be caused by the emissions of greenhouse gases due to human activities including the

emissions of carbon dioxide (CO2) from petroleum consumption. Limitations of the previous

methods of predicting CO2 emissions and lack of work on the prediction of the Organization

of the Petroleum Exporting Countries (OPEC) CO2 emissions from petroleum consumption

have motivated this research.

Methods/Findings

The OPECCO2 emissions data were collected from the Energy Information Administration.

Artificial Neural Network (ANN) adaptability and performance motivated its choice for this

study. To improve effectiveness of the ANN, the cuckoo search algorithm was hybridised with

accelerated particle swarm optimisation for training the ANN to build a model for the prediction

of OPECCO2 emissions. The proposedmodel predicts OPECCO2 emissions for 3, 6, 9, 12

and 16 years with an improved accuracy and speed over the state-of-the-art methods.

Conclusion

An accurate prediction of OPEC CO2 emissions can serve as a reference point for propa-

gating the reorganisation of economic development in OPECmember countries with the
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view of reducing CO2 emissions to Kyoto benchmarks—hence, reducing global warming.

The policy implications are discussed in the paper.

Introduction
Global warming and the effects of greenhouse gases are considered among the important issues
in the fields of science and politics [1–2]. This has triggered increasing concern about the con-
tributions of carbon dioxide (CO2) to global warming [3]. The Intergovernmental Panel on Cli-
mate Change pointed out that more than 90% of global warming is probably caused by the
emission of greenhouse gases due to human activities. The negative impacts of Global warming
across the globe are as follows: The observed increase in temperature to date is about 0.7°C,
which has started affecting health in several societies across the world. Extreme weather is
increasing, especially heat waves, floods, and storms, which results in an increasing loss of
human life and injuries due to natural disasters caused by climate change. The determinants of
health, such as quality and quantity of foods, water resources, and ecological disease control
vectors, are also affected [4]. In addition, community structures are expected to be influenced
by Global warming [5].

Energy consumption is viewed as the major source of greenhouse emissions [6]. Energy
consumption from 1970–2010 for the Organization of the Petroleum Exporting Countries
(OPEC) has increased by 685%, while the emissions of CO2 increased by 440% as a result of
burning fossil fuels within the same period. Therefore, energy consumption and CO2 emissions
of the OPEC countries have drastically increased [7]. The burning of fossil fuels, has increased
the global temperature caused by CO2 emissions [8]. The OPEC countries contributed 7% of
the world CO2 emissions in 2010. This is considered to be significant for the use of energy in
the future and for the potential of greenhouse emissions from the OPEC countries. Global
warming is one of the critical issues currently facing the world. The trend of oil consumption
and CO2 emissions of OPEC countries has grave implications by contributing to global warm-
ing [7]. The world is affected by the dangers of global warming, and the major contributor to
global warming among the greenhouse gases is CO2 emissions [6]. As a result, the attention of
policy makers and governments throughout the world has been focused on creating a frame-
work based on energy efficiency simulation capable of conserving energy, thereby reducing the
consumption of energy and the emission of greenhouse gases [7]. Reducing greenhouse gases
emitted as a result of energy consumption, reduces the effects of global warming [9–10].

The emission of CO2 requires an accurate prediction for close monitoring and control [11].
Predicting CO2 is significant for the adaptation of climate change policies as well as for offering
a reference point for using alternative energy sources [12–14] with the view to reduce CO2

emissions [15].
The creation of preventive measures for reducing CO2 emissions has motivated attempts in

the literature to apply computational intelligent algorithms due to their superiority over formal
logic, mathematical programming [16], and statistical methods [17] for predicting the emis-
sions of CO2. Despite the limitations of the these traditional methods, Meng et al. [18] used a
non-homogeneous exponential equation and a linear equation to build a model for the predic-
tion of energy related CO2 emissions in China. To avoid the limitations of the traditional meth-
ods, Chen and Wang [19] applied a hybrid of fuzzy regression and backpropagation neural
network (BPNN) (FRBPNN) to forecast the global concentration of CO2. It was found to
improve the accuracy of CO2 forecasting. Chen [11] used a collaborative fuzzy neural network
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to improve the forecast accuracy of the FRBPNN. Results indicated that the collaborative fuzzy
neural network outperforms the FRBPNN and statistical methods in the forecasting of global
CO2. Bao and Hui [20] applied the Grey model to build a model for the forecasting of CO2

emissions in Shijiazhuang, China. The model was used to project the CO2 emissions of Shijia-
zhuang from 2010 to 2020. In another study, the CO2 emissions related to energy in developing
countries were forecasted using the Grey model [21]. The Grey model is not effective with a
large sample of data; it requires small samples of observations to be robust [22], lacks fitting
ability and has a deficiency in nonlinear modeling [23]. This motivated Tan and Zhang [23] to
use GA to improve fitting ability of the Grey model and combined the genetic algorithm (GA)
fitted Grey into BPNN for improving its nonlinear approximation ability. The model was used
to predict energy load with improved performance.

However, the BPNN is a gradient based algorithm that has the possibility of being stuck in
local minima, slow convergence, highly dependent on parameter settings, and generates com-
plex error surfaces with a multiple local minimum [24–25]. Fuzzy systems lack the capability
of learning input data; human language is used to represent the input and output of the sys-
tems. Thus, incomplete or wrong rules cannot be handled well by fuzzy systems. Tuning of the
systems is not a direct task [26]. The GA abolished previous knowledge of the problem if the
population changes [27], and requires many parameter settings that undermine its robustness
[28].

Studies on the prediction of OPEC CO2 emission from petroleum consumptions are scarce
in the literature, despite the increasing consumption of petroleum and emissions of CO2 by the
OPEC countries. Limitations of the previous studies and lack of work on the prediction of
OPEC CO2 emission from petroleum consumptions motivated the present research.

To circumvent the limitations of the gradient decent algorithms, several biologically
inspired global algorithms were proposed such as GA, particle swarm optimisation (PSO), arti-
ficial bee colony (ABC), etc., and recently cuckoo search algorithm for training the ANN. How-
ever, the cuckoo search algorithm (CS) was found to be more effective than the GA, PSO, and
ABC [29]. In this paper, we proposed to hybridise the CS and Accelerated PSO (APSO) for
training ANN (HCSNN) to build a model for the prediction of OPEC CO2 emissions. The
HCSNN can improve the prediction accuracy and convergence speed of the ANNmore than
the GA, ABC, CS, and APSO as shown in the preliminary experiments [30].

In our approach, the hybrid CS communication capability of the cuckoo births has been
improved by introducing APSO to search for a better location in which the optimal nest can
share information with the cuckoo unlike in the previous studies. In the literature, Valian et al.
[31] modified the CS by using variable probability of worse nests and step size when generating
new solutions instead of the constant probability of worse nests and step size. Abubakar et al.
[32] adopted Walton et al. [33] modified CS by adding exchange information between the eggs
to the model and the crossover. Also, the distance to the location of a new egg was computed
using an inverse golden ratio. Abubakar et al. [32] used the Walton et al. [33] modified CS to
train a Functional Link ANN to build a model for the prediction of temperature and relative
humidity in Malaysia. Abubakar et al. [34] further applied the model proposed in [32] for the
prediction of climate change via temperature and ozone.

The Proposed Methods

Cuckoo Search Algorithm
The Cuckoo search algorithm is a new optimisation algorithm [35] developed by Yang and
Deb [36], currently attracting attention from the research community. Attention is expected to
continue into the future [28]. The CS is a global search algorithm for searching a global
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optimum solution. In CS, the fitness can be proportional to the objective function value with-
out difficulties. Getting an optimised solution of a complicated problem using CS does not
require a comprehensive search. Cuckoos are fascinating birds due to their aggressive strategies
in reproduction. The 3 types of the brood parasitism strategy are as follows: (1) Intraspecific
brood parasitism; (2) cooperative breeding; (3) nest takeover. Engaging in conflict directly
between the host birds and cuckoos is possible. The host birds either abandon the nest or
throw the alien eggs out of the nest to produce new eggs. In lévy flight distribution, animals
and birds search for food in random or quasi-random, thus following a random walk, since the
subsequent action relies on the present position and transition probability of the next state
[37]. This behaviour has been applied in the CS optimisation, which has shown a better perfor-
mance than other distribution-based random walk in exploring large scale search space. The
lévy flight distribution is expressed as shown in Eq (1) based on Fourier transform (I) Yang
[38]:

IðsÞ ¼ ‘½�ajsjl � 0 < l � 2 ð1Þ

Where α is the scaling parameter and s is the step length. Only special cases of parameters
have inverse transform with explicit analytical formulae. Eq (1) can be changed to Eq (2) if the
λ = 2.

IðsÞ ¼ ‘½�ls2 � ð2Þ

The inverse integral of the transform of Eq (2) produces the Gaussian distribution and the
inverse integral is expressed in Eq (3):

MðsÞ ¼ 1

p

Z1

0

cosðnsÞ‘½�ljnjm�dn ð3Þ

WhereM is the cost function and μ is the location parameter, when s!1 Eq (3) becomes:

MðsÞ ¼ lmGðmÞsinðpm=2Þ
pjsj1þm ð4Þ

GðyÞ ¼
Z1

0

f y�1‘�f df ð5Þ

Where the gamma function is represented by Γ(y) and y = n, we have Γ(n) = (n−1)!. The 3
major ideas of the CS proposed by Yang and Deb [36] for rules as an optimisation algorithm
for the CS are: (1) Each of the cuckoo lays one egg at a time and puts it in a randomly chosen
nest; (2) the nests with the optimum quality eggs will move to the next generation; (3) the avail-
able nest host is fixed and the egg laid by a cuckoo is discovered by the host bird with the prob-
ability of worse nests to be abandoned (Pa) pa 2 [0,1]. The fitness function is selected as the
objective function itself for maximum or minimum problems. In the generation of a new solu-

tion, xðtþ1Þ
i for cuckoo i, a levy flight is performed as expressed in Eq (6):

xðtþ1Þ ¼ xti þ a1 � levyðlÞ ð6Þ

Where α1 is the lévy flight step size multiplication processes with an entry wise multiplica-
tion process. However, levy flight provides a random walk, whereas their random step lengths
are drawn from the levy flight distribution for large steps. The CS initialised the population (n)
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for the nest, and randomly selected the best nest via levy flight. Thus, the cuckoo birds are
always looking for a better place in order to reduce the chance of their eggs being discarded.
The CS requires the setting of parameters for execution such as n, etc. However, the most criti-
cal parameters required to obtain the optimal solution from CS are Pa and α1 [39]. The
pseudo-code for the CS is shown in Fig 1.

Accelerated Particle Swarm Optimisation
Particle Swarm Optimisation. The choreography behaviour of birds and insects moti-

vated Kenneth and Eberhart [40] to propose PSO. A number of individuals in PSO refined
their knowledge of the given search space. Each and every individual in a PSO has a particle
that refers to position and velocity. In PSO two pieces of information are responsible for adjust-
ing the particle trajectory: The best location stays at the present point and global best location
is reached by the entire swarm. The PSO uses evaluation function to assign a fitness value like
other optimisation techniques.

Global best is the highest fitness value reached by a swarm, while local best is the highest fit-
ness value that an individual particle has attained. Global and local best are remembered by
each particle. PSO randomly initialised population of solutions, searching for the optimum
solution by evolving generations. The basic steps involved in PSO operation from the initial
stage to the optimum solution are depicted in Fig 2.

Accelerated Particle Swarm Optimisation. The APSO is a modified version of the stan-
dard PSO proposed by Yang et al. [41]; in APSO, convergence is accelerated by using only
global best, unlike the standard PSO that uses both global best and individual best. The individ-
ual best is used for increasing diversity to obtain a quality solution, which can also be achieved
using other randomness. Thus, it is not compulsory to use the individual best except in solving

Fig 1. Pseudo-code of CS.

doi:10.1371/journal.pone.0136140.g001
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highly nonlinear and multimodal problems. It was found that the APSO advances the perfor-
mance of the standard PSO. Compared to other variants of PSO, APSO has only two parame-
ters: The α and β representing the learning parameters or acceleration constants (α� β).

Neural Network
The ANN is comprised of nodes in the input, hidden, and output layers. Nodes in the input
layer feed inputs to nodes in the hidden layers, and continue in a forward direction up to the
nodes in the output layer. The nodes in the input layer are configured based on the indepen-
dent variables in the dataset, and the dependent variable determined the output nodes [42–43].
There can be more than one hidden layer; however, theoretical works, such as [44], argued that
one hidden layer is sufficient to approximate any complex non-linear function. The number of
nodes in the hidden layer is commonly realised through trial and error [45]. A typical structure
of the ANN is shown in Fig 3. The ANN is an algorithm for processing information in parallel
and can model complex and nonlinear associations using input–output training from datasets
collected from the application domain. The intrinsic capabilities of the NN enable the algo-
rithm to provide a nonlinear mapping of input and output vectors [43].

The NN can modify itself to perform the task if the optimal weights and bias of the NN are
established [46]. There are several gradient-descent training algorithms for the optimisation of
the NN weights and bias such as the Levenberg-Marquardt, backpropagation, resilient back
propagation, scaled conjugate gradient, conjugate gradient with Powell-Beale restarts, Polak-

Fig 2. The basic stages of the original PSO.

doi:10.1371/journal.pone.0136140.g002
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Ribiere conjugate gradient, Fletcher-Reeves conjugate gradient, BFGS quasi-Newton and one-
step secant algorithms. The most commonly used NN training algorithm is the backpropaga-
tion algorithm [47]. The backpropagation algorithm is a gradient method for minimising the
error cost function. However, these gradient descent algorithms, are susceptible to limitations
such as over-training of the NN, which could cause the training data to be overfitted and
degrade the prediction accuracy. They have the possibility of being stuck in local minima,
depending on the error surface shape, saturation, rate of convergence and so on [48]. Thus, the
training of the NN using a HCS is ideal because the limitations of the gradient descent algo-
rithms can be eliminated.

The Organization of the Petroleum Exporting Countries’ CO2

Emissions Dataset
The dataset for the OPEC CO2 emissions from the consumption of petroleum in million metric
tons (mmt) from 1980 to 2011 was collected from [49], a credible source of energy data [50].
The data are collected yearly, in view of the fact that the data are available on a yearly basis.
Data availability determined the collection period and frequency [51]. The data is comprised of
the 12 OPEC countries’ CO2 emissions and the total OPEC CO2 emissions. The columns and
rows of the dataset are 13 and 32 respectively. The basic statistics of the dataset are presented
in Table 1 showing the maximum, minimum, mean and standard deviation (SD) for each
OPEC country CO2 emissions dataset including the OPEC for the data collection period.

The OPEC CO2 emission is the dependent variable, whereas the CO2 emissions from the 12
member countries of the OPEC, as shown in Fig 4, are the independent variables representing
the inputs. Therefore, the CO2 emissions of the 12 OPEC countries are used as the inputs to
predict the OPEC CO2 emissions from petroleum consumption.

The dataset was normalised to a range of [–1,1] using Eq (7) to improve prediction accuracy
and convergence speed [52].

no ¼
ki � xmin

pmax � xmin

ð7Þ

Where no = normalise dataset, ki = raw dataset, xmin = minimum value of the dataset and
pmax = maximum value of the dataset. The OPEC CO2 emissions dataset was analysed using
correlation to investigate the relationship between dependent variables and between dependent
and independent variables. Successful prediction requires that the variables involved in the
task be positively related [53]. Table 2 is the correlation matrix of the variables involved in the

Fig 3. A typical structure of an ANNwith input, hidden and output neurons distributed across the
input, hidden and output layers respectively, where β is the bias.

doi:10.1371/journal.pone.0136140.g003
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prediction. It was found that the relationships among the variables are positively related. This
makes the variables suitable for the prediction.

The Design of the Proposed Hybrid Cuckoo Search Neural Network
(HCSNN)
The major components of the proposed method are presented in a flowchart in Fig 5. The
major stages comprised of the dataset, modeling, and evaluation. In the proposed approach, CS
is hybridised with APSO to build the HCS. In the proposed HCS, communication capability of
the cuckoo births have been improved by introducing APSO to search for a better location in
which the optimal nest can share information with the cuckoo. Thus, the HCS chooses the
optimal nest among all the nests via lévy flight, unlike in the standard CS (refer to section 2.1).

Table 1. Basic descriptive statistics of the OPEC countries CO2 emissions dataset.

Country No. Years Minimum Maximum Mean SD

OPEC 32 16.63 43.71 26.2064 6.74531

Algeria 32 2.75 12.80 5.5004 2.84066

Angola 32 11.57 30.78 17.8465 5.30320

Ecuador 32 82.41 284.57 168.7033 50.64198

Iran 32 29.07 120.63 62.0111 22.28333

Iraq 32 12.23 61.98 31.8385 15.86746

Kuwait 32 14.14 42.43 28.0091 8.55353

Libya 32 23.85 45.39 36.5936 5.39421

Nigeria 32 1.48 18.39 6.3378 4.75290

Qatar 32 88.52 323.88 179.2568 65.35749

Saudi Arabia 32 10.61 95.67 49.6525 20.89947

United Arab Emirates 32 53.19 104.07 66.6684 15.26779

Venezuela 32 356.04 1159.76 678.6245 214.79416

doi:10.1371/journal.pone.0136140.t001

Fig 4. The pattern of CO2 emissions from petroleum consumption in OPEC countries (1980–2011).

doi:10.1371/journal.pone.0136140.g004
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The HCS performs the search using Eq (8) [40–41]. The standard Equation of the CS is given
in Eq (6). Eq (9) is the proposed equation in which the velocity vector vi

t+1 is taken from Eq (9)
which is the standard Eq of the APSO [41]. The proposed Eq (9) is derived from Eq (6) and Eq
(8).

vi
tþ1 ¼ vi

t þ aεn þ bðg� � xi
tÞ ð8Þ

xi
tþ1 ¼ xi

t þ a� levyðlÞ þ vi
tþ1 ð9Þ

Where vi
t+1 is the velocity vector, vi

t and xi
t are positions vector for the particle, and εn rep-

resents the random vector typically drawn from [0,1]. The current global best is represented by
g
�
. The mean square error (MSE) is chosen as the objective function because the HCSNN per-

formance is to be compared with other meta-heuristic algorithms for evaluation purposes. The
MSE is better than other performance indicators such as normalised mean square error, sum of
square error, etc. in comparing performance of different algorithms on the same dataset [43].

To really assess the performance of the proposed method, the HCSNN was experimented
across several training and test datasets with varying data partition ratios (training–testing);
given that training data has an effect on the performance of the prediction [54], a similar prac-
tice was used in [55]. Therefore, five different data partition ratios were used in this study and
each was run 10 times because meta-heuristic algorithms are required to be run more than
once to compute the mean, best and the worst results as meta-heuristic algorithms are not
deterministic. The best solution is typically realised from multiple execution of the algorithm
[56]. The input neurons of the ANN are set to 12 in view of the fact that the independent vari-
ables in the dataset are 12, and the output neuron is set to 1 because only one dependent vari-
able is used (refer to section 3). The hidden neurons were fixed to 5 as suggested by
experimental trials. There are many activation functions but tanh is preferred in the hidden
layer of ANN for solving prediction problems [57], and linear in the output layer as

Table 2. An inter correlationmatrix showing relationships among the 12 member countries CO2 emissions from petroleum consumption as well
as the relationship between OPEC CO2 emissions and eachmember country

Algeria Angola Ecuador Iran Iraq Kuwait Libya Nigeria Qatar Saudi
Arabia

United Arab
Emirates

Venezuela

Algeria

Angola 0.961**

Ecuador 0.950** 0.944**

Iran 0.953** 0.907** 0.939**

Iraq 0.925** 0.883** 0.923** 0.958**

Kuwait 0.875** 0.890** 0.957** 0.900** 0.885**

Libya 0.899** 0.880** 0.943** 0.958** 0.908** 0.946**

Nigeria 0.439* 0.341 0.499** 0.625** 0.582** 0.513** 0.681**

Qatar 0.960** 0.985** 0.933** 0.888** 0.861** 0.885** 0.854** 0.273

Saudi Arabia 0.950** 0.952** 0.949** 0.955** 0.901** 0.944** 0.956** 0.496** 0.940**

United Arab
Emirates

0.951** 0.897** 0.938** 0.963** 0.945** 0.855** 0.898** 0.548** 0.885** 0.898**

Venezuela 0.924** 0.974** 0.937** 0.872** 0.853** 0.912** 0.868** 0.322 0.975** 0.936** 0.844**

OPEC 0.968** 0.950** 0.972** 0.987** 0.955** 0.946** 0.969** 0.562** 0.935** 0.984** 0.953** 0.929**

**Correlation is significant at the 0.01 level (2-tailed).

doi:10.1371/journal.pone.0136140.t002
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recommended by Beale et al. [58]. The objective of the HCS is to train the ANN to optimise its
weights and bias.

Running HCS requires initialisation to start running. The HCS, like other meter-heuristic
algorithms, requires the setting of parameter values. There is no systematic, universally agreed
method of getting the best settings of meta-heuristic algorithms [28]. In this study, we adopted
the parameters Pa = 0.25, α1 = 1, n = 25 [36], α = 0.7 [41]. The proposed HCSNN was run for a
maximum of 1000 generations to build a HCSNN-with-bias for the prediction of OPEC CO2

emissions. The pseudo-code of the HCSNN proposed in the research is presented in Fig 6. For
the purpose of evaluating the effectiveness of our method, we used standard CS, GA, PSO,
ABC to optimise the weights and bias of the ANN to build CSNN, GANN, PSONN, ABCNN
for the prediction of OPEC CO2 emissions. The results of the proposed and comparative meth-
ods are compared.

Fig 5. The proposed design of the HCSNN.

doi:10.1371/journal.pone.0136140.g005
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Results and Discussion
The numerical results of the experiments conducted using the OPEC CO2 emissions datasets
are shown and discussed in this section. Experimental simulation analysis shows that it is pos-
sible to predict OPEC CO2 emissions in 3, 6, 9, 12, and 16 years using the proposed HCSNN.

Sensitivity of the ANN and CS configuration parameters
The results of the experimental trials to investigate several configurations of the ANN with
regard to the variety of CS parameter settings are presented in Table 3. The experiments are
repeated for different number of hidden layer neurons starting from 2 with an increment of 1
up to 7. The experiment was stopped at 7 hidden layer neurons in all the trials because it was

Fig 6. Pseudo-code of the proposed HCSNN.

doi:10.1371/journal.pone.0136140.g006
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observed that the MSE started reducing from 6 hidden neurons. A similar phenomenon was
observed by Uzer et al. [59] in their experiments. All the experiment trials conducted has
proven that 5 hidden neurons were the best for the ANN. The sensitivity of the CS parameters
as shown in Table 3 has influence on the ANN performance. This is not surprising because
meta-heuristic algorithms are sensitive to parameter settings, though CS require the setting of
only Pa and α parameters [60]. Among the CS parameters used in the experiment trials, the val-
ues suggested by Yang and Deb [36] were found to be the best settings for the CS. Many litera-
ture [61–63] adopted the CS settings proposed by Yang and Deb [36] for the execution of CS
because of their performance.

Comparing HCSNN with the Standard CSNN and APSONN
The experiments were implemented using MATLAB R2012b on a machine (Intel Core 2 Quad
CPU 2.33GHz, RAM 2GB, 32-bit operating system). The source code can directly be requested
from abdullahdirvi@gmail.com. The comparison between the proposed HCSNN and the basic
CSNN and APSONN were first performed. Subsequently, the proposed HCSNN is compared
with other established algorithms (GANN and ABCNN). In Chiroma et al. [64], their proposed
meta-heuristic algorithm method of modelling oil consumption was compared with other
meta-heuristic algorithms. Tables 4–7 summarised the simulation results; the first column is
the data partition ratio, whereas the second, third, and fourth columns are the mean, best, and
worst results, respectively. The results were obtained for each of the algorithms after the experi-
ments on both training and test OPEC CO2 emissions datasets.

Tables 4–7 reported the performance of the proposed HCSNN, CSNN, and APSONN on
the training and test OPEC CO2 emissions datasets. The HCSNN was found to converge to the
optimal solution faster than the CSNN, and APSONN on both training and test datasets.
Therefore, the proposed HCSNN can be considered as the best algorithm because the best algo-
rithm converges to the best solution within a short period of time [28, 65]. The proposed
HCSNN has improved the performance of the CSNN and APSONN prediction methods. This
signifies that the proposed HCSNN has the capability of providing a better solution in a short
period of time. The performance advances made by the proposed HCSNN over the standard
CSNN and APSONN could probably be achieved because of the hybridisation of the standard
CS and APSO, which improves the communication capability of the cuckoos to search for a
better location where the optimal nest can share information with the cuckoo; hence, it
improves the performance of the CS and the APSO to converge to the optimal solution very
fast.

Comparing Performance of HCSNN, GANN, and ABCNN
Comparing a proposed method based on meta-heuristic algorithm to other meta-heuristic
algorithms [66] is required. The proposed HCSNN performance was compared with

Table 3. Experiments with several ANN configurations and CS parameters.

CS parameters Pa = 0.25, α1 = 0.15 Pa = 0.5, α1 = 1.3 Pa = 0.11, α1 = 0.8 Pa = 0.25, α1 = 1
Hidden neurons MSE MSE MSE MSE

2 0.007318 0.087127 0.0025371 0.00067113

3 0.0045251 0.006345 0.0014357 0.00027865

4 0.0032145 0.001734 0.0001924 0.00009251

5 0.0005110 0.000277 0.0001136 0.00000345

6 0.0029239 0.076812 0.0005643 0.00007452

7 0.0067871 0.047116 0.0007241 0.00008741

doi:10.1371/journal.pone.0136140.t003
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established meta-heuristic algorithms, that is, GA, and ABC [29]. Thus, GANN and ABCNN
were applied for the prediction of OPEC CO2 emissions from petroleum consumption. The
experimental results of the study are summarised in Tables 8–11.

The performance of the GANN and ABCNN on training and testing OPEC CO2 emissions
datasets are reported in Tables 8–11. A comparison of the performance of the proposed
HCSNN (see Tables 4–7, bold) with that of GANN and ABCNN (Tables 8–11) on training and

Table 4. Comparing HCSNN, CSNN, and APSONN training time (seconds) on the OPEC CO2 emissions training dataset.

CSNN HCSNN APSONN

Data partition Mean Best Worst Mean Best Worst Mean Best Worst

90–10 134.1577 133.15 134.99 8.3048 7.30 9.31 100.6197 100.17 101.07

80–20 42.2520 40.84 43.55 15.0016 13.81 16.05 103.3667 102.90 103.83

70–30 33.2189 32.04 34.39 3.4986 1.97 5.18 102.9460 102.48 103.41

60–40 13.5848 12.45 14.59 0.3799 0.37 0.39 102.8002 102.26 103.30

50–50 2.8691 2.16 3.04 0.3794 0.36 0.39 103.1377 102.64 103.63

doi:10.1371/journal.pone.0136140.t004

Table 5. Comparing HCSNN, CSNN, and APSONN accuracy (MSE) on the OPEC CO2 emissions training dataset.

CSNN HCSNN APSONN

Data partition Mean Best Worst Mean Best Worst Mean Best Worst

90–10 0.000012130 0.0000088 0.0000125 0.000014080 0.0000119 0.0000219 0.000916878 0.0009169 0.0009169

80–20 0.000010456 0.0000096 0.0000106 0.000012367 0.0000094 0.0000127 0.000576254 0.0005763 0.0005763

70–30 0.000010010 0.0000069 0.0000108 0.000020821 0.0000028 0.0000323 0.000880278 0.0008803 0.0008803

60–40 0.000011747 0.0000096 0.0000123 0.000000132 2.79E-9 0.0000006 0.000054600 0.0000546 0.0000546

50–50 0.000107377 0.0000054 0.0002189 0.000000002 2.15E-10 0.0000015 0.000513349 0.0005133 0.0005133

doi:10.1371/journal.pone.0136140.t005

Table 6. Comparing HCSNN, CSNN, and APSONN test time (seconds) on OPEC CO2 emissions test datset.

CSNN HCSNN APSONN

Data partition Mean Best Worst Mean Best Worst Mean Best Worst

90–10 0.8130 0.65 0.98 0.4072 0.25 0.51 102.8781 102.38 103.34

80–20 3.0912 2.07 3.77 1.4034 0.74 2.19 102.1031 101.65 102.56

70–30 2.1920 1.89 2.48 1.7691 1.27 2.52 102.9715 102.52 103.43

60–40 100.9103 99.80 102.02 0.3709 0.37 0.38 102.8002 102.26 103.30

50–50 28.3647 27.23 29.50 0.3845 0.35 0.46 101.1676 100.69 101.63

doi:10.1371/journal.pone.0136140.t006

Table 7. Comparing HCSNN, CSNN, and APSONN accuracy (MSE) on OPEC CO2 emissions test dataset.

CSNN HCSNN APSONN

Data partition Mean Best Worst Mean Best Worst Mean Best Worst

90–10 0.000007990 0.0000014 0.0000146 0.000010800 0.00000108 0.0000108 0.000039400 0.0000394 0.0000394

80–20 0.000015698 0.0000100 0.0000280 0.000038002 0.0000075 0.0000955 0.000347767 0.0003478 0.0003478

70–30 0.000018227 0.0000091 0.0000370 0.000014176 0.0000084 0.0000251 0.001125384 0.0011254 0.0011254

60–40 0.000010518 0.0000098 0.0000106 0.000000318 2.79E-9 0.0000006 0.000054600 0.0000546 0.0000546

50–50 0.000011409 0.0000097 0.0000116 0.000000380 2.15E-10 0.0000015 0.001395282 0.0013953 0.0013953

doi:10.1371/journal.pone.0136140.t007
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test dataset showed that the proposed HCSNN can provide better accuracy and convergence
speed than the GANN and ABCNN on both training and test dataset. Those results have fur-
ther validated the effectiveness and robustness of the HCSNN in the prediction of OPEC CO2

emissions. The performance of the HCSNN can probably be attributed to the CS in twofold:
(1) The CS striking balance between local and global search; (2) the CS requires few parameters
to run successfully unlike GA and ABC that require more parameters settings than the CS.

Predicted vs. Actual OPEC CO2 Emissions from Petroleum Consumption
The pattern of the actual OPEC CO2 emissions and the predicted ones by the algorithms
(HCSNN, GANN, ABCNN, and APSONN) are depicted in Figs 7–11. The prediction is based on
the OPEC CO2 emission test dataset reserved for evaluation purpose. The prediction is for 3, 6, 9,
12, and 16 years, respectively. The performance indicators are in Tables 4–7 and Tables 8–11.

It can be observed in Figs 7–11, that the OPEC CO2 emissions predicted by the proposed
HCSNN is more fit to the actual OPEC CO2 emissions than the other comparison algorithms.
In 3, 6, 9, and 12 year predictions (Figs 7–10) the other compared algorithms also fitted close
to the actual OPEC CO2 emissions except for GANN. The abolition of previous knowledge by

Table 8. GANN and ABCNN training time (seconds) on OPEC CO2 emissions training dataset.

GANN ABCNN

Data partition Mean Best Worst Mean Best Worst

90–10 5.6703 5.65 5.70 246.3318 245.26 247.41

80–20 5.5824 5.56 5.61 241.2392 240.16 242.33

70–30 5.5341 5.51 5.56 241.9189 240.85 242.99

60–40 5.6439 5.62 5.67 243.1096 242.03 244.18

50–50 5.5498 5.53 5.57 241.0873 240.01 242.18

doi:10.1371/journal.pone.0136140.t008

Table 9. GANN and ABCNN accuracy (MSE) on OPEC CO2 emmissions training dataset.

GANN ABCNN

Data partition Mean Best Worst Mean Best Worst

90–10 0.013437393 0.0130828 0.0141054 0.001295257 0.0012946 0.0012953

80–20 0.005834083 0.0032442 0.0099324 0.001671239 0.0016712 0.0016712

70–30 0.006426911 0.0064269 0.0064269 0.000631877 0.0006319 0.0006319

60–40 0.004693395 0.0046934 0.0046934 0.000684235 0.0006641 0.0006893

50–50 0.003083721 0.0030837 0.0030837 0.000286135 0.0002860 0.0002863

doi:10.1371/journal.pone.0136140.t009

Table 10. GANN and ABCNN test time (seconds) on OPEC CO2 emmissions test dataset.

GANN ABCNN

Data partition Mean Best Worst Mean Best Worst

90–10 5.5245 5.50 5.55 245.7797 244.70 246.84

80–20 5.5057 5.48 5.53 240.1158 239.05 241.18

70–30 5.4879 5.46 5.51 244.5283 243.47 245.59

60–40 5.6292 5.61 5.65 248.4572 247.38 249.53

50–50 5.5806 5.56 5.60 244.2724 243.18 245.36

doi:10.1371/journal.pone.0136140.t010
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Table 11. GANN and ABCNN accuracy (MSE) on OPEC CO2 emmsisions test dataset.

GANN ABCNN

Data partition Mean Best Worst Mean Best Worst

90–10 0.076082131 0.0751107 0.0771107 0.002150212 0.0021265 0.0021857

80–20 0.061608778 0.0616088 0.0616088 0.000978319 0.0009783 0.0009783

70–30 0.052073117 0.0520731 0.0520731 0.000734849 0.0007348 0.0007348

60–40 0.043550760 0.0435508 0.0435508 0.000838752 0.0008388 0.0008388

50–50 0.035446093 0.0354461 0.0354461 0.002150212 0.0021265 0.0021857

doi:10.1371/journal.pone.0136140.t011

Fig 7. Predicted vs. actual OPEC CO2 emissions (90–10).

doi:10.1371/journal.pone.0136140.g007

Fig 8. Predicted vs. actual OPEC CO2 emissions (80–20).

doi:10.1371/journal.pone.0136140.g008

Predicting OPEC Carbon Dioxide Emissions from Petroleum Consumption

PLOS ONE | DOI:10.1371/journal.pone.0136140 August 25, 2015 15 / 21



GA could possibly be responsible for the low performance of the GANN. In 16 year predic-
tions, ABCNN and CSNNmove further away from the actual OPEC CO2 emissions. This has
clearly shown that the algorithms are not robust as the number of the predicted years increases.
Thus, ABCNN, GANN, and CSNN are not consistent in their performance. The APSONN per-
formance is consistent. However, the proposed HCSNN is consistent and more accurate than
the APSONN in the prediction of OPEC CO2 emissions, as the HCSNN has maintained similar
performance throughout the prediction periods. Therefore, the HCSNN is robust, accurate and
fast in the prediction of OPEC CO2 emissions. The optimum solution for application in solving
real world problem is required to be robust in addition to accuracy and convergence speed as
argued by Yang and Deb [28].

Fig 9. Predicted vs. actual OPEC CO2 emissions (70–30).

doi:10.1371/journal.pone.0136140.g009

Fig 10. Predicted vs. actual OPEC CO2 emissions (60–40).

doi:10.1371/journal.pone.0136140.g010
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Policy Implications
In view of the fact that protection against global warming requires a holistic approach, accurate
prediction of OPEC CO2 emissions from petroleum consumption can give member countries a
better estimate of CO2 emissions expected in the future, thus allowing OPEC to create a robust
CO2 emissions policy involving the 12 member countries. OPEC members are skeptical, how-
ever, about the reduction of CO2. This is because it may increase the price of oil to consumers,
thus decreasing demand from developed countries, which accounts for 60% of total oil con-
sumption in the world [67]. This can obstruct development and decline in revenue generation
in OPEC countries, given that the main source of government revenue in OPEC countries is
the sale of petroleum.

Reducing oil consumption means reducing CO2 emissions. If some OPEC countries are
reducing CO2 emissions while others are not, surely it can affect other members’ CO2 emis-
sions (see Table 2). Thus, a holistic approach is required by all the member countries to put
measures in place that will drastically reduce CO2 emissions in all the countries if meaningful
results are to be achieved. However, reducing oil consumption must be done with a caution
given that oil consumption is significantly positively related to economic development as
described in [3].

Since OPEC members are developing countries, the reduction of CO2 must be done with
precautions in order not to slow down economic development and generation of revenue. An
accurate prediction of OPEC CO2 emissions can serve as a reference point for an OPEC secre-
tariat to propagate the reorganisation of economic development in member countries with the
view of managing CO2 emissions. Evidence of CO2 emission dangers can easily be used to con-
vince member countries to embark on economic development that can result to minimal petro-
leum consumption and reduced CO2 emissions. In view of the economic implications of
reducing CO2 emissions, reduction of the CO2 emissions in OPEC countries must be enforced
with caution. Considering the contributions of OPEC countries to global warming, it is signifi-
cant for OPEC to adapt its policies on climate change that can enforce stringent measures for
the members to adopt an energy-efficient economy.

Meng et al. [18] argued that the CO2 emissions emanating from countries that are develop-
ing has attracted unprecedented attention to economic development and the increasing

Fig 11. Predicted vs. actual OPEC CO2 emissions (50–50).

doi:10.1371/journal.pone.0136140.g011
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consumption of fossil energy consumption. The Efforts been taken by the developing countries
in monitoring and controlling the emissions of CO2 have become a premise to further maintain
the Kyoto benchmark on climate change alleviation.

The future prediction of CO2 emission is one of the major factors for the management, con-
trol and modification of a state of the art policies related to CO2 emissions [18, 21]. The man-
agement and control of the emissions of CO2 drastically reduce the negative effects of global
warming [10–11].

The limitations of our study: The prediction was performed based on historical data. As
such, future predicted CO2 emissions can be affected by a prolonged wars or famines that can
bring down the economic growth. As a result, the emission of CO2 emissions can be decreased
in the future. Also, the data were collected on yearly frequency. Therefore, the prediction hori-
zon is limited to yearly basis.

Conclusions
This paper proposed a method for the prediction of OPEC CO2 emissions based on CS, ANN,
and APSO to improve accuracy and convergence speed. The dataset required for the modelling
was collected from the Energy Information Administration. We built a HCSNN model to pre-
dict OPEC CO2 emissions. Intensive experiments were conducted with HCSNN and other
meta-heuristic algorithms such as CSNN, PSONN, GANN, and ABCNN to predict OPEC CO2

emissions in 3, 6, 9, 12, and 16 years. Comparative results indicated that the proposed HCSNN
advanced the prediction accuracy and convergence speed of the comparison meta-heuristic
algorithms in all the years. Accurate and timely prediction of OPEC CO2 emissions can allow
OPEC member countries to accurately adapt OPEC policies related to climate change. This is
because the more the prediction accuracy of CO2 emissions, the more the accuracy of the deci-
sion to be taken on climate change policies, hence, reducing the contributions of the OPEC
countries to global warming. In the future, the method presented in this study will be modified
to investigate the effectiveness of the method in the estimate of CO2 loss from the streams [68].
The method presented in this research could easily be implemented into software to develop a
decision system capable of advising OPEC policy makers with predicted values of CO2

emissions.

Supporting Information
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(DOCX)
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