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Abstract
Block II of Plasmodium vivaxmerozoite surface protein 3α (PvMSP3α) is conserved and

has been proposed as a potential candidate for a malaria vaccine. The present study aimed

to compare sequence diversity in PvMSP3a block II at a local microgeographic scale in a vil-

lage as well as from larger geographic regions (countries and worldwide). Blood samples

were collected from asymptomatic carriers of P. vivax in a village at the western border of

Thailand and PvMSP3α was amplified and sequenced. For population genetic analysis,

237 PvMSP3α block II sequences from eleven P. vivax endemic countries were analyzed.

PvMSP3α sequences from 20 village-level samples revealed two length variant types with

one type containing a large deletion in block I. In contrast, block II was relatively conserved;

especially, some non-synonymous mutations were extensively shared among 11 parasite

populations. However, the majority of the low-frequency synonymous variations were popu-

lation specific. The conserved pattern of nucleotide diversity in block II sequences was

probably due to functional/structural constraints, which were further supported by the tests

of neutrality. Notably, a small region in block II that encodes a predicted B cell epitope was

highly polymorphic and showed signs of balancing selection, signifying that this region

might be influenced by the immune selection and may serve as a starting point for designing

multi-antigen/stage epitope based vaccines against this parasite.

Introduction
Vaccine is a long-term hope to combat malaria—a major infectious disease responsible for
more than half a million deaths annually around the world. The alarming signals of artemisinin
resistant parasites seemingly to follow the same path initially laid down by chloroquine-resis-
tant parasites across international borders in Southeast Asia further urge the development of
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vaccines against malaria [1, 2]. Vaccine research has been largely focused on Plasmodium fal-
ciparum—a species responsible for the majority of malaria-related deaths. However, vaccine
research for P. vivax has trailed far behind [3, 4]. Yet, P. vivax is the most widespread human
malaria parasite and it causes 50–70 million infections annually [5]. This co-called ‘benign ter-
tian’malaria parasite has been increasingly recognized as the cause of significant morbidity
and mortality. The changing malaria epidemiology worldwide with increasing proportions of
P. vivaxmalaria further highlights the difficulty for controlling this parasite and emphasizes
the need to develop integrated control strategies including vaccine for this parasite [6].

Several antigens have been proposed as potential vaccine candidates for P. falciparum [7],
and their orthologs in P. vivax (PvAMA-1, PvMSP-1, PvDBP, PvCSP, PvMSP3α, etc.) have also
been characterized. Antigenic diversity in these genes [8–14] has significantly hindered the
progress in vaccine research [15–17], since multiple antigenic alleles could evade vaccine-
induced, allele-specific immunity. In contrast, antigens with low variability or the conserved
functional regions of polymorphic antigens are attractive vaccine targets [17], as these regions
are assumed to be under functional constraints and possibly have slower evolutionary mecha-
nisms. This approach has been used for MSP3-LSP and GMZ2 vaccines which include con-
served C-terminal region of the P. falciparummerozoite surface protein 3 (PfMSP3) gene [18,
19]. Furthermore, various genomics and proteomics approaches are being exploited to identify
such conserved regions to overcome the challenges imposed by genetic variations [20].

MSP3 in P. vivax is a family of 11 members with a complex evolutionary history [21, 22].
Two of the loci,MSP3α and 3β, have been widely used as population genetic markers for typing
P. vivax isolates based on polymorphisms depicted by PCR/RFLP analysis [10, 23–25]. Previ-
ous studies analyzing PvMSP3α gene sequences have observed differential pattern of diversity
across different domains of the gene [10, 26, 27]. PvMSP3α is composed of an N-terminal sig-
nal sequence, a central alanine rich region and an acidic C-terminus. The alanine rich repeat
region of PvMSP3α encodes block I (residues 104–396) and block II (434–687). Block II has
been shown to be relatively conserved with non-random variations clustered in two structural
motifs; motif I from amino acid position 533 to 538 and motif II from 580 to 587 [26, 27].
Interestingly, the variations within each motif are tightly linked that have generated dimorphic
alleles for each motif (motif I: MSELEK/LSKLEE and motif II: TAANVVKD/KEATAAKL). All
of these alleles have been found equally prevalent in natural P. vivax populations [10, 24, 26,
27]. Based on this peculiar pattern of variation, block II has generated considerable interest as a
potential vaccine candidate. Block II is also known to elicit a pronounced antibody response
against clinical malaria infections reported from Papua New Guinea [28] and Brazil Amazon
[29]. In fact one of the studies suggested that block II specific antibodies compared to other
regions of the gene are more responsive to high density natural infections [28]. All these fea-
tures point to block II as a potential vaccine candidate or target for sero-epidemiology studies
in P. vivax.

A conserved pattern of variation in an antigenic sequence has been widely associated with
purifying (negative) selection that can be the result of either structural constraints or strong
immune directional selection [30, 31]. On the contrary, high diversity has been usually associ-
ated with balancing selection by the immune system [32, 33] but alternatively could be the
result of relaxation. Since antigenic diversity is generally influenced by local endemic settings,
comparative analysis of the gene in diverse population backgrounds is more informative.
Genetic diversity in block II of PvMSP3α has been previously characterized only in a few labo-
ratory adapted strains [26], and limited clinical samples from Thailand [10, 34] and Venezuela
[24, 27]. Thus, this study aimed to define the patterns of variation in PvMSP3α block II in sam-
ples from a small village (local diversity) compared with the larger geographic structures. By
studying the extent and distribution of polymorphisms in PvMSP3α block II among P. vivax
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samples from 11 countries, we hope to understand the evolutionary mechanism underlying the
variation patterns. Genetic diversity in block II preferentially revealed large number of rare
alleles, and high frequency variants were restricted to specific genetic regions. The prominent
allelic forms of block II were extensively shared by diverse P. vivax populations.

Material and Methods

Study area and sampling
The present study was conducted in a small village Suan Oi in Tha Song Yang district of Tak
province located at western border of Thailand (Fig 1A), which is known to contribute highest
number of malaria cases in the country [35]. Malaria in this region is hypo-endemic and sea-
sonal [35, 36]. P. falciparum and P. vivax infections are more prevalent and notably, we have
reported a large number of asymptomatic infections (only detected by expert microscopists
and by PCR assay) in that area recently [35, 36]. Asymptomatic infections usually remain
undetected by passive case detection by hospitals and clinics [35], thus present study conducted
mass blood surveys in Suan Oi village between June 2011 and June 2013 to determine the mag-
nitude of P. vivax infections at a micro-geographic scale.

Finger-pricked blood samples were obtained from all the residents of Suan Oi during mass
blood surveys. The presence of malaria parasites in some of the blood samples from partici-
pants were confirmed by microscopic examination of Giemsa-stained blood films and by PCR

Fig 1. Location of sampling sites with PvMSP3α block II allelic forms. (A) The location of Suan Oi village at the western border of Thailand. (B) Amap
showing the distribution of block II allelic forms across eleven countries. The black portion of the pie chart indicates shared alleles (with one or more
populations), while the white portion shows population specific alleles. Population specific alleles that were observed only once (singletons) are shown as
pattern-filled portion in the pie chart. (C) Haplotype network constructed from block II alleles generated using only non-synonymous variations that were seen
in more than two isolates. Both the maps of the world and Thailand are taken fromWikimedia Commons.

doi:10.1371/journal.pone.0135396.g001
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[36]. Genomic DNA was extracted from dried blood spots on Whatman filter paper using a
QiaAmp DNAMini Kit (Qiagen, Germany). Plasmodium species identification was carried out
by species-specific rDNA based primers following method described in Snounou et al., 1993.
Twenty four samples showing single P. vivax infections were included in sequencing analysis.

Ethics statement
Written informed consent was obtained from the participants or guardians. This study was
approved by the Institutional Review Boards of Pennsylvania State University and Thai Minis-
try of Public Health.

Sequencing of PvMSP3α gene
PvMSP3α in P. vivax samples was amplified using primers described previously [10]. Amplified
fragments were visualized on 1.5% agarose gel for approximate size estimation. PCR amplified
fragments were further purified using the High Pure PCR cleanup microkit (Roche) and
sequenced in both directions using BigDye Terminator v3.1. DNA sequences obtained were
assembled using Lasergene software (DNASTAR) with manual editing, and aligned with the
Sal I reference gene sequence (PVX_097720) using ClustalW. The sequences corresponding to
block II region of PvMSP3α present in all samples were extracted for analysis.

Data collection
PvMSP3α block II sequences generated in the present study were compared and analyzed
together with the sequences retrieved from GenBank (http://www.ncbi.nlm.nih.gov/genbank/)
and Plasmodb (http://plasmodb.org/plasmo/) database. Totally, 237 sequences were derived
from 11 parasite populations, which included 52 samples from Thailand (including 20 samples
from the present study [10, 34]; 25 from Myanmar [9], 6 from India, 6 from China, 25 from
South Korea [37], 17 from Sri Lanka [38], 12 from Brazil, 22 from Colombia, 23 from Peru, 26
from Venezuela [27] and 15 fromMexico (S1 Table). Excluding indels and multiple alleles, the
695 bp region encoding block II (nucleotide 2078 to 2773) from all 237 samples were used for
analysis.

Population genetic analysis
Within population, polymorphism was quantified by total number of segregating sites and
haplotypes. Genetic diversity was measured by average pairwise nucleotide diversity (θπ) and
haplotype diversity (Hd) [39]. Local diversity measures estimated for each population were
compared with overall worldwide diversity. Genetic differentiation between populations was
estimated using Wright’s FST−a measure of fixation index [40] and the statistical significance
of the FST values was tested through 1000 random permutations. All the above analyses were
performed using DnaSP v5 software [41].

Phylogeographic clustering of the isolates was evaluated by Maximum Likelihood (ML)
tree in MEGA6 [42] using Tamura and Nei’s model of nucleotide substitution. Support for
individual nodes was obtained by performing 500 bootstrap replicates. In order to visualize
the distribution of immunologically relevant polymorphisms across populations, haplotypes
were constructed from non-synonymous SNPs that were observed in more than two isolates
(excluding singletons and doubletons), as singletons and low frequency alleles are not generally
considered informative for vaccine design [43]. Haplotype network was drawn by NETWORK
(fluxus-engineering.com) using the median joining algorithm [44].
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To examine departure from neutrality, we estimated the numbers of synonymous substitu-
tions per synonymous site (dS) and of nonsynonymous substitutions per nonsynonymous site
(dN) using the Nei and Gojobori method [45] as implemented in MEGA6. Significance of the
difference between dN and dS was estimated with a Z-test of selection. A dN significantly
higher than dS is consistent with positive selection, while dS higher than dN is expected under
purifying selection. We also used Tajima’s D [46] and Fu and Li’s F� [47] frequency-based tests
of neutrality implemented in DnaSP v5 to examine departure from neutrality. Tajima’s D test
compares average pairwise nucleotide diversity (θπ) with the standardized number of polymor-
phic sites per site (θS), whereas Fu and Li’s F� tests excess or lack of singletons by comparing
number of singletons and the average number of nucleotide differences between two sequences.
Significantly positive values of these tests suggest a recent population bottleneck or balancing
selection, whereas negative values indicate population growth or directional selection.

We used an array of methods to detect recombination signals viz; RDP, MaxChi, GENE-
CONV, GARD and minimum number of recombination events (Rm) according to the four-
gamete test by Hudson & Kaplan [48]. We used the RDP3 package [49] for RDP [50], MaxChi
[51], and GENECONV [52]. These methods are designed to detect recombination breakpoints.
RDP and MaxChi are used in sliding window analysis, whereas GENECONV scans for long
regions of identity between sequences. We also used another tree based method of recombina-
tion detection, Genetic Algorithm for Recombination Detection (GARD) [53] implemented in
Datamonkey (datamonkey.org) [54], which identifies recombination breakpoints by searching
for significant change in the nodes of the tree constructed from all possible partitions. Recom-
bination rate (ρ) and mutation rate (θ) were calculated using LDhat package [55].

Results

Polymorphisms in PvMSP3α gene in the western Thai village
The PvMSP3α gene displays enormous genetic diversity in P. vivax populations and conse-
quently has been used as a molecular marker for differentiating field parasite strains [24]. To
investigate the genetic diversity of PvMSP3α gene on a microgeographic scale, we collected P.
vivax samples from asymptomatic carriers in a small village Suan Oi (~500 residents) in west-
ern Thailand (Fig 1A) during mass blood surveys conducted in this area. The PvMSP3α gene
was successfully amplified in 22 of 24 P. vivax samples. Two PCR length variant types A (1.9
Kb) and C (1.1 Kb) were observed, whereas type B (1.5 Kb) was not observed in the tested sam-
ples [34]. Two of the samples produced two bands, suggesting of mixed strain infections.

In order to determine the details of sequence diversity of PvMSP3α, PCR products of 20
samples were sequenced and aligned with the Sal I reference gene. PCR fragment type C con-
tained a ~750 bp deletion in block I, whereas block II was relatively conserved in all 20 samples.
PvMSP3α block II in the 20 samples had 28 single nucleotide polymorphisms (SNPs), 24 of
which were parsimony informative sites (SNPs observed in more than one sequence). Among
these SNPs, 15 were non-synonymous mutations which changed 15 amino acids (12 as parsi-
mony informative). Nucleotide diversity of block II was 0.013 and haplotype diversity was
0.800 with 10 haplotypes/allelic forms of block II.

Genetic diversity of PvMSP3α in Thailand
We compared the genetic diversity of the PvMSP3α block II sequences from the Suan Oi iso-
lates with 32 publically available PvMSP3α sequences from Thailand. A total of 85 mutations
were observed in 32 sequences, of which 59 were singletons. These sequences differed from the
Suan Oi samples in the excess number of singletons. While singletons could be potential conse-
quences of sequencing errors or population expansions [56], low frequency alleles are not
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generally considered very informative in vaccine design [43]. Twelve parsimony informative
amino acid changes were observed in the 32 sequences, of which 10 were shared with the Suan
Oi samples, indicating that these high-frequency variants are commonly present in samples
from diverse regions of Thailand and these parasites persisted during the last ten years. When
all the 52 samples from Thailand were analyzed together (hereafter named as Thai samples), a
total of 87 SNPs were observed with 50 amino acid changes, of which only 14 were parsimony
informative. As expected from previous studies, nine of the 14 amino acid changes were clus-
tered in two structural motifs (motif I: 533 to 538 and motif II: 580 to 587). The SNPs in each
motif are tightly linked and formed two major alleles for each motif (motif I: MSELEK/LSKLEE
and motif II: TAANVVKD/KEATAAKL) [34].

Worldwide genetic diversity in PvMSP3α block II
We further investigated the worldwide extent of genetic diversity in a total of 237 sequences of
PvMSP3α block II from 11 parasite populations. The sequences included 52 obtained from
Thailand and 185 of worldwide isolates retrieved from the GenBank and Plasmodb database
(S1 Table). The parasite populations of the 237 samples included 139 sequences from Asian
countries (China, India, Sri Lanka, Myanmar, South Korea, and Thailand) and 98 from Amer-
ica (Brazil, Colombia, Mexico, Peru, and Venezuela) (Fig 1B). These sequences contained 158
SNPs ranging from 24–86 in each country, which resulted in 76 amino acid changes (Table 1).
Asian samples showed a relatively higher number of singletons compared to American popula-
tions (Table 1). However, the high-frequency non-synonymous mutations were extensively
shared by all populations from Asia and America. Twenty nine of the total amino acid changes
were parsimony informative, of which only 13 had a frequency of more than 5% and 10 of
them were present in two aforementioned structural motifs (Fig 2). A similar pattern of amino
acid variations was observed in each population. Population-specific polymorphisms were
mostly singletons and synonymous in nature.

Nucleotide diversity was 0.019 in worldwide samples, ranging from 0.015 to 0.023 in 11 par-
asite populations (Table 1). θπ was relatively high in India (0.023) and lowest in Brazil and
Venezuela (0.015). A sliding window plot of θπ revealed a peak (0.069) at nucleotide positions
2477–2577 (positions corresponding to the Sal I sequence) (Fig 3A), and a similar trend was

Table 1. Single nucleotide polymorphisms and summary statistics of PvMSP3α block II in different geographical regions.

Population No. of
isolates

SNPs Singletons Amino acid changes
(Parsimony informative)

Haplotypes θπ Haplotype
diversity

Tajima’s
D

Fu & Li’s
F

Sua Oi 20 28 4 12 10 0.013 0.800 0.7558 0.797

Thailand# 52 87 60 14 31 0.017 0.947 -1.3265 -3.835**

India 6 39 25 7 5 0.023 0.933 -0.4033 -0.4219

China 6 27 6 9 5 0.019 0.933 0.7700 1.0298

Myanmar 25 60 33 13 21 0.021 0.977 -0.2238 -1.5189

Sri Lanka 17 36 9 15 11 0.017 0.926 0.4825 0.4395

South
Korea

33 36 14 10 13 0.016 0.816 1.1073 -0.3151

Brazil 12 29 8 9 10 0.015 0.955 0.4974 0.4652

Mexico 15 38 5 17 6 0.020 0.819 0.9332 1.1185

Peru 23 29 1 13 9 0.016 0.897 1.7677* 1.8257**

Colombia 22 35 3 15 15 0.016 0.961 0.6206 1.1887

Venezuela 26 24 0 10 7 0.015 0.818 2.4208** 2.2213**

World-wide 237 158 108 29 100 0.019 0.972 -1.5136* -6.5208**

doi:10.1371/journal.pone.0135396.t001
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observed in all the populations. Again, this region encodes structural motif II, where 6 of 13
high-frequency amino acid variants (minor allele frequency>5%) were identified.

The 237 sequences had a total of 100 allelic forms of block II (from 5 in India and China to
31 in Thai samples) with an overall allelic diversity of 0.9724 (0.816–0.977 country-wise). Fif-
teen block II alleles were shared between populations and 85 were population specific. Both
shared and population-specific alleles were observed in each population. Interestingly, all the
population-specific alleles were singletons in five out of the 11 populations (Fig 1B). Population
specific alleles are not the preferred choice for formulating vaccines aiming to control patho-
gens worldwide. Haplotype network constructed from the block II allelic forms observed in
more than two isolates revealed 15 alleles, of which 6 were shared among four or more popula-
tions (Fig 1C). Highly frequent block II allelic forms were shared by diverse population samples
from Asia and America (Fig 1C).

Population differentiation
Genetic differentiation between worldwide populations estimated using FST showed a modest
genetic structure (0.083), which means population genetic differentiation accounting for only
8% of the total variations in the gene. The highest degree of population differentiation was
observed between Thail and Mexico (FST = 0.2559, P<0.001) and the lowest between Mexico
and China (FST = -0.0025, P>0.05; Table 2), suggesting that geographic distance is not signifi-
cantly responsible for genetic differentiation. Moreover, FST values did not correlate with the

Fig 2. Polymorphism and its pattern in PvMSP3α and block II. Left panel shows a schematic representation of different domains of PvMSP3α and two
genotypes of the locus observed after PCR amplification of the Suan Oi isolates. Right panel shows distribution of amino acid substitutions (excluding
singletons in all 237 sequences) in each country. Amino acid positions are numbered corresponding to Salvador I reference strain and the changes in two
structural motifs are boxed. Mutations that are observed only once in particular country are highlighted in red and country-specific mutations are circled.

doi:10.1371/journal.pone.0135396.g002
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geographic distance between the populations (Spearman correlation coefficient = -0.0336,
P = 0.8).

Absence of population structuring was further supported by ML analysis of the 237
PvMSP3α block II sequences. Phylogenetic relations between isolates revealed three robust
clusters (with bootstrap value more than 75%) based on sequence variations. Group I included
21 sequences from only four countries (Thailand, Myanmar, Brazil and Venezuela), whereas
Group II and III included 112 and 104 sequences from all the 11 populations, respectively
(Fig 4). High-frequency variations in the regions of two structural motifs mainly determined
the pattern of clustering, though other variations defined few sequences that formed sub-clus-
ters within the three major groups (Fig 4). Group I sequences contained the Sal I allele (wild
type) in both motifs I and II (LSKLEE and TAANVVKD). In comparison, group II showed

Fig 3. Sliding window plot analysis of nucleotide diversity and tests of selection on PvMSP3α block II
in worldwide sequences. (A) Average pairwise nucleotide diversity (θπ). (B) Tajima’s D values. (C) Fu &
Li’s F* test values. A window size of 11 and step size of 1 bp were used. The region with the highest peak of
significant values is circled.

doi:10.1371/journal.pone.0135396.g003
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mutated allele only in motif I (MSELEK and TAANVVKD), whereas group III contained both
alleles of motif I (LSKLEE/MSELEK) and only mutated allele in motif II (KEATAAKL).

Selection and recombination
The rate of synonymous substitutions was found significantly higher than the rate of non-syn-
onymous substitutions in worldwide sequences as well as in each population (data not shown),
which indicates purifying/negative selection on block II. This observation was further sup-
ported by the significant negative values of Tajima’s D and Fu and Li’s F� tests observed in
worldwide sequences. The Tajima’s D and Fu and Li’s F� values were positive in eight popula-
tions, but the deviation was significant only in Peru and Venezuela populations (Table 2).
Interestingly, window plot analysis of Tajima’s D and Fu and Li’s F� in each population
observed significantly positive values in a small region (from 582–591) that covers structural
motif II (Fig 3B and 3C). This was further supported by performing the comparative analysis
of structural motif II region (24bp) and rest of the block II (672bp) from all 237 sequences.
Block II sequences (672 bp) showed highly significant negative values of Tajima's D (-1.9064,
P<0.05) and Fu & Li's F (-7.1944, P<0.02), while motif II sequences (24 bp) showed significant
positive values of Tajima's D (2.7062, P<0.05) and Fu & Li's F (1.3084, P>0.05). These obser-
vations suggest the influence of purifying selection on the entire block II possibly due to struc-
tural constraint forced by alanine heptad repeats, whereas a small region containing motif II
might have experienced balancing selection. Interestingly, previous in vitro studies have local-
ized a B-cell epitope in motif II (IDEB database; http://www.iedb.org/). Moreover, in silico B
Cell Epitope Prediction server [57] also predicted both alleles of motif II as B cell epitopes with
>75% specificity.

Intragenic recombination has been repeatedly reported as a prominent evolutionary force
in maintaining genetic diversity in PvMSP3α. Since recombination rates estimated by different
methods vary with the number of sequences, rate of recombination, and the number of recom-
bination sites, we analyzed all 237 sequences together using five different tests for detecting
recombination events. Among phylogenetic approaches of recombination detection, RDP,
GENECONV and GARD tests failed to identify any breakpoints, while MaxChi identified one
recombination breakpoint. In contrast to these phylogenetic approaches, 13 recombination
events were identified by population genetics based estimator using DnaSP. We assumed that
singletons might have influenced the DnaSP results, but singleton-free data (replaced single-
tons with major alleles) produced similar results. Recombination is also evident by eye, since

Table 2. Pairwise FST estimates for 11 Plasmodium vivax endemic countries using PvMSP3α block II sequences.

Populations Brazil China Colombia India Mexico Peru Sri-Lanka Myanmar South Korea Venezuela

China 0.0166

Colombia -0.0126 0.1035

India 0.1046 -0.1018 0.1323

Mexico 0.1734 -0.0025 0.2271 -0.0041

Peru -0.0051 0.0233 -0.0083 0.0329 0.1542

Sri-Lanka -0.0314 0.0610 -0.0032 0.1180 0.1975 0.0308

Myanmar 0.0363 -0.0951 0.1114 0.0005 0.0948 0.0567 0.0717

South Korea 0.1653 0.0588 0.1344 0.0363 0.1902 0.0801 0.1472 0.1140

Venezuela 0.0942 -0.0699 0.2087 0.0435 0.1083 0.1402 0.1606 0.0002 0.2297

Thailand -0.0200 0.0847 0.0398 0.1864 0.2559 0.0630 0.0135 0.0835 0.2090 0.1500

Bold values are statistically significant with P <0.05.

doi:10.1371/journal.pone.0135396.t002

Genetic Diversity of PvMSP3α Block II

PLOS ONE | DOI:10.1371/journal.pone.0135396 August 12, 2015 9 / 16

http://www.iedb.org/


Genetic Diversity of PvMSP3α Block II

PLOS ONE | DOI:10.1371/journal.pone.0135396 August 12, 2015 10 / 16



any combinations of dimorphic alleles of the two structural motifs were observed among 237
sequences, implying that recombination in block II has taken place. This was further supported
by the recombination event observed by DnaSP in the region between the two motifs (data not
shown). Moreover, the estimated recombination rate (ρ = 0.06) was higher than mutation rate
(θ = 0.0375) leading to a ρ/θ ratio of 1.6. Recombination to mutation ratio exceeding 1 signifies
that the recombination is more prevalent in the dataset than mutation.

Discussion
Analyzing the diversity of gene encoding antigens and the mechanisms involved in the mainte-
nance of such variation is a necessary step for prioritizing vaccine candidates and monitoring
their efficacy [33]. The importance of this can be illustrated by studies in P. falciparum that
identified considerable diversity in the haplotypes used for designing MSP3-LSP and MSP119
vaccines [58–61]. Significant genetic diversity was assumed to be one of the plausible reasons
for the failures of these vaccines in clinical trials. The issue is particularly important in P. vivax
since its antigens are still understudied and it has been observed that many genes encoding vac-
cine candidates in P. vivax show different patterns than P. falciparum [22, 61–64]. The block II
of PvMSP3α, being relatively conserved with restricted variations has been proposed as a good
vaccine candidate, but defining immunological relevance of the region is required. We analyzed
PvMSP3α block II in 11 P. vivax endemic countries worldwide to highlight the extent and dis-
tribution of polymorphisms and the potential mechanisms generating these variation patterns.
Block II was found less diverse compared to other vaccine candidate genes and many muta-
tions were singletons. The pattern of variation was extensively shared by diverse P. vivax popu-
lations suggesting functional/structural constraint on block II, however, each population
maintained different allelic forms of block II.

Though a large number of SNPs were observed in PvMSP3α block II of worldwide P. vivax
populations, 66% (104/158) of them were singletons. Singletons and low-frequency alleles are
generally excluded from diversity analysis of vaccine candidate genes [43] to avoid sequencing
and/or PCR artifacts, especially for data retrieved from public databases when sequence accu-
racy cannot be confirmed. It is worth noting that singletons are expected in a population under
expansion, a pattern that has been found in other studies [56, 65]. Alternatively, negative selec-
tion on functional genes also increases singletons [66]. The nucleotide diversity of worldwide
samples was 0.019 with slight variations among 11 diverse populations (ranging from 0.015 to
0.023). The nucleotide diversity of PvMSP3α block II in each population was found lower than
that of the full-length PvMSP3α gene [24, 27] as well as many other merozoite surface proteins
analyzed in P. vivax populations, e.g., PvMSP1 (θπ = 0.027) [67], PvMSP7C, PvMSP7H and
PvMSP7I (θπ = 0.057, 0.0357 & 0.043) [68], PvMSP3β (θπ = 0.0367) [23] and PvMSP5 (θπ =
0.0375) [8]. However, the level of diversity in block II was high as compared to PvMSP8 and
PvMSP10 (θπ = 0.0033 & 0.0022) [69]. This reflects that PvMSP3α block II is relatively con-
served among many merozoite surface proteins in P. vivax populations. Additionally, nucleo-
tide diversity in block II showed a non-random pattern, as peaks of nucleotide diversity were
restricted to certain regions of the block II. A similar trend was observed when samples from

Fig 4. Maximum likelihood phylogeny of PvMSP3α block II DNA sequences. An unrooted phylogeny of the 237 PvMSP3α block II sequences was
inferred with maximum likelihood using Tamura and Nei’s model of nucleotide substitution implemented in MEGA6. Bootstrapping was performed with 500
replicates and tree was condensed using 75% bootstrap as a threshold. The label of each sequence is color coded corresponding to the country of origin.
Three major clusters were identified as group I, II and III and several sub-clusters were observed within each group. Consensus protein sequences
generated for each cluster/sub-cluster using 29 parsimony informative amino acid changes have been shown. Salvador I sequence has been shown as a
reference. Amino acids highlighted in red are indicating wild alleles of structural motif I and II while amino acids in green are the mutated alleles. Dashes '-' are
representing amino acids that are similar in all the clusters.

doi:10.1371/journal.pone.0135396.g004
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different geographical regions were analyzed, suggesting of functional/structural constraint,
since block II is rich in alanine heptad repeats that are predicted to form coiled coil structures
possibly needed for the functioning of PvMSP3α gene [26].

Clustering analysis of block II sequences revealed a general lack of geographic structure.
However, three robust clusters, each comprising of mixture of sequences from diverse popula-
tions were also observed. Moreover, highly frequent non-synonymous SNP-based haplotypes
were shared by multiple populations irrespective of their geographical locations, which suggest
either extensive gene flow between populations, or independent convergence of variations due
to their functional/structural importance. The phylogenetic grouping was found to be based on
the type of sequence variations especially influenced by the presence/absence of dimorphic
alleles of two structural motifs, suggesting of selective pressure on these motifs.

Antigenic genes are generally expected to be under diversifying/balancing selection, genes
under such selective pressure could show lower levels of genetic differentiation between popu-
lations than the one expected by genetic drift alone. Accordingly, the overall FST value in
worldwide samples was 0.09 with the highest estimate was observed between Thailand and
Mexico as 0.2559, P<0.05. Moreover, an FST value of 0.012 between Asian (n = 139 sequences)
and American (n = 98) samples analyzed in this study is remarkably low as compared to the
FST estimates previously observed between Asian and American P. vivax populations using
mitochondrial DNA (FST = 0.15–0.50) [56] and silent SNPs (FST = 0.228) [70]. This might be
due to shared non-synonymous variations between populations which tend to maintain low
FST values [71], a pattern consistent with balancing selection, but these results need to be inter-
preted with caution given our small sample sizes.

Though recombination seems to play an important role in generating new genetic variants,
polymorphisms in block II are largely clustered in particular regions. Moreover, the pattern of
amino acid changes is shared by diverse populations, possibly due to purifying selection that
might be acting on alanine heptad repeats for structural conservation. However, a small region
in block II encoding motif II showed evidences of balancing selection. Particularly, two alleles
of this motif seem to maintain intermediate frequencies in the study populations. This motif
might be involved in host pathogen interaction since one of the epitope identified by in vitro
studies is localized in this region. Moreover, both alleles were predicted as B cell epitopes with
>75% specificity. Blocking this region might prevent merozoite invasion of reticulocytes, and
inclusion of both alleles in a vaccine design might be able to induce immune responses recog-
nizing both alleles. However, immunological studies are required to assess the immunogenicity
and protection-inducing capability of both alleles in natural P. vivax infections in diverse popu-
lation backgrounds.

Conserved pattern of amino-acid variations in block II of PvMSP3α compared to the full-
length PvMSP3α as well as many other merozoite surface proteins provides a strong support
for vaccine development based on block II. An important observation is the common and
extensively shared pattern of polymorphisms among diverse populations, which increase the
possibility of formulating vaccines effective against worldwide P. vivax populations. Though
conserved regions in malaria antigens are generally not highly immunogenic and protective
[72, 73], antibodies against block II have been significantly associated with protection against
clinical P. vivax infections [28]. This study also identified a B cell epitope in a small region in
block II, which was also predicted to be under immune selection, suggesting that it is probably
involved in direct interactions with the host cells. Noticeably, only two prominent alleles were
observed in this epitope worldwide and both of them showed equivalent specificity as a B cell
epitope. Functional studies are needed to determine the immunogenicity and protection ability
of these small polypeptides against P. vivax infections.
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