
RESEARCH ARTICLE

Deconvolution of Complex 1D NMR Spectra
Using Objective Model Selection
Travis S. Hughes1*, Henry D. Wilson2, Ian Mitchelle S. de Vera1, Douglas J. Kojetin1

1 Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida,
33458, United States of America, 2 Graduate Program, The Scripps Research Institute, Scripps Florida,
Jupiter, Florida, 33458, United States of America

* travishughes43@gmail.com

Abstract
Fluorine (19F) NMR has emerged as a useful tool for characterization of slow dynamics in
19F-labeled proteins. One-dimensional (1D) 19F NMR spectra of proteins can be broad,

irregular and complex, due to exchange of probe nuclei between distinct electrostatic envi-

ronments; and therefore cannot be deconvoluted and analyzed in an objective way using

currently available software. We have developed a Python-based deconvolution program,

decon1d, which uses Bayesian information criteria (BIC) to objectively determine which

model (number of peaks) would most likely produce the experimentally obtained data. The

method also allows for fitting of intermediate exchange spectra, which is not supported by

current software in the absence of a specific kinetic model. In current methods, determina-

tion of the deconvolution model best supported by the data is done manually through com-

parison of residual error values, which can be time consuming and requires model selection

by the user. In contrast, the BIC method used by decond1d provides a quantitative method

for model comparison that penalizes for model complexity helping to prevent over-fitting of

the data and allows identification of the most parsimonious model. The decon1d program is

freely available as a downloadable Python script at the project website (https://github.com/

hughests/decon1d/).

Introduction
Early NMR studies of biomacromolecules were performed on relatively simple low molecular
weight model systems using one-dimensional (1D) methods. However, in the past 30 years, sig-
nificant advances in isotope labeling, NMR pulse sequence development and software methods
paved the path for multidimensional NMR studies of biomacromolecules. Despite the signifi-
cant advances made using multidimensional NMR studies, there has been a recent resurgence
in 1D NMRmethods, in particular fluorine (19F) NMR, to study complex biomolecular interac-
tions in particular because this method can simplify NMR spectra to one or a few NMR detect-
able nuclei [1–3].

To facilitate 19F protein NMR studies, a fluorine probe is attached to a unique site, or several
sites, on the protein either via a biosynthetic route (e.g. fluorotryptophan) or through the use
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of a cysteine-conjugated fluorine tag [2]. Although this type of labeling can theoretically pro-
duce a single 1D 19F NMR signal, e.g. if only one fluorine tag is attached, it might also yield
complex spectra due to various phenomena, including irreversible molecular inhomogeneity
(e.g. posttranslational protein modification or protein degradation) or reversible processes
such as slow conformation exchange between multiple conformations or ligand-associated
states. Although irreversible molecular inhomogeneity must be considered, here we focus on
methods for interpreting 1D NMR spectra for systems in exchange between multiple confor-
mational states.

Biomolecules, such as proteins, switch between different conformations, and in general the
atoms that make up the protein switch between different chemical shift environments. The dif-
ference in chemical shift between the environments and the rate of exchange between them
determines the appearance of the NMR signal. This can result in a single sharp peak when the
rate of exchange is fast (ps-ns exchange), a broadened peak when the rate of exchange is com-
parable to the chemical shift (in frequency units), or can appear as multiple and possibly over-
lapping peaks at unique chemical shift values when exchange is slow compared to the chemical
shift difference between environments [4]. Deconvolution of intermediate to slow exchange
data, where complex 1D NMR signals are observed, is desirable because it can give information
about the number and fractional occupancy of the distinct states. The chemical shift separation
of fitted peaks also provides an upper bound estimate for the exchange rate between conforma-
tions. Thus the 19F label can help define the regional dynamics over a broad timescale.

Several recent studies have used small, cysteine-conjugating fluorine probes, such as 2,2,2
trifluoroethanethiol (TET) or 3-bromo-1,1,1-trifluoroacetone (BTFA) to perform 19F NMR
studies to characterize the conformational ensemble of proteins. This includes important work
on rhodopsin [5], diacyl glycerol kinase (DAGK) [6], as well as the interaction of ligands with
the β2-adrenergic receptor (β2AR) [7, 8]. The β2AR studies found evidence consistent with
slow conformational exchange of single fluorine probes between two or more structural states.
In these studies, deconvolution of the fluorine signal was performed using commercially avail-
able software designed primarily to analyze high-resolution small molecule 1D NMR data.
This type of analysis typically requires the user to determine the initial location and number of
peaks that make up the underlying signal. With this input, a fit is then made and a measure of
goodness of fit, commonly residual error, is computed. Addition of peaks will usually reduce
the residual error to the point of overfitting, where noise is fit instead of the underlying signal.
Thus the user is often forced to determine when the fit is “good enough” and choose the num-
ber of peaks in the final fit. This user-determined model selection can be time consuming and
require other experiments to confirm the deconvolution. Thus, an objective method of model
selection would be beneficial.

Here, we present a method that utilizes residual error minimization in concert with a Bayes-
ian information criterion (BIC) [9] score to automate peak placement, identify the number of
signals, and determine peak line widths for 1D NMR spectra in the absence and presence of
chemical exchange. BIC can be used to determine the most parsimonious model out of a set of
calculated models. Differences in BIC values can indicate the degree to which one model is
favored over another [9, 10]. Here, we test the robustness of this approach on simulated 1D
NMR spectra. In addition we use this method to analyze experimental 1D 19F NMR spectra
from peroxisome proliferator-activated receptor gamma (PPARγ), where the ligand-free form
of this protein contains multiple overlapping NMR resonances.
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Results and discussion

Spectral deconvolution program description
We developed a program, decon1d, written in the Python programming language with the
main purpose of presenting a lower bound for the number of distinct spectral peaks or chemi-
cal shift environments that make up the overall NMR spectrum. The input file format should
contain the left and right limits of the spectrum (in p.p.m.), the number of data points, and the
intensity values (y-axis values) of each point in the spectrum to be analyzed. An example of the
input format is displayed in S1 Fig (see Methods for details). An overview of the fitting method
in decond1d is shown in Fig 1.

First, the input data baseline is adjusted (detailed in Methods) and then the initial fit is
accomplished through progressive peak placement at the areas of greatest number of consecu-
tive positive residual values and/or at the point of the highest positive residual value; residual
value is the difference between the data value and the model/fitted value. Minimization is
performed using the lmfit implementation of the Levenburg-Marquadt least squares fitting
procedure (http://lmfit.github.io/lmfit-py/), which allows user defined bounds on any fitted
parameter (i.e. peak width, height, chemical shift and phase). Next, a Bayesian information cri-
terion (BIC) score [9] is calculated for the fit. This is repeated up to a model consisting of the
user-specified maximum number of peaks—in our experience, it is best to set this to a value
more than the anticipated number of peaks to assure that all non-noise peaks are fit; we recom-
mend about twice the number of apparent peaks. As more peaks are fit, the residual error in
general decreases. In contrast, the unitless BIC score, which incorporates penalties for each
additional peak, decreases as the new peaks significantly improve the fit—until the point at
which the fit is not improved, and consequently the BIC score increases as new peaks are incor-
porated. The model with the most peaks that has a lower BIC score than a model with one
fewer peak is then chosen for further refinement. Each peak within this initial model is deleted
one at a time, a new minimization is performed, and the BIC value is calculated for the new
model. Peaks are progressively deleted until the BIC value of the new model, with one fewer
peak, is larger by more than a specified limit (defined as “plimit”; default = 15) when compared
to the current best BIC value. This is a rather strict default value, which should produce a
model with a minimal number of peaks needed to explain the data. To put plimit = 15 in per-
spective, it has been suggested that a difference in BIC value lower than 2 provides little evi-
dence that a given model is favored over another while a difference higher than 6 constitutes
“strong” (20:1 posterior odds) and a difference higher than 10 constitutes “very strong” (150:1

Fig 1. Schematic outline of the fitting protocol adopted by decon1d.

doi:10.1371/journal.pone.0134474.g001
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posterior odds) evidence that a given model is favored over another [10]. A BIC difference of
15 constitutes evidence that the model is favored over another by ~1800:1 [9]. BIC values can
only be meaningfully compared between models that are fit to the exact same data set.

After the above procedure, further improvements to the current best model are attempted
via splitting of component peaks. That is, a randomly selected single peak from the current
model is split into two peaks with chemical shifts and summed area similar to the parent peak
and the whole model is re-minimized. If this new model, with one additional peak, is the same
or better than the previous model as judged by the BIC value, then the additional peak is kept;
otherwise it is discarded and the original peak is reinstated. This splitting is continued until the
new BIC value increases by more than two as compared to the best BIC value. Monte Carlo
analysis is then carried out on the model with the overall lowest BIC value; the number of
Monte Carlo refits attempted can be user-specified. This procedure involves taking the model
and perturbing all of the composite peak parameters at once and refitting (see Methods). All
models from any part of this procedure with a BIC value less than plimitmore than the final
best scoring model are then presented to the user with the corresponding BIC value (by default
as matplotlib-based graphs and/or exported as PDF/image files). Models that differ in BIC
value by less than 2 should be considered equally good models. It should be noted that in gen-
eral the best and second best model, as judged by BIC value, are well separated. All of the exam-
ple decon1d fits presented here have a BIC value at least 4 less than the next best model, and in
only a few cases did the best and second best model differ in the BIC value by less 6; these cases
are indicated. In contrast the Monte Carlo refits of the best model, in which the number of
peaks stays the same, tend to be similar and group closely around the best model. For this rea-
son the Monte Carlo results are output from decon1d overlaid on a single separate graph. In
the case where a Monte Carlo fit results in a decrease in the BIC value of more than 2, these fits
are graphed separately. In all the fits presented here the Monte Carlo analysis resulted in very
similar models (BIC difference less than 2), which in the majority of cases are indistinguishable
by eye. In the interest of clarity only the lowest BIC model from this group of Monte Carlo
results is presented in this report. Separation of the fitting and graphing parts of the program is
anticipated in a future version.

Initial test of fitting procedure
To test the utility and robustness of the decon1d program, we generated simulated Lorentzian
peak NMR spectra using MATLAB with randomly chosen number of peaks (generated from
a uniform distribution in the interval [0 12]), width (generated from a normal distribution
where μ = 0.5 ppm, σ = 5 ppm), center (generated from a normal distribution where μ =
0 ppm, σ = 5 ppm), and intensity (generated from a normal distribution where μ = 1, σ = 0.6,
then normalized). These simulated spectra were fit using decon1d with the phase of each peak
limited to a range within ± π/50 radians. The results, which are a series of spectral predictions,
were compared to the starting simulated spectra. In all cases the best model contained fewer or
the same number of peaks that comprised the simulated spectrum (Fig 2 and S2–S4 Figs). In
cases where an isolated, well-resolved peak can be detected by eye, the fit is excellent (e.g. Fig
2A and 2B). In cases where peaks are overlapping, the program consistently underestimates the
number of peaks that a given spectral area comprises, combining several underlying peaks into
one fitted peak (e.g. Fig 2C and 2D); thus the decon1d fitting procedure provides a lower bound
on the true number of peaks. In decon1d, limiting the phase of the component peaks in each
model to� ± π/50 radians is considered for statistical purposes as ‘fixed phase’. Importantly,
allowing the phase to vary over a wider interval is necessary for fitting intermediate exchange
and mis-phased data (vide infra).

Deconvolution of 1D NMR Spectra Using Objective Model Selection
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We also performed deconvolution of these simulated spectra using the commercially avail-
able program iNMR, which is the only deconvolution program that does not require imputa-
tion of a user-defined kinetic scheme for exchange and that allows ASCII file input, which is
the format of our simulated data. In this comparison we did not specify peak locations in
deconvolutions utilizing iNMR, but used the automatically placed peaks in order to minimize
user bias in the output, similar to decon1d. In general iNMR, when used in this way, did not
provide a lower bound on the number of peaks and at times overfit dramatically (S2–S4 Figs).

Chemical exchange effects were not modeled in the simulated spectra of Fig 2. We therefore
tested the effect of loosening the phase limits of component peaks beyond ± π/50 radians when
fitting data without chemical exchange effects. Most models that allowed the phase to vary
beyond ± π/50 radians were similar to fits using the fixed phase method, with only a few mod-
els that were substantially different (Fig 2 and S3 and S4 Figs). In all the cases where variable
phase resulted in a less accurate fit the problematic regions contained multiple overlapping
peaks. Thus allowing variable phase may result in less accurate fits of some complex spectra,
but may be necessary if intermediate exchange effects are likely (discussed further below).
However, when we compared the BIC values for the best variable phase fits vs. fixed phase fits,
in all cases the fixed phase fit BIC value was at least 5 lower than the variable phase model BIC
value. This indicates that these non-exchange broadened correctly phased simulated spectra

Fig 2. Fitting of simulated spectra with decon1d. a-d) Non-exchange broadened spectra of varying signal-to-noise ratio and number, width, frequency and
height of component peaks were simulated (top row). decon1dwas then used to fit these simulated spectra allowing for either fixed phase (middle row) or
variable phase (bottom row). The color of the component peaks identified in each fit serves as a visual aid for comparisons between fits as it identifies the
approximate chemical shift of the peak center, indicated by the colored bar on the bottom. The difference between the data and the fit (residual error) is
shown in grey and the sum of individual fitted peaks is shown in green. An alternate deconvolution of the variable phase fit for column c is displayed in S5 Fig.

doi:10.1371/journal.pone.0134474.g002
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are better fit in these simulations by a fixed phase model, as expected. Therefore, in practical
use it may be necessary to generate two models for each spectrum, and then compare variable
phase vs. fixed phase BIC values to determine the best overall model. It should be noted that
when comparing BIC values a difference less than 2 does not support one model over another.
Rather a larger difference lends more support for one model versus another [10].

We also tested the ability of the method to deconvolute simulated spectra with varying sig-
nal-to-noise ratio. As the signal-to-noise ratio decreases, the number of peaks fit to a given
spectrum either decreases or stays the same (Fig 3). Again, fixed phase fits had lower BIC values
than variable phase fits (not shown), indicating correctly that the simulated spectrum does
exhibit intermediate exchange effects and is correctly phased. It should be noted that the digital
resolution of the spectrum should be much higher (i.e the Gaussian noise fluctuations are
much narrower) than the minimum peak width limit (set by the user) in order to avoid fitting
of the noise. Deconvolution using iNMR yielded less consistent results, with the number of
fit peaks varying markedly for the same simulated spectra at differing signal to noise ratios
(S6 Fig).

Impact of incorrect phasing on the fitting procedure
Incorrect phasing can be hard to discern in broad, low signal-to-noise 1D NMR spectra. There-
fore, we tested the impact that incorrect phasing has on our fitting method. Four simulated
NMR spectra each with nine zero order phases between π/8 and –π/8 radians were generated
using an in house MATLAB script (see Methods) and fit using decon1d. In general, fits of these
improperly phased simulated spectra were very similar to fits of properly phased spectra (Fig
4A). As above, both fixed and free phase model selection was carried out. The fixed phase mod-
els overestimated the number of peaks, splitting the four actual peaks into many peaks for all
but the in-phase spectrum (not shown). Similarly, deconvolution utilizing iNMR also produced

Fig 3. Lower signal-to-noise ratio leads to decreased peak assignment. a-e) Fits of simulated data with
signal-to-noise ratio: a) 5 b) 10, c) 25, d) 75 and e) 244. f) Input simulated NMR spectra showing the true
underlying peaks that make up the spectra. Signal-to-noise was calculated from the highest signal value
divided by the root mean square value of the noise in a region devoid of signal. An alternate fit of the lowest
signal to noise data (panel a) was found with a BIC value 4.67 higher than the model shown, with the only
substantial difference being that the prediction of rightmost peak chemical shift is -3.58 ppm (not shown)
rather than -3.12 ppm (shown).

doi:10.1371/journal.pone.0134474.g003

Deconvolution of 1D NMR Spectra Using Objective Model Selection

PLOS ONE | DOI:10.1371/journal.pone.0134474 August 4, 2015 6 / 16



overfitting even in slightly out of phase peaks (misphased by π/32 radians, S7 Fig). As might be
expected, deconvolutions carried out with the additional parameter of variable phase produced
lower BIC scores than fixed phase models on the out of phase spectra. Modeled peak phases
clustered tightly around the true phase, indicating that decon1dmay be used to determine the
correct phasing of experimental spectra (Fig 4B). This could be accomplished via deconvolu-
tion of the spectrum at several relative phases. The fit phase values could be used to interpolate
the zero phase value for the spectrum. Thus model selection using decon1d is robust for even
imperfectly phased spectra.

Impact of chemical exchange on accuracy of fit
The fitting method in decon1d assumes pure Lorentzian lineshapes. Exchange between two
magnetic environments, defined as p and p�, with chemical shift difference Δν near the rate
of exchange between the two environments (kex) leads to intermediate exchange lineshapes
[4]. However, it has been shown that all transitions in all exchange regimes result in Lorentzian
line shaped spectra that sum to give the overall observed lineshape. In the intermediate exchange
regime, the Lorentzian peaks that make up the overall spectrum can have distinct relative phases
and variable widths, chemical shifts, and heights [11]. In addition, for a single spin in the weak-
coupling limit, each spin transition, or spectral peak, corresponds to a signal from the set of
nuclei in a distinct chemical shift environment [11]. Using the LineShapeKin program [4], we
produced simulated spectra of a single nuclei exchanging between two to four chemical shift
environments (e.g. p and p�; p, p� and p��; etc.) with varying lifetime in each state (e.g. τp and
τp�) resulting in different equilibrium populations in each environment and overall exchange rate
(e.g. kex = 1/τp + 1/τp�) [12].

In the case of two exchanging populations, the best model found by decon1d predicted
either one or two populations (Fig 5). As the ratio of exchange rate to the chemical shift

Fig 4. Out-of-phase data are well fit by decon1d. Simulated data (input) were fit with decon1d allowing the phase to vary (model). a) The input and fit
models are nearly identical for these incorrectly phased simulated spectra. b) The fractional population, center, full width at half maximum peak height
(FWHM) and phase of the simulated spectrum (dashed and solid lines) and the fits (colored dots) were graphed as a function of the phase of the simulated
spectrum (x-axis). In general these fits are not adversely affected by poor phasing. The difference between the data and the fit (residual error) is shown in
grey and the sum of individual fitted peaks is shown in green.

doi:10.1371/journal.pone.0134474.g004
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difference between the environments (kex/Δδ) is increased from near zero (slow exchange) to
~4 (just before coalescence of the peaks), both the chemical shifts and the relative populations
are largely preserved. However, as kex/Δδ is increased beyond 4, the lineshape increasingly
takes on fast exchange characteristics and both the chemical shift and relative population infor-
mation is progressively lost as the two signals merge to form one Lorentzian peak (Fig 5). The
relative phase of the two peaks in the fitted model becomes increasingly divergent as kex/Δδ is
increased and upon nearing 8 the phases differ by ~π radians. In addition the out of phase peak
becomes very broad. This outcome was consistent for both evenly split and skewed p and p�

populations. Thus it appears that decon1d predictions containing relatively narrow, oppositely
phased peaks (e.g. Fig 2C) are likely unphysical. In practice, when a model consisting of rela-
tively sharp inverted peaks is the result, another fit should be attempted with the phase limited
to a smaller range (e.g.< ±π/4). In future versions of decon1d, we will incorporate methods to
link limits on phase and peak width so that severely out-of-phase peaks are only modeled if
they have larger widths relative to other, in-phase peaks. In contrast to the results using

Fig 5. Intermediate exchange data are well fit by decon1d. Data were simulated using LineShapeKin and fit using decon1d. a) The spectrum from a
single nucleus exchanging between two chemical shift environments was simulated with near equal populations (left panel; 48%:52%) and skewed
populations (right panel; 25%:75%) at varying exchange rate to chemical shift difference values (kex/Δδ, displayed numbers) and the best model of the
component spectral lines was determined by decon1d. Vertical gray dashed lines indicate the true chemical shifts in the absence of exchange. b) Fitted
parameters from the models in panel a. c) Simulated spectra from a single nucleus exchanging between four chemical shift environments with similar
populations at varying kex/Δδ values (displayed numbers) and the best model as determined by decon1d. The difference between the data and the fit
(residual error) is shown in grey and the sum of individual fitted peaks is shown in green.

doi:10.1371/journal.pone.0134474.g005
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variable phase models, most fixed phase models (i.e. with phase error limited to< ±π/50)
incorrectly predicted more than two peaks for simulated spectra with strong intermediate
exchange effects (S8 Fig).

We also tested deconvolution of more complex spectra involving exchange of one nucleus
between four chemical shift environments (Fig 5C, not shown). Deconvolution of these spectra
produced similar results to those for two-site exchange (Fig 5A); all fits contained fewer than
four component peaks. As fast exchange is approached, information on the chemical shift and
fractional populations found at each chemical shift environment are progressively lost from
the spectra. However, in cases where kex/Δδ is smaller than ~8, deconvolution of the spectrum
can indicate the presence of more than one population. In summary, line-broadened NMR
spectra due to chemical exchange are well fit by decon1d when the phase is free to vary, includ-
ing in heavily skewed populations, and can be expected to find a reasonable lower bound for
the number of chemical shift environments sampled by a nucleus regardless of the exchange
kinetics.

Information extracted from a spectrum via decon1d could be used as a starting point for
simulation of candidate kinetic schemes. Other currently available programs are capable of
simulation and in some cases fitting user-defined kinetic schemes of intermediate exchange
data with Matlab add-ons, such as LineShapeKin [4] and NMRkin [13], or the stand alone pro-
gram MEXICO [14]. These programs are especially useful for kinetic analysis from series data
where the relative populations of component states are systematically varied (e.g. through step-
wise addition of a ligand to progressively shift the protein population from free to bound). In
contrast, the decon1d program reported here aims to extract as much information as possible
about the relative populations in each magnetic environment (i.e. thermodynamics) from a sin-
gle spectrum without imputation of a user-specified kinetic scheme.

Use of decon1d to probe a protein’s conformational ensemble
We recently reported 2D and 3D heteronuclear NMR studies of the apo-, or ligand-free,
ligand binding domain (LBD) of PPARγ—a ligand-responsive transcription factor and the tar-
get of FDA-approved insulin sensitizing drugs [15]. These studies revealed that an important
region for protein-protein interaction, which includes the C-terminal “helix 12”, is dynamic
on the intermediate exchange time scale [16, 17]. Thus peaks corresponding to residues in
helix 12 were not visible, suggesting that this region of PPARγ samples at least two conforma-
tions in the absence of a ligand. To probe the conformations accessed by helix 12, we attached
3-bromo-1,1,1-trifluoroacetone (BTFA) to a PPARγ LBD double mutant (C285S, K474C),
where a native cysteine was removed and a new cysteine was introduced in helix 12 (PPARγ-
BTFA). A 19F NMR signal of PPARγ-BTFA is detectable, but very broad with a total width of
~170 Hz at the half maximum of the signal (FWHM). Fitting two separate NMR spectra
(acquired at ~376 MHz) with two separate protein samples using decon1d yields a prediction
of five or six peaks, with 90±8% of the total area attributable to two main signals; these peaks
have FWHM values of 89±2 Hz (61±3% of area) and 65±4 Hz (29±5% of total area) and are
separated by 0.175±0.035 ppm (66±13 Hz) with slightly opposing phase (Fig 6, S9 Fig). In two-
site exchange signal coalescence is expected when kex/Δδ ~ 4.44 [18]. In this case with resolved
peaks separated by 66±13 Hz, coalescence would be expected at a kex (= k-1+k1) of 290±58 s

-1.
Therefore these data suggest that PPARγ-BTFA helix 12 is switching between two long-lived
conformations at an exchange rate slower than ~250 s-1 and that in addition minor populations
of PPARγ exist with helix 12 in at least two other minor conformations It should be noted that
the intrinsic linewidth of a non-exchanging fluorine label attached to PPARγ could be on the
order of tens of hertz. This non-exchange linewidth adds to the uncertainty in chemical shift
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differences between the two peaks and thus the exchange rate. Two other minor conformations
(total of 5–8% of the total signal fractional population) of 50±21 Hz and 11±1 Hz FWHM are
predicted at very consistent chemical shifts (-84.40±0.01 ppm and 84.21±0.00 ppm). A wide
small peak (Fig 6) was predicted for only one of the repeated experimental datasets. We also fit
these spectra using various commercially available programs and found that decon1d produced
the lowest residual value and was unique in consistently predicting a narrower linewidth for
the right peak centered at -84.1ppm (Fig 6, S9 Fig).

We next measured 19F transverse relaxation lifetime (T2) using a π/2 pulse followed by a
variable delay, a π pulse, the same variable delay and finally 19F acquisition with 1H decoupling
(S10 Fig) and compared these data to model predicted peak widths. We calculated T2 for two
separate areas of the 19F signal envelope by integrating the signal area from -83.0 ppm to
-84.05 ppm and separately for -84.05 ppm to -85.0 ppm (left and right of the red dashed line in
Fig 6) and fit each area to a single exponential decay. Fitting of these data yielded T2 values that
are distinct for each area (Fig 7) and predict a narrower peak for the right area, in closest

Fig 6. Fit of real experimental data. The ligand binding domain of PPARγ C285S/K474C was treated with BTFA and then NMRwas performed at 298K.
Deconvolution of the 19F NMR signal was carried out using the indicated programs. In each case the difference between the data and the fit (residual error) is
shown in grey and the sum of individual fitted peaks is shown in green.

doi:10.1371/journal.pone.0134474.g006

Fig 7. Fit of T2 relaxation data. The integral of the 19F NMR signal was calculated to the left of the dotted red
vertical lines in Fig 6 (from -83 ppm to -84.05 ppm, left, circles) and to the right of the dotted red vertical lines
in Fig 6 (from -84.05 to -85 ppm, right, boxes) in two independent experiments (blue and black) and plotted as
a function of total delay time in the 19F T2 experiment described in the text. Two near-zero data points from
repeat two at 0.3s delay are not shown for clarity (-0.012 and 0.023 for left and right respectively) but are
included in the fits. Spectra used in the 19F T2 calculation are shown in supporting information (S10 Fig).

doi:10.1371/journal.pone.0134474.g007
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agreement with both the predicted population-weighted arithmetic mean of all peaks to the
right of -84.05 (62±2 Hz) and the linewidth of the large right peak (-84.08 ppm) in the decon1d
model (61 Hz; Table 1). We also found that one of the programs, iNMR, produces two distinct
fits depending on whether the “smooth” button is activated, one of which does predict peaks of
various linewidth for the right area of the signal (S11 Fig). However the population-weighted
arithmetic mean linewidth of peaks with centers in the right area of the signal envelope of the
iNMR generated model (105 Hz) is inconsistent with the T2 data for the right portion of the
signal envelope (95% CI 20–65 Hz). In addition deconvolution using both Topspin (Bruker)
and Mestrenova software yields models that predict essentially equal relaxation on the left and
right sides of the spectrum (Table 1). Thus, in this case without pre-specification of a specific
kinetic model the decon1dmethod produced a model more consistent with experiment than
other available fitting programs.

In this analysis of these experimental spectra we have ignored the effects of any possible
1H-19F coupling on the spectra. Coupling was assumed to have negligible effect because pro-
tons were decoupled during 19F acquisition and the spectra appeared very similar with or with-
out decoupling (not shown). This lack of coupling effect is probably due to small coupling
constants compared to relatively wide 19F peaks. The effects of coupling may affect interpreta-
tion of the spectral deconvolution in other non-decoupled spectra with relatively strong cou-
pling as compared to peak widths where multiple component peaks may represent a single
structure [19].

Conclusions, future developments, and availability
Although 19F labeling of biomolecules can greatly simplify NMR data of complex biological
systems, even these more “simplistic” data can give rise to overlapping NMR signals that are
difficult to deconvolute. In addition, the methods currently used for deconvolution of biologi-
cal 1D 19F NMR spectra require significant user input and judgment. We have developed an
objective method that uses statistically determined model selection to fit complex 1D NMR
spectra packaged in the form of a Python-based program, decon1d. There are several areas that
can be expanded in future developments of this approach. For example, we are currently
exploring the application of constraints that can be placed on the phase of individual peaks
depending on the their width and location relative to other peaks in order to avoid unphysical

Table 1. Comparison of experimental to fit parameters.

Fraction of total area Center (ppm) Width (Hz)

LEFT PEAK

Experiment (T2) 90 (95% CI = 52–127)

decon1d 0.59 -83.88 90

Topspin 0.59 -83.87 99

MestReNova 0.57 -83.86 99

iNMR 0.50 -83.87 87

RIGHT PEAK

Experiment (T2) 42 (95% CI = 20–65)

decon1d 0.25 -84.08 61

Topspin 0.41 -84.11 98

MestReNova 0.43 -84.11 98

iNMR 0.46 -84.11 105

The data from the two experiments depicted in Fig 7 were combined for this analysis.

doi:10.1371/journal.pone.0134474.t001
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models. In addition, future work could incorporate auto-phasing of noisy, low signal-to-noise
data. Finally, we have made this program publically available for the entire NMR community,
and updates to this program will be made available from the project website (https://github.
com/hughests/decon1d/).

Methods

Text file input preparation
It is important that the input data to the program is unmanipulated, non-line broadened data
because the method assumes that the noise is normally distributed; the noise in line-broadened
data does not typically follow a Gaussian distribution. The decon1d program was originally
designed to use Bruker Topspin 3 text output files, however any text file of similar format will
work. The text file should consist of two parts; the header and the intensity data. The header
should be 10 rows. The fourth row should contain the left and right limit of the data (in ppm)
as the fourth and eighth non-whitespace string or number from the left respectively. The sixth
row should contain the total number of data points contained in the file as the fourth non-
whitespace string or number from the left. In practice it may be easiest to just modify the
header of the example text file included in the supplementary data, substituting in the left and
right limits and the total number of data points. An example input file is given in supporting
information (S1 Data). The second part of the text file contains the intensity information of the
spectra in a column starting with the left limit intensity data at the top and ending with the
right limit intensity data at the bottom. Inclusion of imaginary data is not necessary. To pre-
pare this text file in Bruker Topspin 3, first display the region containing the signal of interest
(with sufficient baseline data on both sides of the signal of interest to establish a baseline; see
below). Next, right click on the displayed spectra and select “save display region to” from the
menu, then select “a text file for use with other programs”. This will save a text file appropriate
for use with decon1d.

Additional information on the fitting procedure
Baseline correction:. The program subtracts the average intensity of the right and left

ends of the spectrum (1/30th of the total spectrum width at each end) from the entire spectrum
and then adds the expected intensity (at the edge of the spectrum) of a spectrum centered single
Lorentzian peak with height equal to the greatest intensity value in the spectrum and an esti-
mated peak width based on the area between the spectrum and the x axis (the left Riemann
sum).

Monte Carlo procedure:. The degree of perturbation to each parameter for each Monte
Carlo refit is randomly chosen from a Gaussian distribution centered at the original value with
variance proportional to the standard deviation of the original fit; i.e. with variance equal to the
original standard deviation multiplied by a random number between 0 and 200 divided by the
signal to noise ratio of the spectra.

Simulated NMR data
Non-exchange broadened NMR data were simulated in a pseudo-random fashion using a
MATLAB script where the number of peaks was either user defined or randomly selected from
a uniform distribution on a user defined interval. Width, intensity, and center parameters for
each peak were generated from user-defined normal distributions. An optional zero order
phase offset, or set of phase offsets, was user-generated. For each phase offset, free induction
decay (FID) vectors for each peak were generated using a sampling interval of 1 ms, an
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acquisition time of 1 s, and a 19F resonance frequency of 376.5 MHz. Also generated from this
information were the corresponding ppm values. The FIDs for each individual peak within a
phase offset were then summed. White Gaussian noise was imparted on the summed FID vec-
tor, which was subsequently Fourier transformed to afford the simulated NMR spectrum of a
given zero order phase offset. The real part of the summed FID vector and the ppm vector were
saved as a text file for input into decon1d. Peak parameters and zero order phase data were
saved in separate text files for comparison to decon1d outputs. In addition, the intermediate
exchange data were simulated using LineShapeKin [4] and MATLAB (www.mathworks.com)
using the U (two chemical shifts) and U-R-RL (four chemical shifts) models. See supporting
information (S1 Text) for details of simulation parameters.

Experimental spectra acquisition and analysis
C285S K474C PPARγLBD was expressed in BL21(DE3) E. coli cells from a pET46-EK/LIC
vector as a hexahistidine tagged protein. This construct consists of the LBD from residue 203
to the C-terminus (477; PPARγ isoform 1 residue numbering) with an N-terminus tag of
MAHHHHHHVDDDDKMENLYFQG (histidine tag and TEV cleavage site). The protein was
purified by Ni-NTA column and subsequently via a size exclusion column using buffer A
(20mM KPO4, 50mM KCl, 0.5mM EDTA and 5mM TCEP) for elution. The ~100 μM protein
was then treated with 80-fold molar excess of 3-bromo-1,1,1-trifluoroacetone (BTFA; ~8mM)
at room temperature (22–25 C) for 3 h and then overnight at 4 C. Excess BTFA was subse-
quently removed by buffer exchange against buffer A, the protein was aliquoted and then fro-
zen at -80°C. NMR was performed at 298K with acquisition at ~376 MHz on a Bruker room
temperature BBFO probe with 10% D2O added. The spectrum displayed in Fig 6 and S9 Fig
panel b was acquired for 13,000 scans with ~500uM protein. The spectrum displayed in S9 Fig
panel a was acquired with 52,000 scans on ~250uM protein. Spectra were acquired with 10,000
and 12,000 scans for each delay in the two T2 experiments on ~500uM protein. The pulse
sequence for acquisition of the T2 spectra is outlined in the text. The non-T2 experiment was
similar, however the delay and π pulse were omitted. Over the course of the ~2.5 day acquisi-
tion of the T2 spectra some protein precipitation occurred resulting in a loss of ~20% of the sig-
nal. Identical short delay (20 μs) experiments were run at the beginning and after the end of
the overall T2 experiment (S12 Fig) to quantify this loss and were used to adjust in a linear
fashion the integral areas of the intervening variable delay experiments (which were run in
randomized order). The correction assumed that precipitation occurred at a constant rate caus-
ing a linear decrease in signal over the ~2.5 day duration of each of the two T2 experiments.
Area under the curve vs delay was plotted and fit using a single exponential decay fit in Prism
(GraphPad Software Inc.). The deconvolution of the spectra was carried out on the spectrum
from -82.0 to -85.5 ppm via specification of analysis limits within decon1d.

Supporting Information
S1 Data. Example data file for input into decon1d. This is the simulated spectrum data dis-
played in S4 Fig panel c. This simulated spectrum consists of five Lorentzian peaks with relative
areas (percent of total area), centers (ppm) and widths (ppm) of (19.24, 3.961253, 0.6362),
(21.0776, -5.064015, 0.4249), (18.31387, -5.503231, 0.8113), (18.63312, 3.048056, 0.6403) and
(22.73541, 1.778537, 0.7756). All phases are equal to zero.
(TEXT)

S1 Fig. Example of the input text format (see S1 Data for actual file).
(TIF)
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S2 Fig. Initial test of decon1d and iNMR on simulated spectra. Fixed phase fit signifies limit-
ing the phase to less than ±π/50 radians. Grey = residual and green = sum of individual peaks
(expected to match data).
(TIF)

S3 Fig. Initial test of decon1d and iNMR on simulated spectra. Fixed phase fit signifies
limiting the phase to less than ±π/50 radians. Variable phase allows full freedom for phase.
Grey = residual and green = sum of individual peaks (expected to match data). Alternate
deconvolutions (with BIC values within 6 of those displayed) of the fixed phase model of col-
umn a and the variable phase model of column c are displayed in S5 Fig.
(TIF)

S4 Fig. Initial test of decon1d and iNMR on simulated spectra. Fixed phase fit signifies limit-
ing the phase to less than ±π/50 radians. Variable phase allows full freedom for phase.
Grey = residual and green = sum of individual peaks.
(TIF)

S5 Fig. Alternate models with a BIC score less than 6 greater than the model with the best
BIC score.
(TIF)

S6 Fig. iNMR provides inconsistent fits for the same simulated data with varying signal to
noise. f) Input simulated NMR spectra showing the true underlying peaks that make up the
spectra. a-e) Fits utilizing iNMR of these same simulated data with varying signal-to-noise
ratio: a) 5 b) 10, c) 25, d) 75 and e) 244. Signal-to-noise was calculated from the highest signal
value divided by the root mean square value of the noise in a region devoid of signal.
(TIF)

S7 Fig. Deconvolution of slightly misphased data leads to overfitting. iNMR was used to
deconvolute the same simulated spectrum (composed of 4 peaks) as shown in Fig 4 (misphased
by π/32 radians).
(TIF)

S8 Fig. The fixed phase fit is inaccurate when the ratio of kex to chemical shift difference is
between 1 and 8 (intermediate exchange). Deconvolution of the same simulated spectra as
shown in Fig 5A was carried out with a) decon1d (phase error restricted to< ±π/50 radians)
and b) with iNMR. Grey = residual and green = sum of individual peaks (expected to match
data).
(TIF)

S9 Fig. Alternate models of 19F PPARγC285S/K474C. a) Repeat of experiment shown in Fig
6. 19F NMR spectroscopy was carried out on a separate aliquot (from that used in the experi-
ment displayed in Fig 6) of BTFA-treated PPARγ C285S/K474C and fitted using decon1d. Peak
color is a visual aid for comparing peak location between graphs as it roughly indicates peak
center in ppm as shown by the color bar. b) Alternate deconvolution of the spectrum displayed
in Fig 6. The difference in BIC score between this model and the one displayed in Fig 6 is 5.99
indicating little support for this model.
(TIF)

S10 Fig. Spectra from two separate experiments used in the T2 calculations. Numbers to the
right indicate the length of the variable delay in milliseconds between a π/2 pulse and acquisi-
tion. Each experiment (of a given delay) was performed in randomized order.
(TIF)
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S11 Fig. Alternate deconvolution of real experimental data produced by iNMR when the
smooth button is activated.
(TIF)

S12 Fig. Overlay of spectra (adjusted to same height) of the starting acquisition and an
identical acquisition run after the end of the T2 experiments displayed in S10 Fig and ana-
lyzed in Fig 7. The integral of the area of the spectrum acquired immediately following the T2

experiment was 78% and 80% the area of the beginning spectrum of the T2 experiment, but
was otherwise very similar for the two T2 experiments performed here. The signal decrease is
due to protein precipitation over the course of the ~2.5 day experiments.
(TIF)

S1 Text. Simulation parameters for intermediate exchange simulation using LineShapeKin.

(PDF)
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