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Abstract
Various attempts have been made to predict the individual disease risk based on genotype

data from genome-wide association studies (GWAS). However, most studies only investi-

gated one or two classification algorithms and feature encoding schemes. In this study, we

applied seven different classification algorithms on GWAS case-control data sets for seven

different diseases to create models for disease risk prediction. Further, we used three differ-

ent encoding schemes for the genotypes of single nucleotide polymorphisms (SNPs) and

investigated their influence on the predictive performance of these models. Our study sug-

gests that an additive encoding of the SNP data should be the preferred encoding scheme,

as it proved to yield the best predictive performances for all algorithms and data sets. Fur-

thermore, our results showed that the differences between most state-of-the-art classifica-

tion algorithms are not statistically significant. Consequently, we recommend to prefer

algorithms with simple models like the linear support vector machine (SVM) as they allow

for better subsequent interpretation without significant loss of accuracy.

Introduction
State-of-the-art genotyping platforms are able to measure hundreds of thousands or even mil-
lions of single nucleotide polymorphisms (SNPs) at once, giving rise to a steadily increasing
amount of data being generated [1]. They also led to an increasing number of Genome-wide
Association Studies (GWAS) that unveiled novel susceptibility variants or pointed towards
putative loci in different diseases [2, 3]. Based on this information, researchers continue to gain
knowledge about cellular and genetic mechanisms [4–8]. Apart from providing a better under-
standing of diseases, this also enabled geneticists to develop models for genetic risk profiling
[9–12]. If a genetic predisposition for certain diseases can be identified at a young age, life-style
changes and therapies can be implemented at an early stage and delay or even prevent the
onset of some diseases [13, 14]. In some cases, the therapy itself can be tailored individually to
the patient’s genetic traits, e.g., by fine-tuning the dosage of medication to maximize its effect
while minimizing side-effects [15–17].
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Over time, more and more sophisticated analysis methods have been developed or adapted
to detect markers associated with certain phenotypes in these very large data sets [18, 19].
Besides the standard single marker statistics, modern machine learning algorithms have been
employed in various studies to find risk factors or to build models for predicting the disease
risk [20–22]. Early studies first gathered already known genetic markers and counted the num-
ber of causal variants in a sample, calculating a score that represented the disease risk [23, 24].
State-of-the-art classification algorithms can be viewed as an automated enhancement of this
strategy, but the specifics vary between different algorithms [25]. They weigh and select the fea-
tures with the highest information content and build models that act as a decision function to
distinguish between two or more classes as best as possible. Of course, their application is not
limited to genetic data, but data of all kinds and fields and numerous studies have investigated
these algorithms in different scenarios [26–28]. Nonetheless, the performance of these classifi-
cation algorithms depends on the type of data they are applied to, so there is no “best” algo-
rithm for everything [29] and various algorithms should be evaluated to identify the ones most
fit for a specific problem type.

Trying to predict the individual disease risk based only on SNP genotype information [9,
30] was the next logical step. These SNP data can also be represented using different encodings
that may influence the training of good classifiers. A study from [20] applying support vector
machines (SVMs) on type 1 diabetes data sets found no difference between the additive and
the recessive/dominant encoding scheme. However, Miller et al. showed that a recessive/domi-
nant encoding of SNPs can be superior to additive schemes when capturing epistatic effects
[31]. Thus, the influence that the encoding scheme or even the specific algorithm may have on
the performance of those models can hopefully provide further insight into the underlying
genetic structure of the investigated diseases. While there have been studies that compared the
predictive performance of multiple algorithms [32], they did so without the use of statistical
methods designed for multiple comparisons. To our knowledge, the suitability of different
encodings, especially in conjunction with various classification algorithms, has not been
assessed systematically before.

In this study, we focused on seven GWAS case-control data sets from the Wellcome Trust
Case-Control Consortium (WTCCC) that, except for binary phenotype, gender and sample
ID, contain only SNP allele information [33]. Similar to the selection schemes in classical
genome-wide association studies [34, 35], we selected those SNPs as input features that reached
a certain predefined genome-wide association threshold. We systematically evaluated three dif-
ferent feature encodings and seven machine learning algorithms with regard to their predictive
performance. Using the best of these three encodings we then compared the performance of
the algorithms via the Friedman test [36], a non-parametric statistical test for multiple compar-
isons, and Shaffer’s static post-hoc test [37] for the subsequent pair-wise comparison.

Materials and Methods

Data Sets
TheWellcome Trust Case Control Consortium (WTCCC) offers GWAS data sets on various
diseases with ca. 2,000 samples and two control cohorts with ca. 1,500 samples each [33]. In
our study, we included the studies for bipolar disorder (BD), Crohn’s disease (CD), coronary
heart disease (CAD), hypertension (HT), rheumatoid arthritis (RA), type 1 and type 2 diabetes
(T1D and T2D) and the 1958 British Birth Cohort (58C) as controls. The genotyping of those
data sets was conducted using the Affymetrix 500K chip.

We also applied stringent quality control measures to reduce the risk of artifacts. First, we
removed all SNPs that were on a list of bad markers provided by the WTCCC. Additionally,
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SNP rs41388745 was removed because it was ambiguously mapped to two different chromo-
somes. Since this study focused on the impact of different feature encodings and their implica-
tion on the assumed genetic risk model, we did not include the X-chromosome. Although
novel ways to deal with its special characteristics have been proposed [38], a standardized way
of evaluating those markers has not been established [39].

Each disease and the control data set was then analyzed separately using PLINK [40]. We
excluded SNPs with a minor allele frequency (MAF) less than 5%, a genotyping rate of less
than 5% or a significant deviation from the Hardy-Weinberg equilibrium (p< 0.001). This
process was then repeated for each combined data set consisting of one disease and the control
data set.

Data Encoding
The SNP data can be represented as nominal features, e.g., AA, AG or GG, or numerical, e.g., 0,
1 and 2. While some classification algorithms can work with nominal features, like the Decision
Tree or the Random Forest, almost all can work on numerical ones and some can work only on
those, like the Support Vector Machine or the Multilayer Perceptron. This makes it necessary
to encode the SNPs as numerical features. There are different ways to encode SNPs and each
encoding may represent different biological assumptions. The encoding can also affect the abil-
ity of machine learning algorithms to learn a model (see Machine Learning Algorithms).

In the additivemodel, each genotype is encoded as a single numeric feature that reflects the
number of minor alleles. Homozygous major, heterozygous and homozygous minor are
encoded as 0, 1 and 2, respectively. This results in a minimal number of generated features
while preserving all information. On the other hand, non-additive effects like heterozygosity
leading to a higher disease risk than homozygosity cannot be modeled by non-linear classifiers.

In the recessive/dominantmodel, each genotype is encoded as two binary features, one for
each possible allele. A feature is set to 0 if the corresponding allele is not present and set to 1 if
it is present at least once. This doubles the number of features, which requires more memory
and can increase the computation time. However, this encoding can be superior to the additive
encoding when modelling multi-locus interactions [31].

Another binary way to encode the genotype information is to create three features for each
SNP, one for each genotype, which has also proven to be useful for detecting gene-gene interac-
tions [19]. In this encoding, each feature represents whether its corresponding genotype is
present or not, which means that exactly one of the three features is 1 and the other two are 0.
While this scheme is also called one-hot encoding, we denote this scheme as genotypic to reflect
the implications on the risk model. Since each genotype is represented by a separate feature,
classifiers can build more fine grained models. The downside is an even higher memory con-
sumption due to the redundancy of this feature representation.

In this study, we focused on these three encoding schemes. An example is illustrated in
Table 1.

Machine Learning Algorithms
We used the Weka data mining framework [41] version 3.6.4 to perform all machine learning
tasks, because it contains implementations of many state-of-the-art machine learning algo-
rithms. It was also responsible for all data management necessary for the pre-processing of the
data sets and collecting the results of the different classifiers. This ensured that each machine
learning algorithm processed the same data, i.e. same randomization, filtering and normaliza-
tion. Weka and its algorithms are implemented in Java, giving the additional benefit of plat-
form independence.
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The algorithms compared in this study were k-nearest neighbor (kNN), decision tree (DT),
random forest (RF), multilayer perceptron (MLP), learning vector quantization (LVQ) and
support vector machine (SVM). In addition to the implementations included in Weka we
extended the MLP to offer the option to set the number of hidden nodes to the square root of
the number of features. We also wrote our ownWeka wrapper for the LibSVM implementation
[42] of the SVM because the available ones did not report the AUC correctly. The LVQ imple-
mentation was provided through a plug-in (see Table 2).

The kNN algorithm is one of the simplest and provides a baseline for the others, LVQ is
related to KNN, but has some advantages regarding model interpretation. RF, MLP and SVM
are popular state-of-the-art classification algorithms that work in fundamentally different
ways. We also included the DT because it is the precursor to the RF. In addition to the standard
linear SVM we also included a non-linear one using the radial basis function (RBF) kernel [43].

Classifiers can be linear or non-linear. A classifier is linear when it uses a linear combination
of the features for its decision. The only algorithm tested in this study that falls into this cate-
gory was the linear SVM. The advantage of linear classifiers is that the trained models are usu-
ally easier to interpret, because each feature has a corresponding weight. The obvious
disadvantage of a linear classifier is that it cannot learn models that are non-linear in the fea-
ture space. This problem can be partially addressed by applying a transformation of the input
features into the feature space, as it is the case with the recessive/dominant or the genotypic
encoding.

Table 2. Algorithm implementations.

Algorithm Weka class

Decision Tree weka.classifiers.trees.J48

Random Forest weka.classifiers.trees.RandomForest

SVM (linear) own LibSVM wrapper

SVM (RBF) own LibSVM wrapper

kNN weka.classifiers.lazy.IBk

Multilayer Perceptron weka.classifiers.functions (modified1)

LVQ weka.classifiers.neural.lvq.MultipassLvq2

1: Added the option to use
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#SNPs

p
hidden nodes instead of fixed number

2: Plug-in from http://wekaclassalgos.sourceforge.net/

doi:10.1371/journal.pone.0135832.t002

Table 1. Illustration of the three different encoding schemes for SNP data.

SNPi Add count Rec Gen

A B AA AB BB

AA 0 1 0 1 0 0

AB 1 1 1 0 1 0

BB 2 0 1 0 0 1

We investigated three different encoding schemes for SNP data, here with two alleles A (major) and B

(minor). The additive encoding (Add) represents each genotype through the minor allele count. The

recessive/dominant (Rec) encoding encodes the presence of at least one allele for each of the two. The

genotypic (Gen) encoding consists of three features, one for each possible genotype.

doi:10.1371/journal.pone.0135832.t001
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Non-linear classifiers are capable of learning more complex models, which the linear classi-
fiers can not. On the other hand, the subsequent interpretation of these models can be very
complicated, if at all possible, depending on the used algorithm.

Classifier Training and Evaluation
Each case-control data set was comprised of one of the seven disease data sets (approx. 2,000
cases each) and the 1958 British Birth Cohort data set (1,500 controls). We chose the area under
the ROC curve (AUC) as the performance measure due to the imbalanced class ratio. The pre-
dictive performance was measured via a 5 × 2 cross-validation (a 2-fold cross-validation with
five repetitions) and the results were averaged. The averaging was necessary because the statisti-
cal test applied afterwards requires independent measurements, which is not the case for ran-
dom subsamples of the same data set. It should also be noted that the random splits of each
case-control data set were kept the same during all subsequent processing steps to ensure
comparability.

During the 5 × 2 cross-validation we computed five different single marker statistics on the
training set of each fold, which mirror the genome-wide association tests of PLINK when using
the --model option: Allelic, recessive, dominant and genotypic test and the Cochran-Armi-
tage trend test. In each round of this outer cross-validation, the respective pair of training and
test set was filtered with six different p-value thresholds. Only those SNPs with a p-value reach-
ing the threshold of 10−3, 10−4, 10−5, 10−6, 10−7 and 10−8 for at least one of the genome-wide
association models were retained.

After that, the remaining SNPs were transformed into features according to the encoding
scheme of the setting and then standardized to have zero mean and unit variance (μ = 0, σ = 1).
Finally, all seven classification algorithms were evaluated on each of these filtered training-test
set pairs. Additionally, to ensure that each machine learning algorithm performed at its best,
an exhaustive parameter optimization was performed using a 5-fold inner cross-validation for
each parameter combination (see Table 3). The parameter combination with the highest AUC
was then used for the outer cross-validation. In total, this yielded 7 diseases × 6 thresholds × 3

Table 3. Parameter optimization values.

Algorithm Parameter Values

Decision Tree Pruning at confidence c* 0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, Reduced error
pruning, No pruning

Random Forest No. of trees 10, 30, 100, 300, 1000

SVM (linear) C 2−5, 2−3, . . ., 211

SVM (RBF) C 2−5, 2−3, . . ., 211

γ 2−15, 2−13, . . ., 23

kNN No. of nearest neighbors
Weighting

1, 3, 10, 30, 100 constant / inverse of distance

Multilayer
Perceptron

Learning rate 0.01, 0.03, 0.1, 0.3

Learning rate decay yes / no

No. of hidden units 2, 4, 8, 16, 32,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#SNPs

p

LVQ none multipass; automatic selection

*: Pruning at confidence level c, reduced error pruning and no pruning are mutually exclusive

Parameter optimization was conducted for for each fold of the outer cross-validation. Each combination of

the parameters was evaluated in a 5-fold inner cross-validation. Default values were used for all

parameters not listed here.

doi:10.1371/journal.pone.0135832.t003
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encodings × 7 algorithms = 882 different experimental settings. Each of these settings was eval-
uated using a 5 × 2 outer cross-validation, where for each fold the parameters were selected
using a 5-fold inner cross-validation.

Statistical Evaluation
To determine whether some encodings or classification algorithms are significantly better than
the others, we employed the Friedman test (sometimes called Friedman’s ANOVA). The Fried-
man test is the non-parametric equivalent of the repeated measures ANOVA and was used
here because it does not make assumptions about the distribution of values. It tests against the
null hypothesis that there are no significant differences between multiple treatments over a
number of experiments.

It works by ranking the classification performance of k different treatments for each experi-

ment i from best (rank 1) to worst (rank k). The ranks are denoted as rji with 1� j� k and 1�
i� n. For each treatment j the average rank Rj is calculated as Rj ¼ 1

n

P
i r

j
i . The Friedman test

statistic F is then obtained via the formula

F ¼ 12n
kðkþ 1Þ

X
j

R2
j �

kðkþ 1Þ2
4

" #
ð1Þ

and is approximately χ2 distributed with k − 1 degrees of freedom, if n and k large enough
(n> 10 and k> 5). However, we used a derived statistic, proposed by [44],

FID ¼ ðn� 1ÞF2

nðk� 1Þ � F2
ð2Þ

that is less conservative and more accurate than the former [45]. It is distributed according to
the F distribution with k − 1 and (k − 1)(n − 1) degrees of freedom and p-values were obtained
by comparing FID against this distribution.

Our study followed a repeated measures design because for each p-value threshold each
data set was randomized for cross-validation once and then evaluated for each encoding and
algorithm. Due to the 5 × 2 cross-validation, there were 10 values for each combination of
treatment, data set and threshold. It was tempting to treat each of these 10 values as a separate
learning problem, as it would increase the number of samples and thus the power of the subse-
quent statistical test. However, while the Friedman test requires the measures to be matched
between the algorithms, the samples must be independent from each other. This was clearly
not the case, since each of the 10 training sets was sampled from the same underlying data set.
Thus, the results of a 5 × 2 cross-validation were averaged and used as a single measurement
[46].

A potentially problematic aspect regarding the independence of samples was filtering the
data set using different thresholds. For each data set and each algorithm, six different learning
problems are generated by including only SNPs reaching a certain p-value threshold, creating
nested subsets where each set contains all SNPs of the sets resulting from a smaller p-value
threshold. We recorded the number of SNPs used for each data set and threshold to be able to
investigate whether a potentially concerning dependence of features was present. To decrease
the risk of false positive findings, we choose a stringent significance level α = 0.001.

As with the standard ANOVA, the Friedman test is an omnibus test and can only detect
whether there are differences in the overall comparison. If significant differences are found,
pair-wise comparisons of the average rankings have to be conducted to find out which of the
treatments differ among each other. The test statistic for testing the hypothesis that treatments
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i and j are not different can be calculated by

z ¼ ðRi � RjÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þ

6n

r
ð3Þ

and the p-value can be obtained by normal approximation. However, those p-values have to be
corrected for multiple testing becausem = k(k − 1)/2 pair-wise comparisons are performed this
way.

Various post-hoc methods exist for calculating the adjusted p-values. The Nemenyi test sim-
ply multiplies the uncorrected p-values with the number of pair-wise comparisons [47]. We
used Shaffer’s static method in our study [37] since it is more powerful than the Nemenyi test
[48]. The basic principle of Shaffer’s static method is that when testing k treatments for equality
or inequality, not all combinations are possible. For example, when the hypothesis that two out
of three treatments are different is false, at least one of the other two hypotheses must be false,
too. So instead of multiplying each p-value with the number of pair-wise comparisonsm, Shaf-
fer’s static method follows a step-down approach: First, them pair-wise hypotheses that there
is no difference between two specific treatments are sorted by their corresponding p-values
from best (smallest) to worst (highest). Then, starting at the best p-value, each one is multiplied
by the number of hypotheses that can be true given that all previous hypotheses have been
rejected. This method is called static because the number of possible true hypotheses is inde-
pendent of the actual p-values and must be calculated only once. To decrease the risk of false
positive findings, we choose a stringent significance level α = 0.001 in all tests.

Results
The presentation of the results in this section is divided into one part for the comparison of dif-
ferent feature encodings and one for the comparison of classification algorithms. Statistics
about the numbers of SNPs that reached the different p-value thresholds for the seven disease
data sets are listed in Table 4. The raw AUC values representing the predictive performances of
each learned model before ranking them are contained in S1 and S2 Tables.

Encodings
Comparison of the three different encodings additive (Add), recessive/dominant (Rec) and
genotypic (Gen) reveal a clear advantage of the additive encoding in terms of predictive perfor-
mance. The null hypothesis that there is no difference between the different encodings can be
rejected with p< 10−15 (see Table 5) after applying the Friedman Test on all data sets for all
classification algorithms (k = 3, n = 42). The subsequent pair-wise comparison of the encodings

Table 4. Average number of SNPs reaching the specified p-value threshold per data set.

p-value threshold BD CAD CD HT RA T1D T2D

p < 10−8 1.0 3.4 3.2 1.0 60.5 102.8 1.4

p < 10−7 1.3 4.3 4.9 3.5 73.6 123.5 2.2

p < 10−6 3.8 8.0 11.3 6.4 89.5 153.5 5.4

p < 10−5 22.9 23.1 40.9 22.2 126.0 212.7 20.2

p < 10−4 149.7 129.0 221.2 131.5 280.8 391.9 132.5

p < 10−3 1238.3 1047.9 1560.0 1081.5 1332.0 1398.3 1115.4

Average number of SNPs reaching the specified p-value thresholds for at least one of the tests for genome-wide association. Numbers are averaged over

all 10 results of the 5 × 2 cross-validations and rounded to one decimal place.

doi:10.1371/journal.pone.0135832.t004
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shows that the additive encoding is better than the other two, but there is no statistically signifi-
cant difference between the recessive/dominant and the genotypic encoding (see Table 6).

The comparison of encodings grouped by algorithms (k = 3, n = 6) also showed that the
additive encoding always achieved the best average rank (see Fig 1). By far the largest differ-
ences could be observed for both SVMs, for the standard linear SVM (Fig 1b) as well as for the
SVM with RBF kernel (Fig 1c) with p-values of 4.819 � 10−13 and 5.689 � 10−11, respectively. In
both cases, the additive encoding achieved the best rank throughout all classifiers (1.21 and
1.25) and the next best encoding had a rank of at least 2. Also, the difference between recessive/
dominant and genotypic encoding was not large enough to be statistically significant in both
cases.

Next largest differences were found for the Multilayer Perceptron (Fig 1d, p = 9.957 � 10−7)
and the k-nearest neighbor (Fig 1e, p = 5.51 � 10−5). Here the post-hoc test could not find signif-
icant differences between the additive and the recessive/dominant encoding, but between the
additive and the genotypic encoding. It should also be noted that even though the Learning
Vector Quantization came out significant (p = 7.697 � 10−4), Shaffer’s static method could not

Table 5. Average ranks and p-values of the Friedman test for the three encoding schemes.

Add Rec Gen p-value

all 1.53 2.12 2.35 < 10−15

Lin 1.21 2.20 2.58 4.819 � 10−13
RBF 1.25 2.50 2.25 5.689 � 10−11
MLP 1.56 1.85 2.60 9.957 � 10−7
DT 1.88 2.00 2.12 0.557

RF 1.63 2.13 2.24 0.01058

KNN 1.65 1.82 2.52 5.51 � 10−5
LVQ 1.55 2.31 2.14 0.0007697

BD 1.76 2.18 2.06 0.1447

CAD 1.67 2.17 2.17 0.02823

CD 1.38 2.10 2.52 6.029 � 10−8
HT 1.74 2.29 1.98 0.04019

RA 1.38 2.00 2.62 2.485 � 10−9
T1D 1.10 2.07 2.83 < 10−15

T2D 1.71 2.01 2.27 0.03522

Average ranks and p-values of the Friedman test for the three encoding schemes additive (Add), recessive/

dominant (Rec) and genotypic (Gen). The average ranks are computed over all experimental settings or

only those for a certain classifier or a certain disease data set. (Small values are better.)

doi:10.1371/journal.pone.0135832.t005

Table 6. Rank differences and p-values for pair-wise comparison of encodings.

Hypothesis Rank diff p-value

Add vs Gen 0.82 < 10−15

Add vs Rec 0.58 1.765 � 10−12
Rec vs Gen 0.23 0.004434

For each pair-wise comparison of encodings, the rank difference was calculated as the difference of the

average ranks over all data sets and algorithms. The first encoding of each hypothesis is the better one

(lower rank). p-values were corrected using Shaffer’s static method.

doi:10.1371/journal.pone.0135832.t006
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detect significant differences between any of the encodings (Fig 1f), which can be attributed to
both tests differing in their statistical power. The null hypothesis could not be rejected for the
Decision Tree (p = 0.557) and the Random Forest (p = 0.01058) algorithms.

The additive encoding also achieved the best average rank when looked at for each of the
diseases separately (see Fig 2). For most diseases the Friedman test showed no significance
(k = 3, n = 6). The three disease data sets with significant results were T1D (p< 10−15), RA
(p = 2.485 � 10−9) and CD (p = 6.029 � 10−8). Especially the T1D data set, which had the best
predictions by far, showed the biggest difference between all three encodings. It was the only
single disease data set for which all pair-wise rank differences were significant. Also, the encod-
ings were ranked in the same order in so many cases that the average ranks were very close to
the discrete ranks (1.10, 2.07 and 2.83) The other two data sets for which the Friedman test

Fig 1. Comparison of encodings per classifier. The three encodings compared by their rank distance over
all data sets and classifiers (a) and grouped by classifier. A connecting line between encodings means that
the null hypothesis of them being significantly different could not be rejected. Only algorithms for which the
Friedman test rejected the null hypothesis are shown. (α = 0.001.)

doi:10.1371/journal.pone.0135832.g001

Fig 2. Comparison of encodings per disease data set. The three encodings compared by their rank
distance over all data sets and classifiers (a) and grouped by disease data set. A connecting line between
encodings means that the null hypothesis of them being significantly different could not be rejected. Only data
sets for which the Friedman test rejected the null hypothesis are shown. (α = 0.001.)

doi:10.1371/journal.pone.0135832.g002
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rejected the null hypothesis only reported a significant difference between the additive and the
genotypic encoding. Apart from that, two observations could be made for the disease data sets:
Firstly, when differences were detected, it was always the additive encoding that outperformed
the genotypic encoding. Secondly, recessive/dominant and genotypic encoding only differed
significantly for the T1D data set.

We also compared the average and the maximum AUCs of the three encodings for each dis-
ease data set (see Table 7). In all cases the additive encoding had the highest average and the
highest maximum AUC, while the recessive/dominant and genotypic encoding showed no
consistent ordering.

Classifiers
For the comparison of the different classification algorithms, we limited the evaluation of the
results to the additive encoding, since it showed the best performance. We also chose to not
evaluate the other two encodings separately, since each additional test would increase the risk
of getting significant results by chance, increasing the need for multiple test correction. After
applying the Friedman test (k = 7, n = 42) we could reject the null hypothesis of equal perfor-
mance of the algorithms with (p< 10−15, see Table 8). In the critical distance diagram (Fig 3) it
can be seen that the algorithms form two groups that differ between each other, but no differ-
ences can be found within each group (see Table 9 for p-values). The better group consists of
both SVMs, the Multilayer Perceptron, the Random Forest and the k-nearest neighbor

Table 7. Maximum and average AUCs for different encodings grouped by data set.

AUC BD CAD CD HT RA T1D T2D

Max Add 0.5834 0.5843 0.6178 0.5617 0.7276 0.8682 0.5861

Rec 0.5752 0.5753 0.6158 0.5517 0.7191 0.8558 0.5837

Gen 0.5752 0.5771 0.6080 0.5559 0.7167 0.8521 0.5773

Avg Add 0.5383 0.5571 0.5793 0.5226 0.6736 0.8031 0.5579

Rec 0.5360 0.5551 0.5748 0.5210 0.6670 0.7931 0.5565

Gen 0.5365 0.5549 0.5731 0.5214 0.6655 0.7887 0.5559

For each encoding and data set, the maximum (max) and average (avg) AUC was calculated over all algorithms and p-value thresholds.

doi:10.1371/journal.pone.0135832.t007

Table 8. Average ranks of the seven classification algorithms.

RBF Lin MLP RF KNN DT LVQ

all 2.38 2.83 2.93 3.39 4.07 5.94 6.45

BD 3.25 3.42 2.58 3.00 3.75 5.50 6.50

CAD 2.17 3.17 2.83 3.83 4.00 5.50 6.50

CD 2.83 3.17 2.83 3.17 3.00 6.50 6.50

HT 2.58 1.92 3.42 4.08 4.42 6.08 5.50

RA 2.50 2.83 2.50 3.50 3.67 6.50 6.50

T1D 1.50 3.17 3.00 3.00 5.00 5.33 7.00

T2D 1.83 2.17 3.33 3.17 4.67 6.17 6.67

The average ranks of the Friedman test for the seven different classifiers using the additive encoding. (Small values are better.) The result of the

Friedman test over all data sets is significant (p < 10−15 for k = 7, n = 42). The table also shows the average ranks for each data set separately, but the

Friedman test is not applicable here because the number of treatments is bigger than the number of problems (k = 7, n = 6).

doi:10.1371/journal.pone.0135832.t008

Feature Encoding and Classifiers for Disease Risk Prediction in GWAS

PLOSONE | DOI:10.1371/journal.pone.0135832 August 18, 2015 10 / 18



algorithm. The other group is far off to the worse end of the ranking and includes the Decision
Tree and the Learning Vector Quantization.

We also reported the ranks of the algorithms grouped by the different disease data sets for
the sake of completeness. However, since the number of compared algorithms exceeded the
number of data sets used (k = 7, n = 6), applying the Friedman test is not meaningful in this
context. A comparison of the average AUCs of the algorithms showed that performance differ-
ences varied between the different data sets (see Table 10). In the CD data set, for example, all
algorithms of the better group achieved average AUCs between 0.5911 and 0.5944 and the
other group 0.5495 and 0.5436, showing very low variance in each group, but high variance

Fig 3. Comparison of classification algorithms. The seven classification algorithms compared by their
rank distance over all disease data sets using the additive encoding. A connecting line between encodings
means that the null hypothesis of them being significantly different could not be rejected (with α = 0.001).

doi:10.1371/journal.pone.0135832.g003

Table 9. Rank differences and p-values for pair-wise comparison of classification algorithms.

Hypothesis Rank diff p-value

RBF vs LVQ 4.07 < 10−15

Lin vs LVQ 3.62 2.465 � 10−13
RBF vs DT 3.56 6.461 � 10−13
MLP vs LVQ 3.52 1.159 � 10−12
Lin vs DT 3.11 6.542 � 10−10
RF vs LVQ 3.06 1.286 � 10−9
MLP vs DT 3.01 2.501 � 10−9
RF vs DT 2.55 7.156 � 10−7
KNN vs LVQ 2.38 4.841 � 10−6
KNN vs DT 1.87 0.0008079

RBF vs KNN 1.69 0.003693

Lin vs KNN 1.24 0.08629

MLP vs KNN 1.14 0.138

RBF vs RF 1.01 0.2228

RF vs KNN 0.68 1

Lin vs RF 0.56 1

RBF vs MLP 0.55 1

DT vs LVQ 0.51 1

MLP vs RF 0.46 1

RBF vs Lin 0.45 1

Lin vs MLP 0.10 1

For each pair-wise comparison of classification algorithms, the rank difference was calculated as the

difference of the average ranks over all data sets. The first algorithm of each hypothesis is the better one

(lower rank). p-values were corrected using Shaffer’s static method.

doi:10.1371/journal.pone.0135832.t009
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between groups. This in contrast to the T1D data set, where the AUCs in the first group ranged
from 0.8405 to 0.7904 and the second group from 0.7840 to 0.7020.

Discussion

Shared features between data sets
For the p-value thresholds from 10−6 to 10−3 the percentage of shared features was about
20% − 25% for all data sets except RA and T1D. Those latter two disease data sets contained
considerably more SNPs reaching the most stringent threshold of 10−8 and thus shared up to
80% of the SNPs between to subsets. They were also the two data sets where the AUCs were
highest and varied the most between all algorithms.

But even for large fractions of shared SNPs between data sets, the ranks of the classifiers
could highly diverge. For example, in the CAD data set the number of SNPs ranged from an
average of 3.4 (for p< 10−8) to 8.0 (for p< 10−6), but the ranks of four out of the seven classifi-
ers differed by at least three positions (see S2 Table). This suggests that although the data sets
were not independent in terms of which features they contained, they were sufficiently inde-
pendent when used as input for different algorithms.

Influence of choice of encoding
All three encodings contain the same information about the SNPs and each of them can be
converted to the other ones and back. This means that the ability of a classification algorithm
to use information depends on its representation and accounts for all found differences in the
predictive performance of a classification algorithm.

Comparison per classifier. As noted before, the comparison of the three different encod-
ings reveals a clear advantage of the additive encoding for all investigated data sets and classifi-
cation algorithms. The predictive performance of the algorithms using the additive encoding
was on average better for each algorithm than when using another encoding. In all cases, it was
either significantly better than at least one of the other two encodings, or no difference could
be observed. In addition to performing better in terms of predictive accuracy, the additive
encoding has other advantages. For studies with only two possible alleles per SNP, which are
the most common studies at the moment, it needs the least storage space while preserving all
information among those three encodings. This is beneficial not only because it requires less
storage and working memory, but it also has the lowest computational time. The more features
an algorithm has to process, the more calculations need to be performed and the more

Table 10. Average AUC for each data set and algorithm over all p-value thresholds.

AUC BD CAD CD HT RA T1D T2D

RBF 0.5464 0.5692 0.5944 0.5292 0.7041 0.8405 0.5728

Lin 0.5453 0.5672 0.5911 0.5283 0.6983 0.8331 0.5693

MLP 0.5449 0.5659 0.5922 0.5263 0.6997 0.8357 0.5673

RF 0.5457 0.5629 0.5925 0.5255 0.6900 0.8360 0.5646

KNN 0.5377 0.5583 0.5921 0.5215 0.6834 0.7904 0.5583

DT 0.5253 0.5447 0.5495 0.5100 0.6173 0.7840 0.5461

LVQ 0.5227 0.5314 0.5436 0.5172 0.6222 0.7020 0.5272

Avg 0.5383 0.5571 0.5793 0.5226 0.6736 0.8031 0.5579

All values are AUCs averaged over all p-value thresholds for each data set and algorithm. The last row shows the average AUC for each data set over all

p-value thresholds and algorithms.

doi:10.1371/journal.pone.0135832.t010
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computation time is needed, unless the additional features allow the learned model to converge
faster. Therefore, the additive encoding should be chosen in most cases for the investigated
algorithms.

The results for Decision Tree were to be expected, since they evaluate single features using
discrete rules and the resulting decision function is highly non-linear. Every learned decision
tree for one encoding can be transformed into a decision tree for another encoding with the
exact same outcome. Apart from constraints like maximum depth they should be almost insen-
sitive to the specific representation of information as long as it is not too complex. Random
Forests are ensemble classifiers consisting of a special form of Decision Trees, so they should
behave similarly.

It is interesting that the only linear classifier we investigated, the standard linear SVM,
showed one of the highest preferences for additive encoding. As shown in [31], the additive
encoding can negatively affect the power to detect interactions, especially for linear classifiers.
Our results strongly suggest that the number of such risk factors is negligible compared to the
number of SNPs with simple additive effects on the phenotype. It could also be possible that
there are more complex interactions between SNPs that this study did not capture, but those
could only be revealed by much larger cohorts or the investigation of familial cases [49, 50].

Comparison per data set. The disease-specific results indicate a relationship between the
actual predictive performance and the differences between encodings. The three data sets for
which the best predictive performance could be achieved are also the ones for which a signifi-
cant difference between encodings was observed. The T1D data set has the highest predictive
performance of all seven data sets, with some algorithms reaching an AUC of up to 0.87. It also
shows the most significant differences between the three encodings with the Friedman test
reporting the best p-value of< 10−15. Next best are RA (AUC up to 0.73, p = 2.485 � 10−9) and
CD (AUC up to 0.62, p = 6.029 � 10−8). For the other diseases no significant effect of the encod-
ing could be observed. This may be due to the small performance differences, which can be
masked by random noise more easily the closer the predictions are to random chance. How-
ever, upon closer inspection it can be seen that even in the remaining four data sets AUCs of
up to 0.58 are reached, so this can not be the only reason. On the other hand, another interest-
ing observation can be made when we look at the results of the five better algorithms on the
T1D data set: In each case the additive encoding ranked best, the recessive/dominant encoding
second and the genotypic encoding third, without a single exception.

Given that the additive encoding performed the best for all data sets, we can assume that an
additive risk model is plausible for most of the SNPs or at least that the impact of additive risk
factors outweighs the others. Also, complex SNP-SNP interactions are harder to detect for the
machine learning algorithms, especially for small sample sizes.

Two groups of classifiers
While the question of which encoding to prefer can be answered with satisfying justification,
the answer to which of the investigated classification algorithms is best for creating predictive
models on SNP data is a bit more ambiguous. After having established the choice of the encod-
ing, the data on which the classifiers are compared was constrained to only a third of the initial
performance evaluations. The p-value reported by the Friedman test is still highly significant
(p< 1 � 10−13), but Shaffer’s static method could only separate the classifiers into two groups.
Based on our experiments, the linear SVM, the SVM with RBF kernel, the MLP, the Random
Forest and the k-nearest neighbor algorithm can not be considered to have statistically signifi-
cant differences in their predictive performance for these data sets. This does not mean that
there is no difference, just that we could not find enough evidence for that claim.
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Of course, the predictive performance is not the only criterion after which the classifier
should be selected. All algorithms used in this study were implemented in Java and included in
the Weka machine learning framework or a wrapper was used to make them accessible for
Weka. For each of the algorithms there exist multiple implementations in various languages. It
is therefore of only limited usefulness to compare the algorithms by their runtime or their
memory efficiency, since it would only be valid for this specific implementation.

More importantly, as already described in Machine Learning Algorithms, the algorithms
differ also in how the learned models can be interpreted. If the sole purpose of the classifier is
to predict the individual disease risk, this is of no concern. The same holds for the time needed
to train the model, since this has to be done only once and it can then be used indefinitely for
the usually much faster prediction. But if one wants to gain knowledge about the disease by
analyzing how the disease risk is calculated, simple models should be preferred.

From the five algorithms in the better group, the linear SVM can be considered the simplest.
The learned model is a linear decision function that is a weighted sum of all input features. The
weight for each feature directly correlates with the influence this feature has on the prediction
and can be easily extracted. Additionally, there is only one parameter that needs to be fine-
tuned during training, making the parameter optimization less time-consuming than other
algorithms like, for example, the SVM with RBF kernel or the MLP.

Conclusions
One of the original ideas behind this study was to investigate whether the disease risk predic-
tion for certain diseases depends on the encoding of the genetic data or not. Each encoding
implies a different genetic risk model of how the presence or absence of alleles and genotypes
affects the disease risk. It would be naive to assume that all SNPs that are causative for or corre-
lated with the phenotype follow the same risk model. However, the fact that the additive encod-
ing performs best by a large margin indicates that it either corresponds to the underlying
genetic risk model, or that it is at least a suitable representation for machine learning, even if
the actual risk model is not additive.

While a single “best” algorithm for this kind of data would have been a more favorable out-
come, our results suggest that the predictive performance differences between SVM, MLP, RF
and even the KNN algorithm are negligible. Further analyses of more and larger data sets may
be able to raise the observed performance differences up to a statistically significant level.
Researchers choosing one of these popular classification algorithms face a low risk of a substan-
tially worse predictive model. Instead, they can base their decision upon other criteria such as
experience with or availability of certain software.

We recommend using the linear SVM, because the learned model directly reflects the influ-
ence of individual SNPs on it. If one is only interested in prediction, an SVM with RBF kernel,
the Multilayer Perceptron or Random Forest algorithms can be used and offer more possibili-
ties of fine-tuning to individual circumstances.

Supporting Information
S1 Table. AUCs and ranks for the three encodings for all settings. For each data set, p-value
threshold and classifier, the predictive performances of the risk models of all folds of the cross-
validation have been averaged for each encoding scheme and rounded to four decimal places.
The corresponding ranks (1 is best) are shown to the right. The settings in each line only differ
in the used feature encoding.
(XLS)
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S2 Table. AUCs and ranks of the seven classifiers for all settings using additive encoding.
For each data set and p-value threshold, the predictive performances of the risk models of all
folds of the cross-validation have been averaged for each classifier and rounded to four decimal
places. The corresponding ranks (1 is best) are shown to the right. The settings in each line
only differ in the used classifier. (The values in this table are the same as the ‘Additive’ column
from S1 Table, but grouped differently for easier comparison.)
(XLS)
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